Table of
Contents

Java™ 2 Micro Edition Application Development

By Michael Kroll, Stefan Haustein

Publisher : Sams Publishing

Pub Date : June 25, 2002
ISBN : 0-672-32095-9
Pages : 504

The key to Java 2 Micro Edition (J2ME) Application Development is the clear,
concise explanations of the 2ME technology in relation to the existing Java platform.
This book assumes proficiency with Java and presents strategies for understanding
and deploying J2ME applications. The book presents numerous real-world examples,
including health care and financial sector examples from the authors' professional
experience.

http://www.informit.com/safari/author_bio.asp?ISBN=0672320959
http://www.informit.com/safari/author_bio.asp?ISBN=0672320959

Table of Content

TabIE OF CONTENT ...t i
(©0070)/ 1o | o | AP USSR v
Copyright © 2002 by Sams Publishing ... v
QLI 16 (5] 1= T ST PSPPSR Y
Warning and DISCIAIMETcov i v
(@3 (=T [KSR P PP %
D] =To [To%= 11 o] o 1P Vi
ADOUL the AUTNOTS........oiiiiiieee e s vii
ACKNOWIEAGMENTS.......eiiiiiieie ettt b e sn e e Vii
Tell USWhat YOU ThinK! ... e Vil
[gLu0e (¥ Tox 1 o o FOU PSP URRPRPR IX
Lo 1= T =R IX
The Structure of ThiS BOOK........cccuiiiiniiniiiiieieee s iX
Software Development Kits Used to Create the Example Applications.....x
WED SHEE . et Xi
Chapter 1. Java 2 Micro Edition OVEIVIEWccccceeiereenieniieneeniesee e 12
HIStOriCal EVOIULION........ooiieeee e e 12
Micro Edition—Related Java Specification Requests.........ccccevvrverceenennnne 15
J2ME Configurations and ProfilesScccceveeieiiiceene e 17
Sun J2ME Software Development KitS........cccoveeveeienceneeie e 19
Tools and Third-Party Products for J2ME Application Development........ 21
Developing a Simple APPlCAtioNcccvevveeeceecece e 27
SUIMIMIAIY <.ttt e st e et e s s b e e s sabe e s aane e s eaeeesbseesneeesneeesnneeas 34
Chapter 2. The Connected Limited Device Configuration............cccccevevevevceeneenns 35
General CLDC LIMITAtiONScooiiiirierieieiesie s 35
CLDC AppIlication DESIGNccccveeerierierieseesieseeseeseeseesseeeeseesseesessseessesneens 37
(O D T O o SRS 38
CLDC PIOFIES ..ttt st 39
Java Application DeploymeNt..........cccceieieiierecie e 41
JAM ON MIDP ... e 42
JAM FOF PDAP ..ottt ettt ettt ettt e e e sreesnre e 44
SUIMIMIAIY <.ttt e st e et e s s b e e s sabe e s aane e s eaeeesbseesneeesneeesnneeas 44
Chapter 3. MIDP Programiming........cccoeeeereesiereeseesieseeseesseeseessessesssesssesesssessseens 45
IMIDIBTS ...ttt sttt e b e be e e e sreenneeneens 45
HIQN-LEVEI APl ...ttt 48
LOW-LEVEI AP ...ttt 64
MIDP 2.0 AdAItIONS ... e nne e 91
SUIMIMIAIY <.ttt e st e st e e e sabe e s eane e s eaeeesbseesneeesneeesnneeas 92
Chapter 4. PDAP Programiming........cccoceeeeeeeeseenenieeseesieseeseeessesseessesssesesssesssesenns 93
PDAP Application Life CYCIEcceiiiiiiieeeseee et 93
PDA USEI INEITACE ...ttt 94
SUMMATY <.ttt sttt e s e sb e e s b e e e sae e e s aseeesneeesneeesnneeenanes 134
Chapter 5. Dala PerSIStENCYccovveeeciieie et see et 135
Y ST = 7= T o TSSO 135
Basic Functionality of the Class RecordStoreccccvvevveceveeseseesenenn, 136
A Simple Diary Application UsSing RMS ... 139
RECON LISTENEIS ...ttt 146

Storing CuStomM ODJECESvvceecece e 146

Ordered Traversal: Comparators and Record Enumerations.................. 148
The Search Problem ... 150
SUMMIATY ..ottt e st e e sab e s st e e e sas e e e esseesseeesneeesnneeennnes 150
Chapter 6. Networking: The Generic Connection Framework...........c.cccccevvueeineene 151
Creating a Connection—The Connector Classcccvvevveeiieiieciieesinens 152
(@] ol T=Tod 1 T0] o I 1N/ 0 1= S 153
GCF EXAMPIES .eeeeiece ettt st e e ae e snaenneennens 165
MIDP 2.0 Additions to the javax.microedition.io Package...........cc.ccoeueu.e. 187
SUMMATY <.ttt sttt e st e sb e st e e e sae e e s anseesneeesneeesnneeennnes 189
Chapter 7. PIM: Accessing the Personal Information Managerccccevveenene 190
General PIM AP DESIGNooiiiiiieiierieeie ettt 191
AdAreSSDOOK APL.......cooiiiieeee s 191
CalENAr AP ... 196
JLIC 01510 1Y SRS 197
Contact Sample APPHCALIONc.ooeeiiriireeeeeee e 198
SUMMATY <.ttt sttt e s e sb e e s b e e e sae e e s aseeesneeesneeesnneeenanes 204
Chapter 8. Size Does Matter: Optimizing 2ME Applications.........c.ccccccvecveenee. 205
Reducing Class File SIZES ... 205
Freeing Unused Variables and RESOUICESccccceevvveerecceseeseseesieenn 205
Loop Condition CheCKiNgcouriiiirinieeseee e 206
AVOIAING RECUISION ...ttt 206
Using Arrays Instead of VECIOISccceceeeeviee e 207
Using Record Stores Instead of Heap Memory.......ccccccevvvceveenieseesieenn, 208
Distributing Functionality over Several Small MIDIets.........c.cccoocvrcnnenen. 210
Fragmentation ProbIems...........cooiioiiece e 210
USEr INTEITACE ISSUES.......coiiiiieiesie et 211
SUMIMABIY ..ottt ettt e e e e e s se e s ee e saeeebeesseesaseesseeenseesneeanneans 212
Chapter 9. Advanced Application: Blood Sugar LOg.........cceeveeereereseeseeiee s 213
RequIremMent ANAIYSIS.......ccvieeiieieiierie e ee et e e e 213
DAY LOg. . ittt 214
Persistent Storage: The LogStorage Class.........ccovvrvneeneninnenneseeseen 218
The USer INTEITACEcoeeieeece et 220
SUMIMABIY <.ttt et e e e s ae e e abe e saeeebeesseesaseesseeanneesneeanreans 233
Chapter 10. Third-Party Libraries........ccccocevieiieiieseeie e ee e 234
XIMIL ettt ettt e b re b 234
Simple Object Access Protocol: SOAP........ccccoieneeneeee e 244
Y= U SO 247
The Bouncy Castle Crypto APl ... 251
User Interface EXIENSIONS.......ccoviiririririeiesiese s 254
SUMIMABIY <.ttt et e b e e s ae e e se e saeeeseesseesaneesseeanneesneeanreans 255
Appendix A. Class Library: CLDC Packages.........ccoccvrerninieienieneeneeee e 256
The Java.io PACKAQEecccoiiiiieeee e 256
The java.lang Package ..o 258
The java.lang.ref PaCkagecccccveieiieerieie e 261
The java.util Package ..o 262
The javax.microedition.io Package.........cccoooieiiiiiniinenieneeee e 263
MIDP-SPEeCIfic PACKAJEScooeriirieerieneseeseee e 265
PDAP-SPECIfiC PACKAQGES......cecieeieiiesie ettt 268
Appendix B. Comparison ChartS.........cccceeveeeeieeresieseesesseeseesiesseeseesseeseesseeseas 276

JE A= W= LT B AV =T o | PR 311
JEENY = e AV R0 = Vo = 312
277z 18 o 317
JE= 77z W = o 324
JE= V2= W = UL T = PR 343
JAVAIANG.TETIECT. ... e 344
JE= Y7z I8 L= 345
JAVALULI .. 347
JAVALULILJAT e 357
JE= Y=] 4 | o 358
Packages not Available in CLDC.........ccccoevieie e 359

Copyright
Copyright © 2002 by Sams Publishing

All rights reserved. No part of this book shall be reproduced, stored in aretrieval system, or
transmitted by any means, electronic, mechanical, photocopying, recording, or otherwise, without
written permission from the publisher. No patent liability is assumed with respect to the use of the
information contained herein. Although every precaution has been taken in the preparation of this
book, the publisher and author assume no responsihility for errors or omissions. Nor is any
liability assumed for damages resulting from the use of the information contained herein.

Library of Congress Catalog Card Number: 2001086073
Printed in the United States of America
First Printing: June 2002

050403024321

Trademarks

All terms mentioned in this book that are known to be trademarks or service marks have been
appropriately capitalized. Sams Publishing cannot attest to the accuracy of this information. Use
of atermin this book should not be regarded as affecting the validity of any trademark or service
mark.

Warning and Disclaimer

Every effort has been made to make this book as complete and as accurate as possible, but no
warranty or fitnessisimplied. The information provided ison an "asis' basis. The authors and the
publisher shall have neither liability nor responsibility to any person or entity with respect to any
loss or damages arising from the information contained in this book.

Credits
Executive Editor
Michael Stephens
Acquisitions Editor
Carol Ackerman
Development Editor
Tiffany Taylor
Managing Editor

Charlotte Clapp

Project Editor
Matt Purcell
Production Editor
Rhonda Tinch-Mize
I ndexer

Ginny Bess
Proofreaders

Chip Gardner

Jody Larsen
Technical Editor
Shiuh-Lin Lee
Team Coor dinator
Lynne Williams
Pamalee Nelson

M edia Developer
Dan Scherf
Interior Designer
Anne Jones

Cover Designer

Aren Howell
Dedication
To my parents
—Michael Kroll
To Janine

—Sefan Haustein

Vi

About the Authors

Michael Kroll studied Medical Computer Science from winter 1998 to winter 2000 at the
University of Applied Sciences in Dortmund Germany. His diploma thesis with the subject
"Decentral Biosignal Processing—Creating a Concept and an Implementation for Palm Connected
Organizers Using 2ME" was an interdisciplinary work in cooperation with the Department of
Radiology and MicroTherapy of the University of Witten/Herdecke Germany. Starting in
November 2000, he became a doctoral student at the University of Applied Sciences Dortmund
Germany in cooperation with the University of Witten/Herdecke Germany.

Both Michael and Stefan are the authors of the KAWT Project, an AWT subset for the KVM and
members of Java PDA profile specification expert group (JSR-000075 PDA Profile for 2ME).

Stefan Haustein studied Computer Science from winter 1990 to the beginning of 1998 at the
University of Dortmund. He wrote his diploma thesis in the Neuros-Project at the "Institut fur
Neuroinformatik™ at the University of Bochum about graph-based robot navigation.

Since April 1998, he has been working as a Ph.D. student at the Al-Unit of the Computer Science
department of the University of Dortmund.

Acknowledgments

We would like to thank all the professionals at Sams for their efforts helping us create this book.
We would like to thank Carol Ackerman for her support and encouragement as we worked to meet
our deadlines and for the nice meeting in the "beer-research-facility" at Leichlingen/Germany.

Special thanks to Tiffany Taylor for devel oping the book.

Special thanks to Shiuh-Lin Lee for his technical editing and for testing our demo applications
provided in the book.

We would aso like to thank Michael Stephensfor giving us the opportunity to write this book

Tell Us What You Think!

Asthe reader of this book, you are our most important critic and commentator. We value your
opinion and want to know what we're doing right, what we could do better, what areas you'd like
to see us publish in, and any other words of wisdom you're willing to pass our way.

As an executive editor for Sams Publishing, | welcome your comments. Y ou can fax, e-mail, or
write me directly to let me know what you did or didn't like about this book—as well as what we
can do to make our books stronger.

Please note that | cannot help you with technical problems related to the topic of this book, and
that due to the high volume of mail | receive, | might not be able to reply to every message.

When you write, please be sure to include this book's title and authors names as well as your
name and phone or fax number. | will carefully review your comments and share them with the
authors and editors who worked on the book.

Vii

Fax: 317-581-4770
E-mail: feedback@samspublishing.com

Mail: Michael Stephens
Executive Editor

Sams Publishing

201 West 103rd Street
Indianapolis, IN 46290 USA

For more information about this book or another Sams or Que title, visit our Web site at
www.samspublishing.com or www.quepublishing.com. Type the ISBN (excluding hyphens) or the
title of abook in the Search field to find the page you're looking for.

viii

mailto:feedback@samspublishing.com
http://www.samspublishing.com/
http://www.quepublishing.com/

Introduction

At the JavaOne conference 1999, the Java 2 Micro Edition (J2ME) was initially introduced. J2ME
isaJava 2 platform, specially designed for embedded devices such as consumer electronics, cell
phones, and PDAs.

This book covers the Connected Limited Device Configuration (CLDC) and the two profiles
available for CLDC, the Mobile Information Device Profile (MIDP) and the Personal Digital
Assistant Profile (PDAP).

Note

Note that the PDAP-related information covered in this book is based on the PDAP
Public Draft Specification, which may dlightly differ from the final specification; see
http://www.jcp.org/jsr/detail/75.]sp.

Corresponding updates, including sample applications, can be found at the Web site of
this book—http://www.samspublishing.com; enter the book's ISBN (0672320959).

The intention of this book isto help you to understand the architecture the J2M E technol ogy,
especially CLDC, MIDP, and PDAP, and show you how to useit by creating real-world sample
applications.

Audience

This book isintended for Java devel opers with general Java experience gained by creating Java 2
Standard Edition applications for the desktop computer. If you aren't yet familiar with Java syntax
and semantics, we recommend that you first start by using Javatutorials available through the
Web or by going to book stores focusing on the Java language. We do not assume that you have
J2ME development experience at this point.

The Structure of This Book

This book is organized in ten chapters and two appendixes. The chapters and appendixes cover the
topics listed as follows:

Chapter 1, "Java 2 Micro Edition Overview," gives ageneral overview of the Java 2 Micro
Edition (J2ME). Starting from the Green Project, the origin of the 2ME technology, it introduces
the CLDC and its profiles, tells you how to create a small hello world application, and gives an
overview about currently available CLDC based devel opment tools.

Chapter 2, "The Connected Limited Device Configuration,” describes the general concepts and
limitations of the CLDC and also takes a closer ook at the API packages availablein it. The
packages and classes of the Mobile Information Device (MID) and Personal Digital Assistant
(PDA) profiles, including extensions of CLDC classes, are then discussed.

http://www.jcp.org/jsr/detail/75.jsp
http://www.samspublishing.com/

Chapter 3, "MIDP Programming,” handles the life cycle and user interface of MIDP applications
and discusses their general design. Then, the high-level user interface API will be explained.
Finally, the low-level user interface API for free graphics and games will be described, and we
will give a short overview of the new MIDP 2.0.

Chapter 4, "PDAP Programming," handles the life cycle and user interface of PDA applications.
First, the general design of PDA applications will be discussed. Then, the AWT subset forming
the PDAP user interface API will be explained.

Chapter 5, "Data Persistency," describes the Record Store Management System (RMS) that is used
in MIDP and PDAP to store data on a cell phone or PDA persistently. We will show the basic use
of Record Stores and tell you how to use iteratorsin order to access stored records. Finally, we
describe the new RecordStore methods, which are added by MIDP 2.0.

Chapter 6, "Networking: The Generic Connection Framework," describes a framework that is used
in 2ME for network connections. We will describe the structure of this framework, show you
how to establish Socket, Datagram, and HT TP connections, and show their use by implementing a
client/server chat application.

Chapter 7, "PIM: Accessing the Personal Information Manager," describes the Personal
Information Manager that isincluded in PDAP. Here, we will show you the concepts of the PIM
and also show you how to create a demo application for handling contacts.

Chapter 8, "Size Does Matter: Optimizing 2ME Applications,” shows you how to optimize J2ME
applications by describing some essential hints for J2M E application programming.

Chapter 9, "Advanced Application: Blood Sugar Log," shows you how to create an advanced
application by splitting its functionality into two parts; one basic part that can be used inaMIDP
and PDAP application as well and the profile specific GUI part in which a profile specific user
interface is created.

Chapter 10, "Third-Party Libraries," by creating small example applications, this chapter
introduces some third-party libraries such as a substitution for the lack of floating point support,
XML parsers, and a SOAP implementation for 2ME.

Appendix A, "Class Library: CLDC Packages,” gives an overview of all packagesincluded in
CLDC, MIDP, and PDAP.

Appendix B, "Comparison Charts," includes a great set of tables where we compare classes of
J2ME with their J2SE counterparts. Each package that is available in J2SE and 2ME islisted in
detail to show you which classes and methods are available in CLDC or CLDC-NG (aso known
as CLDC version 1.1). If applicable, we provide workarounds to substitute a particular method of
J2SE by a corresponding set of calls or using other classes to gain the same functionality asin
J2SE.

Software Development Kits Used to Create the Example
Applications

In order to compile and build the MIDP based exampl e applications provided in this book, we
recommend that you use Sun's 2ME Wireless Toolkit v1.0.3 in standalone mode (not the Forte
integration). Follow the installation steps provided by Sun to set up the Wireless Toolkit properly.

Since areference implementation for PDAP isn't available at the time of publishing this book, we
recommend that you use the J2SE desktop AWT in order to create PDAP AWT applications. In
order to get emulations of the additional J2ME packages, such as RM S or the Generic Connection
Framework for J2SE, refer to the ME4SE project, available at the Web site http://medse.org.

If you want to run a PDAP application on areal PDA such as a Palm organizer, you can use the
Joed VM that is available from the Swiss company esmertec Inc. (http://www.esmertec.com)
together with akAWT implementation supporting most of the PDAP features at this time. For
PDAs where a Personal Javaimplementation is available, you can aso use Personal Java, together
with some of the ME4SE classes.

Web Site

Y ou can download the source code for the example applications discussed in this book from
www.samspublishing.com. When you reach the page, just enter the book's ISBN (0672320959)
and follow the Source Code link.

http://me4se.org/
http://www.esmertec.com/
http://www.samspublishing.com/

Chapter 1. Java 2 Micro Edition Overview

INTHISCHAPTER

Historical Evolution

Micro Edition—Related Java Specification Requests

J2ME Configurations and Profiles

Sun J2ME Software Devel opment Kits

Tools and Third-Party Products for J2ME A pplication Development
Developing a Simple Application

This chapter gives ageneral overview of the Java 2 Micro Edition (J2ME). Starting from the
Green Project, the origin of this fascinating new technology, this chapter gives a short summary of
the evolutionary process leading to the actual configurations and profiles specified in the Java
Community Process (JCP). Then, it discusses the Software Devel opment Kits available from Sun,
including a short programming example. It also describes the additional building steps necessary
for the Connected Limited Device Configuration (CLDC), Mabile Information Device Profile
(MIDP), and the PDA profile (PDAP). Finaly, it gives a brief description of some third-party
products relevant for 2ME application devel opment.

Note

If you are aready familiar with the history of Java and the Java 2 Micro Edition
technology, you can skip this section and go directly to the description of the 2ME
configurations and profiles.

Historical Evolution

Looking back, several projects have dealt with Java-related programming languages used on
consumer devices. These projects were mostly feasibility studies and they were never standardized;
but, many of the ideas were incorporated into the 2ME standards. It makes sense to look at the
origins of these components to gain a better understanding of why things are as they arein J2ME.

The Green Project

The Green Project began in December 1990. Some people at Sun decided to try to figure out what
the next step would be in the evolution of computing and how they could be part of it. They came
to the conclusion that the next evolutionary step would be the merger of digitally controlled
consumer devices and computers—the kinds of devices we know as Personal Digital Assistants
(PDASs) today.

The Sun engineers developed a new SPARC-based, wireless handheld PDA called Star7 or *7.
This newly created device was equipped with a 5-inch, 16-bit color LCD with touch-screen input
capabilities. In addition, it was capable of communicating with other *7 devices over a built-in
900MHz wireless network. This small device required the development of an OS that would fit in
only one megabyte of RAM.

The original plan was to develop the Star7 operating system using C++. However, one of the
members of the Green Project, James Gosling, became fed up with C++ and decided to develop a
new programming language. The result of his work was a programming language called Oak,

12

which was especially designed to run on devices with significant resource constraints, just like
Star7. Thus, Oak had to be very small, efficient, and easily portable to other hardware devices.

Oak was the original ancestor of the Java programming language, which has all the properties just
mentioned. (Another byproduct of the Green Project was the Duke, which became the official Java
mascot. The Java Duke is a personification of the agent in the user interface of Star7, similar to
Microsoft's paper clip.) Star7 was finished and officially presented on September 3, 1992.

In only afew years of development, Java grew to be aleading programming language on desktop
computers. However, much of the original focus—to fit alanguage onto portable computers—was
lost during Java's evolution. The new Java development goal became fast execution on desktop
machines, regardless of the size of the Java Virtual Machine (JVM). In addition, the standard
libraries were extended to several megabytes for devel oper convenience.

But in 1998, SunL abs got back on the original track and started a new research project, the
Spotless System. The goal of the new project was to create a portable VM that was suitable for
embedded systems.

The Spotless System

As mentioned, implementors of Java focused on increasing the speed of the VM, leading to
memory-consuming technol ogies such as HotSpot. No effort was made to keep those systems
small because for desktop systems, the size was not relevant. Consequently, those Java
implementations were not suitable for embedded systems offering only a small amount of memory
and limited computing power.

This situation changed with the newly created virtual machine of the Spotless System, which was
especially designed to fit the constraints of embedded systems. This project had the following
main goas:

e Build the smallest possible complete VM that supports the full bytecode set, including
class loading and non-graphical libraries.

e Implement the new JVM in highly readable source codein order to provide the best
portability to available hardware platforms.

The result of the Spotless System project was a small VM that occupies less than 300 kilobytes of
static memory on a PC system. In order to create an implementation for a real-world embedded
device, the engineers first targeted the Rolodex REX personal organizer developed and distributed
by Franklin Electronic Publishers. However, this device lacked a development kit, so the
engineers switched to the Palm Connected Organizer as areference platform for their VM
implementation, where excellent support for developing software solutionsis available. In
addition, the Palm PDA is the most popular PDA currently available in the market.

The original Spotless VM implementation for the Palm PDA included only a small subset of the
classlibraries available for desktop Java. Asyou can seein Table 1.1, the subset is very small
even when compared to the actual J2ME configurations discussed in the section "J2ME
Configurations and Profiles." Although the class libraries were sufficient to show feasibility of
Java development for embedded systems, they still had some major drawbacks. So the GUI
components offered by the spotless package were device-specific to the Palm Connected
Organizer.

Table 1.1. Packages and Classes of the Spotless System

Package Included Classes
Name

java.lang |Class, Error, Exception, IndexOutOfBoundsException

13

Nul IPointerException, Object, Runnable, Runtime,
RuntimeException, String, StringBuffer, Thread, Throwable
ﬂava_io InputStream, 10Exception, OutputStream, Serializable
java.net |InetAddress, ProtocolException, Socket, SocketException
SocketlnputStream, SocketOutputStream, UnknownHostException
spotless |Beam, Bitmap, Component, Database, Event, External,
ExternalException, ExternalManager, Field, Form, Graphics, 10,
Label, List, Lst, NativelO, PButton, Spotlet

The VM developed in the Spotless System consists of a central application that acts as a class
launcher, analogous to the Java command on the desktop. But in contrast to the desktop Java, it
includes acomplete list of all available Java classes. It gives the user the ability to run any class
containing a static main method.

The JavaOne99 KVM Preview Version

At the JavaOneQ9 conference, some results of the Spotless project got their official place in the
Javafamily. The Java Technology was split into three categories: Java 2 Enterprise Edition (J2EE),
Java 2 Standard Edition, and the new Java 2 Micro Edition (J2ME). The heart of 2ME is anew
virtual machine, which is specially designed for embedded systems, cellular phones, and PDAS.
Because of itslow memory footprint of only afew kilobytes, the new virtual machine was named
Kilobyte Virtual Machine (KVM). In fact, Sun did not merely announce the new technology; it
showed a preview version for PalmOS.

The new KVM was, as you may aready have guessed, directly derived from the Spotless System
project. However, there are some changes in the supported package names, some classes are
canceled, and other classes are added (see Table 1.2). It's still possible to browse through all
included Java classfiles, and al runnable Spotletsthat include amain method are now listed in
the PalmOS application launcher. The package spotless has been renamed com.sun.kjava,
it now includes an enhanced version of the Palm-specific GUI classes.

Table 1.2. Packages and Classes Included in the JavaOne99 KVM
Package Name |Included Classes

java.lang Class, Error, Object, Runtime, String, StringBuffer, Thread,
Throwable, Exception, Il legalAccessException
IndexOutOfBoundsException, Nul IPointerException, Runnable,

RuntimeException
java.io InputStream, 10Exceptopn, OutputStream, Serializable
Java.net Socket, SocketException

com.sun.kjava|Bitmap, Button, Caret, CheckBox, Database, Dialog,
DialogOwner, Graphics, HelpDisplay, IntVector, List,
RadioButton, RadioGroup, Scrol10wner, Scrol ITextBox, Slider
Spotlet, TextBox, TextField, Trigonometric, ValueSelector,
VerticalScrollbar

Note

This class overview is not intended to replace an API reference. It ssimply describes the
formation of the KVM packages and their classes compared with the Spotless System.

Beneath downsized versions of some standard Java packages, the first KVM contained some
Palm-specific GUI classes, mostly derived from the Spotless project. A short look at the size of

14

the Java standard package set shows the next problem: A small virtual machineis not really useful
without small libraries.

During the months after the JavaOne conference in 1999, some Early Access (EA) versions were
released for registered Java devel opers only. Between those releases, the APIs somehow
changed—many bugs were fixed between EA version 0.1 and 0.2, including many virtual machine
bugs, and some improvements were made to the com.sun .k java classes, aswell.

Micro Edition—Related Java Specification Requests

After KVM EA version 0.2, agreat change took place. KVM EA 0.2 was developed by Sun only;
but after that, the KVM technology began to be specified during the Java Community Process
(JCP) by many companies that participate in a Java Specification Reguest related expert group.

The Java Community Process (JCP)

The JCP program was initiated by Sun on December 8, 1998, in order to create afast
and flexible formal system for the development and revision of Java technology
specifications. This process lets the Java community, as well as Sun engineers,
participate in the specification process of creating new Java APIs.

The main goals of JCP are to enable the wide-ranging Java community to participate in
creating proposals, as well as selecting and developing new Java APIs. This process
enables Java community members to advise API development efforts without needing to
involve Sun engineers.

The whole process follows key milestones that enable a new specification to be drafted
in agiven period of time. When the Specification is approved, a Reference
implementation and an additional Technology Conformance Kit follow, to enable
licensees to create an implementation that is compliant with the newly specified
technology.

The JCP is described in more detail on the following Web site:

http://jcp.org/

Please take alook at the documents offered by Sun if you are interested in getting more
information about this topic.

Proposals for new Java Specifications are called Java Specification Requests (JSR). Those
reguests are not only used to create or develop new Java APIs, but aso to renew or modify
existing Java APIs. If developers in the Java community are interested in submitting a JSR, they
must first sign a Java Specification Participation Agreement (JSPA). After they are community
members, they can use a JSR template (available from Sun Microsystems Inc.), in which they
specify the goals of the proposal.

The following list shows the most important J2M E-related JSRs that are currently available. At
the time of thiswriting, the following three JSRs have been specified and are available as final
releases and reference implementations:

e The Connected Limited Device Configuration (CLDC) JSR0O00030

15

http://jcp.org/

URL to the specification:

http://jcp.ora/jsr/detail/30.jsp

URL to download the reference implementation:

http://www.sun.com/software/communitysource/j2me/

e The Mobile Information Device Profile (MIDP) JSRO00037
URL to the specification:

http://jcp.org/jsr/detail/37.jsp

URL to download the reference implementation:

http://www.sun.com/software/communitysource/midp/

e ThePersonal Digital Assistant Profile (PDAP) JSRO00075
URL to the specification:

http://jcp.org/jsr/detail/075.jsp

At the time of this writing, the reference implementation was not yet available. Refer to
the book's Web site in order to get avalid URL to download the reference implementation
when it becomes available.

e The Connected Limited Device Configuration 1.1 JSR000139
URL to the specification:

http://www.jcp.org/jsr/detail/139.jsp

e TheMobile Information Device Profile 2.0 JISR000118
URL to the specification:

http://www.jcp.org/jsr/detail/118.jsp

These JSRs are discussed in detail in the next section.

As of thiswriting, other 2ME-related JSRs belonging to the Connected Device Configuration are
in the specification process. Please refer to the following URLSs to obtain further information about
these JSRs and their current status:

e The J2ME Platform Specification JSR000068

http://jcp.ora/jsr/detail/68.jsp

e The Connected Device Configuration (CDC) JSRO00036

http://jcp.org/jsr/detail/36.jsp

16

http://jcp.org/jsr/detail/30.jsp
http://www.sun.com/software/communitysource/j2me/
http://jcp.org/jsr/detail/37.jsp
http://www.sun.com/software/communitysource/midp/
http://jcp.org/jsr/detail/075.jsp
http://www.jcp.org/jsr/detail/139.jsp
http://www.jcp.org/jsr/detail/118.jsp
http://jcp.org/jsr/detail/68.jsp
http://jcp.org/jsr/detail/36.jsp

e The Foundation Profile JSR0O00046

http://jcp.org/jsr/detail/36.jsp

e The Personal Profile JISR000062

http://jcp.org/jsr/detail/62.jsp

e ThePersona Basis Profile JSR000129

http://jcp.org/jsr/detail/129.jsp

¢ TheRMI Profile JISROO0066

http://jcp.org/jsr/detail/66.jsp

Note

Because this book is intended to cover CLDC-based profiles, it gives only a short
overview about the JSRs that are available for CDC and focuses on covering CLDC-
based applications only.

A comparison between CDC and CLDC appearsin the next section.

J2ME Configurations and Profiles

Obvioudly, the standard Java libraries are just too big for the Java 2 Micro Edition. Once the KVM
was available, the next logical step was to define appropriate libraries. But just downsizing the
standard libraries was not sufficient: The target devices have many special requirements that also
must be covered by libraries.

For example, many PDAs and al cellular phones do not have afile system. Instead, datais stored
persistently in simple databases in buffered RAM or flash memory. Obviously, aKVM library
would need to provide access to this kind of storage. Moreover, the specific needs diverge for the
potential KVM devices. A set top box (a device that decodes interactive TV signals) does not have
much in common with a cellular phone except that they both normally provide a small amount of
CPU power.

For these reasons, Sun decided to design several KVM profiles, one for each group of target
devices. Examples of KVM profiles are the Mobile Information Device Profile (MIDP) for
cellular phones and the PDA Profile for PDAS.

Like other official Javalibraries, the profiles are designed in the Java Community Process. A
novelty in version 2.0 of the JCP is that not just companies but also individuals can participate.
For example, the authors of this book are participating in the PDAP specification process as
invited experts.

The profiles are designed on top of KVM configurations. Whereas the profiles mainly address
device-type—specific issues, the configurations summarize the available basic KVM functionality
for devices with similar computing power and equipment characteristics. The following sections
describe KVM configurations and profiles in more detail.

17

http://jcp.org/jsr/detail/36.jsp
http://jcp.org/jsr/detail/62.jsp
http://jcp.org/jsr/detail/129.jsp
http://jcp.org/jsr/detail/66.jsp

Configurations

Currently, just two configurations—CLDC and CDC—exist. The CDC profiles are still in the
specification process, but the CLDC isfinished and forms the basis for MIDP and PDAP.

The CLDC was designed especially for the mobile phone and PDA class of devices. It requires
128 to 512KB of memory (RAM and ROM), a battery power supply, and a network connection of
at least 9600bps.

The CLDC API contains simplified versions of java. lang, java.io, java.util, and the
new package javax.microedition. io, described in more detail in Chapter 6, "Networking:
The Generic Connection Framework."

Because CLDC was specified for processors that may not provide floating-point support, float
and doubl e are not supported. However, CLDC 1.1, the next generation of the CLDC profile,
adds support for floating point operations. Support for Java Native Interfaces (JNI) also is not
included in CLDC. Thereflection APl isvery limited; for example, user-defined class loaders are
not available. Finalization is not supported.

Anather restriction is that class files need to be preverified before execution with the KVM. The
preverification step inserts hints into the class files that simplify and speed up the actua
verification of the classes on the device. The preverification step includes a check for invalid data
types, so classfiles containing Floatswill be rgjected in this step for the original CLDC profile.

The second configuration available, CDC, targets more powerful devices like set top boxes, video
phones, and gaming consoles with at least 512KB ROM and 256KB RAM as well asafast
network connection.

Profiles

In contrast to the configurations, which are independent of the device's purpose, the profiles cover
aspects that are specific to a certain device type. For example, the profiles cover the user interface
and persistent data storage. Currently, two profiles are available: MIDP and PDAP.

The Mobile Information Device Profile (MIDP)

MIDP targets cellular phones and simple pagers. It provides a very simple and abstract user
interface built of simple elements. The user interfaceis divided into a high-level and alow-level
API. The high-level API provides simple elements such as lists and forms, but it offers only very
limited control over the concrete appearance on the screen. The low-level API provides full
control over the screen, but no widgets; it's mainly intended for games. The Ul API isnot
compatible with any other Java Ul API, such as AWT or SWING.

The Personal Digital Assistant Profile (PDAP)

Just as the name suggests, PDAP targets PDAS. It provides a user interface that is a subset of the
AWT package of the Java 2 Standard Edition and access to the Personal Information Management
databases of the device. In contrast to MIDP, PDAP is based on the newer CLDC-NG
configuration because the AWT classes require floating point support. In order to access existing
MIDP applications, the PDA profile is a complete superset of the MID Profile. Thus, any MIDP
application can run on devices supporting PDAP. However, in contrast to MIDP devices, which
have aways a wireless connection, existing PDAs don't necessarily provide permanent network
access.

18

Because the PDA profile is a superset of the MID profile, applications that do not require a
sophisticated user interface or PIM access should be based on the MID profile. Table 1.3 shows a
short comparison of the profiles.

Table 1.3. MIDP and PDAP Comparison

MIDP PDAP
Available on phones Yes NoH!
Available on PDAs Yes Yes
Basic Ul capabilities Yes Yes
Wireless Internet access Yes YesH
Sophisticated Ul capabilities No Yes
Address book access No Yes
ICaIendar access No Yes

1 Availability is device-dependent

Sun J2ME Software Development Kits

This section gives a short overview of the J2ME devel opment tools that are currently available.
Unless explicitly stated otherwise, these CLDC and the MIDP SDKs from Sun are used as the
reference SDKs for the examples in this book. The Sun SDKs are basis for several IDE add-ins
and are available for the widest range of operating systems.

Caution

Although the APIs are standardized, parts of the compilation process may change with newer
SDK versions. If you arein doubt or observe problems with the following instructions, please
refer to the documentation provided with your SDK.

Compared to developing for the desktop, targeting the Java 2 Micro Edition requires some
additional tools—a preverifier, at the least. Most SDKs do not bring in their own Java compiler;
they rely on an installed JDK 1.2 or 1.3. Several SDKs contain a device emulation. Of course, it
would also be possible to test the programs on the target devices directly. However, the
emulations normally allow faster installation, and most of them also provide some additional
debugging support.

Sun's J2ME CLDC Reference Implementation 1.0.3

The version 1.0.3 of the CLDC reference implementation (RI) does not contain any GUI classes. It
isavailable for Windows 98/NT (Win32), Linux, and Solaris. The CLDC RI provides command-
line tools only. For easier development, several integrated development environments provide
CLDC plug-in support.

Note
Y ou can download the Sun CLDC reference implementation from the following URL.:

http://www.sun.com/software/communitysource/j2me/

19

http://www.sun.com/software/communitysource/j2me/

The CLDC reference implementation ships without a Java compiler, so an additional Java
compiler like the one contained in the Java Development Kit for the Java 2 Standard Edition is
needed to actually build KV M programs. Also, the process for compiling 2ME applicationsis
somewhat different from desktop development. For example, it is necessary to specify the
compiler parameter -bootclasspath, in order to compile the application with the 2ME
librariesinstead of the standard desktop environment. These additional steps are described in
detail in the section "Developing a Simple Application.”

Sun's MIDP Reference Implementation v1.0.3

In addition to the CLDC RI, Sun offers an implementation of the MIDP as well. Similar to the
CLDC RI, the MIDP implementation is distributed under the Sun Community Source License and
ships without a Java compiler.

The MIDP Development Kit includes the complete source for its supported target platforms—
Win32, Linux, and Solaris—available in separate files which are available for download. The
MIDP SDK includes several example applications, ranging from simple demos showing how to
use common MIDP widgets to complete games, such as the TitlePuzzle game (see Figure 1.1).
Moreover, it includes a description of how the included development tools are used.

Figure 1.1. The MIDP Emulator on the Windows32 platform, running a Sokoban
game.

CRIEE (o x|

20

Note
Y ou can download the Sun MIDP reference implementation from the following URL.:

http://www.sun.com/sof tware/communitysource/midp/

Tools and Third-Party Products for J2ME Application
Development

In addition to the Sun SDKs, severa other 2ME SDKSs, IDESs, and related products from other
vendors are available. Well discuss a number of these tools and productsin this section.

Sun's J2ME Wireless Toolkit 1.0.3

The I2ME Wireless Toolkit is a project management tool intended to simplify MIDP devel opment.
It can perform the compile and preverification steps automatically, including the generation of the
JAR and JAD files. It is not a complete Integrated Development Environment (IDE), so it does not
offer an editor. The MIDP SDK isincluded in the Wireless Toolkit, but the JDK version 1.3 is
also required.

In addition to the MIDP SDK, the Wireless Toolkit contains some additional skins for the device
emulation (see Figure 1.2). The additional skins are a pager with a complete keyboard and cell
phone emulation with athumbwheel, as well as support for the Palm OS Emulator, RIM pagers,
and Motorola cell phones.

Figure 1.2. The Wireless Toolkit running the HelloMidp MIDlet in different device
emulations.

http://www.sun.com/software/communitysource/midp/

The main window of the toolkit, shown in Figure 1.3, consists of some buttons for creating a new
project, opening existing projects, and building and running the project in the specified device
emulation.

Figure 1.3. The main window of the J2ME Wireless Toolkit, showing the project
HelloMidp.

51 12ME Wireless Toolkit - UIDemo : =10} x|

File Edt Project Help
@, New Project |[ﬁ_nganpmim...] @, Saffings - | ¥ Build | @ Run | E% clear Console |

Device: [DefaullGrayPhane =]

FEO)BCE -.UJIIE.D" Loaded

To edit the source code of the project files, you can use your favorite editor, such as Emacs or
Windows' simple NotePad. Another option is to use Forte with the plug-in contained in the
Wireless Toolkit. Together with Forte and JDK 1.3, the Wireless Toolkit forms a complete IDE
for MIDP.

Note

The 22ME Wireless Toolkit is available from the following URL:

22

http://java.sun.com/products/j 2mewtoolKit/

Sun's MIDP for Palm OS

The MIDP for Palm OS is the first Mobile Information Device Profile implementation from SUN,
running on areal mobile device. It consists of a set of executablesin Palm prc-format and a
converter capable of converting MIDP JAD/JAR file pairs (generated, for example, using the
J2ME Wireless Toolkit) to the Palm MIDP format. Figure 1.4 shows the PRC Converter Tool
included in the MIDP for Palm OS distribution.

Figure 1.4. The PRC Converter Tool of MIDP4Palm.

Elchooc oo 0 3
Click on the =3 icon 1o find Look e |ljﬁ'l 'l @ @ @ |§§n

the JATWIAR file pair to convert D LD emo. jad Info
toa PRC tlama.'l..lll'.'lemu
ar file:UIDemo jar

endorSun Microsystem
arzlon;1.0

escription:null
[e amnenl] | »
[Ceaman |

Fles of type: | Jawa Application Descriptor fes (*jad) - cancol |

File namiz lUIDEM{I jad |

The MIDP for Palm OS implementation can be used in conjunction with the 2ME Wireless
Toolkit to create and convert MIDIetsin order to run them on a Palm or on the PAlm OS
Emulator without additional tools (except an editor to create the source). Figure 1.5 shows the
UIDemo application that isincluded in the 2ME Wireless Toolkit on a Palm Pilot.

Figure 1.5. The UIDemo MIDlet that is included in the J2ME Wireless Toolkit
running on a Palm Pilot.

23

http://java.sun.com/products/j2mewtoolkit/

Note

Y ou can download the Mobile Information Device Profile implementation for PAlmOS from the
following URL:

http://java.sun.com/products/midp4pal m/index.html

esmertec's Jbed Micro Edition CLDC and Jbed Profile for MID

The Swiss company esmertec Inc. offers a CLDC-compatible VM and the MID profile. The
CLDC and the MID version of Jbed come with the Joed Integrated Development Environment
(IDE), shown in Figure 1.6, in order to simplify application development.

Figure 1.6. The Jbed IDE showing the development of a MIDletSuite.

24

http://java.sun.com/products/midp4palm/index.html

& exampdes indlading sounte code

& rms, Mip communication, paage and Bcker
4 Ulser wilh Bhe “Fiatm — MUOF Development™ projct
& Mighlpht the fines below aod select “Link™ in the “\bed™ menu

i et e e 1]
regerved 45000 T ieare conatrocion, [And be sure to charge the i e

inchade EoampleSuls pro® A Bamon, P coresiaciof P o
oufpul “prclbedSuts™ £ The= f
com jbed rst Dnskegl I e *
oo jbed microssdition proboool SocketF aciony Maed |
oo bed Fecroeition probocol HEpF sciony W e -
pom jed swamples testsue MOPT pxfSute+ LIE-T TR
o bead svamples (estnabs FMECMIDists Hrmz M
com bed examples lestsube HT TRt Thiip e
com jhed soamples iestoute Ceuge TickerliDiss A gougs
Jarvno maCroescition midied MIDeSSunEme 0 Wched

P Croals an nsterce of this sule ine stalic
nbakier 15 regrie the ute Yy
”

i

Figure 1.7 shows the sample MIDPTestSuite, which is bundled with the Joed Profile for MID. The

main advantage of Joed isthat it isthe fastest VM for embedded devices currently available on
the market.

Figure 1.7. The MIDPTestSuite running on a Palm Pilot.

Choose a MIDIlet: 109 kb free
B RMS Test
s Get URL
ol Gauge and Ticker

Jbed obtains its high speed by compiling Java programs to native code. The compilation can be
performed on the device itself or in advance on the desktop. Applications running on Joed run
incredibly quickly compared to other KVMs.

25

It isamazing that it is possible to get a complete class-to-native compiler on a constrained device
like the Palm Pilot. Moreover, Joed provides rea-time capabilities. So if you are planning to
create software for embedded systems, and Jbed is available for that platform, Joed is probably the
optimal choice. However, for devices with abuild in VM, such as MIDP- powered cell phones, in
most cases it will not be possible to use Joed.

Jbed does not include a device emulation, but a Palm Operating System Emulator (POSE) is
available directly from Palm Inc. without charge.

Note

Use the following link to get more information about Jbed CLDC and the Jbed Profile for MID
from esmertec:

http://www.esmertec.com/

Borland's JBuilder MobileSet, Nokia Edition

The JBuilder MobileSet isa J2ME CLDC- and MIDP-compliant development environment. It is
fully integrated with JBuilder 5 in order to simplify development of Java applications for mobile
devices.

The MobileSet includes the following features:

e Wizardsfor creating MIDP Projects and single MIDlets
e Debugging MIDletsin NOKIA device emulators
e Designer for Rapid Application Development of MIDlets
e Deployment tools for creating JAR/JAD file pairs

Note

Use the following link to get more information about Borland's JBuilder MaobileSet, Nokia Edition:

http://www.borland.com/jbuilder/mobileset/

Metrowerks Codewarrior for Java, Version 6.0

The Codewarrior for Java Version 6.0 offers afully integrated development environment for Java
applications and supports 2ME CLDC and MIDP application development as well. It supports a
set of toolsfor 2ZME application similar to those supported by JBuilder's M obileSet:

e Project management for 2ME applications
e MIDlet debugging in emulators
e Deployment tools for creating JAR/JAD file pairs

Note
Use the following link to get more information about M etrowerks Codewarrior for Java:

http://www.metrowerks.com/desktop/javal

26

http://www.esmertec.com/
http://www.borland.com/jbuilder/mobileset/
http://www.metrowerks.com/desktop/java/

Developing a Simple Application

This book would not be a true programming book if the "Hello World" example was missing.
Actually, we need three different "Hello World" examples to cover the CLDC reference
implementation from Sun as well asthe MIDP and PDAP CLDC profiles. The following sections
describe the steps necessary to compile and run asimple KVM program for each target platform.

Setting Up the System Environment Variables

If you are using one of the integrated development environments, you can probably skip the
installation parts of this section. Just type the example and click Build or Compile and then Run,
depending on the type of IDE you are using.

For command-line operation, it is helpful to insert the bin/win32 directory located in your
J2ME installation into the system search path. For the MIDP SDK, you need to add the
build/win32/tools directory to the system path as well. For Windows 95/98, thisis
performed by adding the corresponding directory to the path command in thefile
c:\autoexec.bat. If you're running Windows NT 4.0 or Windows 2000, open the Properties
dialog box by right-clicking on My Computer on your desktop and selecting Properties. The path
information is located in the Extended tab.

Thekvm and preverify utilities are also available for Solaris and Linux. However, the
executables are located in different directories or download packages. Please refer to the
corresponding documentation for installation on Unix systems.

Testing the Setup

In order to work with the command-line oriented SDKs, the first step is to open acommand line.
Windows users just need to click the Start button and choose Programs, followed by MS-DOS
Command Line. For Unix, the way a command shell window is opened differs, depending on the
Desktop Manager and the exact system setup. For many installations, you just need to click on the
shell symbol in the start bar.

Before beginning, it makes sense to perform a short test to see whether the environment is set up
correctly. Please do not skip the test: It will probably save you from spending time searching for
simple and avoidable problems.

To test whether the preverify command isin the system search path, type in the following
command:

C:\> preverify
The command should generate the following output (or similar):

Usage: preverify [options] classnames|dirnames ...

where options include:
-classpath <directories separated by ";">
Directories in which to look for classes
-d <directory> Directory in which output is written (default
is ./output/)
@<fFilename> Read command line arguments from a text file

27

If you get a"command or file name not found" error message, the PATH environment variable
probably is not set correctly. Include the bin directory of the KVM ingtallation in your system
search path.

Now perform the same test for the javac command:
C:\> javac

Again, if the system returns a"command or file name not found" error message, ensure that a JDK
isinstalled and aso that the JDK bin directory isin the system search path, as described in the
previous section.

Now that you are sure your systemis set up properly, you're ready for real programming. Y ou can
go directly to the subsection of the target profile for which you are planning to program, or you
can go through all three if you want to get an overview of the profiles.

CLDC KVM Reference Implementation

Begin by setting an environment variable that points to the CLDC and Kjava classes:
Windows:

set CLDC BCP=c:\j2me_cldc \bin \common \api \classes
Unix/Csh:

setenv CLDC BCP ~/j2me_cldc/bin/common/api/classes

Unix/Bash:

export CLDC BCP=~/j2me_cldc/bin/common/api/classes

Note that the actual directory containing the CLDC and Kjava classes depends on the exact
installation and version number; it may differ from this example. If so, set the CLDC_BCP variable
accordingly.

On Windows 98, you can add the previous line to the file c : \autoexec . bat. On Unix systems,
add the line to the corresponding startup or login script. The changes will then affect all command
lines automatically. If you're running Windows NT 4.0 or Windows 2000 Professional, the system
environment variables are set in the same place as the system search path. Open the system
properties dialog by right-clicking My Computer on your desktop and selecting Properties. Then,
choose the Extended tab and select Environment Variables to set the CLDC_BCP variable
permanently. Select New for User Variables to open a dialog box in which you can set the name
(for example, CLDC_BCP) and thevalue (c:\j2me_cldc\bin\api\classes) of the variable.
When you click OK, the new variable will be stored permanently and will be available in all new
command shells. Shells already started are not affected, so they must be closed and restarted.

Finally, check whether the environment variable pointing to the CLDC and Kjava classesis set
properly:

Windows: echo %CLDC_BCP%

Unix: echo $CLDC_BCP

28

Now that you have made sure the compiling environment is set up properly, you can start with the
sample application. Listing 1.1 contains the complete source code of theHel 1oCldc. java file.

Listing 1.1 Hello Cldc.java—The HelloCldc Sample Source Code

public class HelloCldc {

public static void main (String [] args) {
System.out.printIn("*Hello CLDC.");

System.out.printIn(*'This application is running on a "
+ System.getProperty("microedition.configuration'™)
+ "IV
}

Y ou now can compile the sample program using the following command:

Windows: |[jJavac bootclasspath %CLDC BCP% HelloCldc. java

Unix: Javac bootclasspath $CLDC_BCP HelloCldc.java

The bootclasspath parameter is necessary because the program cannot be compiled with the
standard Java desktop libraries; it must access the CLDC and Kjavalibraries.

If the compile command line does not produce any error message, you can perform the preverify
Step:

Windows: preverify -classpath .;%CLDC_BCP% HelloCldc

Unix: preverify -classpath .:$CLDC_BCP HelloCldc

This step is necessary to include verification hints in the classfile, simplifying the class
verification on the target device. Future javac versions may have a switch to perform
preverification at compilation time, simplifying J2ME application development.

The preverify step creates a new subdirectory named output, where the preverified classes are
placed.

If the preverify step is successful, you can test the application with the command line kvm:

cd output
kvm HelloCldc

These commands change the current directory to the output directory containing the preverified
files and start the kvm with the new verified Hel loCldc class. The following output will be
generated:

Hello CLDC.
This application is running on a CLDC-1.0 JVM

Hello MIDP

Similar to using the CLDC RI, the first step isto set up an environment variable pointing to the
MIDP library classes. The environment variable simplifies the following compilation steps and
helps avoid annoying problems resulting from typos in long path names:

29

Windows: set MIDP_BCP=c:\midp-fcs\classes
Unix/Csh: setenv MIDP_BCP ~\midp-fcs\classes
IUnDdBash: |exp0rt MIDP_BCP=~\midp-fcs\classes

Y ou can make sure that the system path is set properly by typing MIDP on the command line. If
the cell phone emulation appears, and the current directory is not the MIDP bin directory, the
system path is set correctly. Please refer to the previous section if the path is not set or if you
would like to set the variable(s) permanently.

Note

The steps to create a runnable MIDP application from compiling through preverification and so on
are very confusing for J2ME beginners. We will explain MIDP development using the low-level
command-line tools. We recommend that you use the Wireless Toolkit or another IDE for actual
development.

Again, we will compile asimple "Hello World" program. The corresponding Java program for the
MIDP API iscontained in Listing 1.2. Programming with the MIDP API is described in Chapter 3,
"MIDP Programming." Here, we will focus on the compilation steps.

Listing 1.2 Hel loMidp. Java—The Source Code of the MIDP Sample

import javax.microedition.midlet.*;
import javax.microedition.lcdui.*;

public class HelloMidp extends MIDlet {

public void startApp() {
Form form = new Form (“"HelloMidp™);
Display.getDisplay (this).setCurrent (form);
}

public void pauseApp() {
}

public void destroyApp(boolean unconditional) {

}
}

Change to the directory containing the Java file and compile the program using this command:

Windows: |Javac bootclasspath %MIDP_BCP% HelloMidp.java
Unix: javac bootclasspath $MIDP_BCP HelloMidp.java

Now, preverify the program:

Windows: preverify classpath .;%MIDP_BCP% HelloMidp
Unix: preverify classpath .:$MIDP_BCP HelloMidp

The preverification command creates a new output directory where it stores the preverified
classes. You can test the MIDlet by typing the following commands:

30

cd output
midp HelloMidp

These commands change the current directory to the output directory containing the preverified
files and start the MIDP emulator with the new verified HelloMidp class, as shown in Figure 1.8.

Figure 1.8. The running HelloMidp MIDlet.

In order to deploy programs that consist of multiple classes, JAR files from the desktop are used to
bundle all necessary application classes together. Fortunately, you can just jar the complete
output directory generated by the preverifier—you do not need to specify the filenames again for
jar:

jar —cf hellomidp.jar output

After you successfully create the JAR file, you need to create a Java Application Descriptor (JAD)
file. The JAD file encapsulates the information about the contents of the JAR file. In contrast to
the manifest file, the JAD fileis not included in the archive. It is intended to support automatic
download of MIDlets. Listing 1.3 shows the JAD file for the Hel loMidp example MIDIet.

Listing 1.3 HelloMidp. jad—The JAD File for the HelloMidp MIDlet

MIDIet-Name: HelloMidp
MiDlIet-Version: 1.0

31

MIDIet-Vendor: Michael Kroll & Stefan Haustein
MIDlet-Jar-Size: 908

MIDIet-Jar-URL: hellomidp.jar

MIDlet-1: HelloMidp, , HelloMidp

Thefirst five entries are self-explanatory (the jar size may differ depending on compiler options
and jar compression). The last entry, MIDlet-1, determines the first and only MIDlet that is
availablein the JAR file. By adding similar entries, it is possible to put more than one MIDlet into
asingle JAD file and its respective JAR file.

The value of the MIDIet-<Number> attribute consists of three parameters:
MIDIet-<Number>: <name>, <icon>, <class>

<Number> isjust an enumeration of the MIDletsin the JAR file. Our example contains only a
single MIDlet, so thereisonly asingle entry named MIDlIet-1. If more MIDlets were stored in
the JAR file, the entries would be named MIDlet-2, MIDlet-3, and so on.

The parameter <name> describes the name of the MIDlet that is displayed on the device after the
descriptor fileisloaded. The <icon> parameter specifies an icon that can be displayed in the list.
The last parameter, <c lass>, specifies the name of the actual subclass of MIDlet implemented
by the application.

In order to start the He I loMidp sample application, place the JAD file contained in Listing 1.3 in
the same directory as the JAR file. Change to that directory and type the following command:

midp —descriptor hellomidp.jad

When executing this command, the MID emulation will show a selection menu (see Figure 1.9).
Select the He l IoMidp entry. The screen will show the output of the Hel loMidp example

(shown in Figure 1.8).

Figure 1.9. The information gained from the JAD file. In this case, only one entry
(HelloMidp) is listed.

32

Note

It is not necessary for the JAR and JAD filesto bein the same directory. TheMIDlet-jar-url
can point to any valid HTTP URL that references the corresponding JAR file.

Hello PDAP

Unfortunately, at the time this book was printed, no official PDAP implementation was available.
However, we expect the compilation steps to be similar to compiling MIDP programs, except
from using adifferent bootclasspath.

Actually, because PDAP is a complete superset of MIDP, the MIDP example contained in Listing
1.2 isavaid PDAP example aswell. However, a"true" PDAP application will take advantage of
the more sophisticated AWT-based user interface capabilities of PDAP. In order to sketch the
differences, Listing 1.4 contains a PDAP example with the corresponding modifications.

Listing 1.4 HelloPdap. java—The Hel loPdap Sample Source Code

import java.awt.*;
import java.awt.event.™;

import javax.microedition.midlet.*;

33

public class HelloPdap extends MIDlet {
private Frame frame;

HelloPdap() {
frame = new Frame(*'HelloPdap™);
frame.pack();

}

public void startApp() {
frame.show();
}

public void pauseApp() {
}

public void destroyApp(boolean unconditional) {
frame.dispose();
}

}

Besides the application itself, the JAD files aso need a slight modification. Again, any valid
MIDP JAD fileisaso avalid PDAP JAD file. However, for "true” PDAP applications, using the
advanced capabilities of the PDA profile, a new entry type PDAlet-<Number> must be used. If
aMIDlet-<Number> entry with the same number <Number> isincluded, the PDAl et entry
overrides the corresponding MID I et entry. This allows you to include both MIDP and PDAP
versions of the same application in asingle pair of JAD and JAR files. The syntax of the PDAlet
entriesisidentical to the syntax of theMIDI et entries. For our example, a corresponding JAD file
including the MIDP version of the sampleisshownin Listing 1.5.

Listing 1.5 Hel loPdap. jad—The JAD File for the HelloPdap Application, and the
HelloMidp MIDlet as a Fallback Option

MIDIet-Name: Hello

MIDlet-Version: 1.0

MIDIet-Vendor: Michael Kroll & Stefan Haustein
MIDlet-Jar-Size: ???

MIDlet-Jar-URL: hello.jar

MIDlet-1: HelloMidp, , HelloMidp

PDAlet-1: HelloPdap, , HelloPdap

Summary

In this chapter, you learned the history and background of J2ME and the CLDC configuration. We
covered the MID and PDA profiles and gave you an overview of some existing software
development kits. Y ou should be able to set up the Sun development kits, to compile actual MID
and PDA programs, and to run them in the corresponding device emulation.

The following chapters will first describe the Connected Limited Device Configuration (CLDC).
Then, well revisit the MIDP and PDAP "Hello World" applications from an API point of view
and explain the lifecycle of aMIDlet. We will aso explain the user interface of MID and PDA
applications in depth.

34

Chapter 2. The Connected Limited Device
Configuration

INTHISCHAPTER

Genera CLDC Limitations
CLDC Application Design
CLDC APIs

CLDC Profiles

Java Application Deployment
JAM on MIDP

JAM for PDAP

This chapter describes the general concepts and limitations of the Connected Limited Device
Configuration (CLDC). Y ou already saw some of the limitationsin Chapter 1, "Java 2 Micro
Edition Overview." Here, you'll see acomplete list, and also take a closer look at the API
packages available in the CLDC. This chapter also discusses the packages and classes of the
Mobile Information Device (MID) and Personal Digital Assistant (PDA) profilesincluding
extensions of CLDC classes. Finally, it describes the specia steps involved in J2ME application
deployment.

General CLDC Limitations

In order to make the Java feature set suitable for very limited devices such as cellular phones or
PDAs, CLDC's developers had to limit the feature set in several ways. This section first describes
the general language and virtual machine limitations and some consequences of the missing
reflection capabilities. It then discusses the simplified security and highlights some general
limitations resulting directly from the limited hardware capahilities of CLDC devices.

General Java Language Limitations

For CLDC, the Java language itself was simplified slightly. The following restrictions hold for the
Javalanguagein CLDC:

No floating-point support (CLDC 1.0 only)

No reflection

No thread groups and daemon threads

No weak references (CLDC 1.0 only)

Error handling may be limited

No finalization; CLDC does not support the final i ze() method
No Java Native Interface (INI)

No user-defined class loaders

The missing floating-point support is perhaps the most significant limitation because it makes
development of calculation or spreadsheet programs very difficult. The MathFP API from Onno
Honnes (www .jscience.net) provides fixed-point calculations as a substitute, but fixed-point
arithmetic is not a complete replacement for floating-point support.

CLDC supports full exception handling, but limitations may apply to the Error exception classes.
The problemisthat it is very difficult to handle errors like those that arise from heap exceptions,

35

http://www.jscience.net/

which may be resolved only by a soft reset of the whole device. Thus, the device may handle
errors differently in a manner appropriate to the device without reporting a corresponding
exception to Java.

The restrictions concerning user-defined class loaders and the NI are addressed in the upcoming
section "Simplified Security Model."

Note

Dueto abuginthe original CLDC specification, the .class directive (for example,
String.class) doesnot work in CLDC 1.0. However, thisissue isfixed in CLDC 1.1 by
adding the NoClassDef FoundError class, required for the compilation process.

Consequences of the Missing Reflection Support

The reflection capabilities of the CLD configuration are very limited. Class . forName() and
newlnstance() are supported, but you can't work with methods, variables, or constructors at
thereflection level.

As aconsequence, several other APIs are not available and cannot be implemented for CLDC:

e Noclassloaders. CLDC supports only the built-in class loader. Y ou can't add custom
class loaders.

¢ No Remote Method Invocation (RMI). RMI relies on full reflection capabilities, so RMI
isnot possiblein CLDC.

e NoJini. Jini depends on RMI, so you can't use it with the CLDC.

e No serialization. Serialization depends on reflection, so seriaization is not available in
CLDC.

For Jini, a solution could be the surrogate architecture, allowing simple devices to be integrated in
aJini environment. For the missing RMI and serialization capabilities, the explicit serialization of
the kKSOAP API, described in Chapter 10, "Third Party Libraries," can provide areplacement,
even if itislimited in severa ways.

Simplified Security Model

Asin J2SE, the Java byte code is verified by the VM before execution in order to prevent security
violations resulting from side effects of illegal byte code. In CLDC, the verification processis
dightly different from that used in 2SE. CLDC introduces an additional preverification step that
simplifies verification of the byte code on the device. The preverification process and its
motivation are described in the next section.

For application-level security, J2SE provides security managers for fine-grained access control.
Unfortunately, security managers consume too much memory to be included in CLDC devices.
For this reason, CLDC provides the simpler sandbox model for application security. The sandbox
model means that Java applications run in a closed environment where only APIs known to be
safe can be accessed.

The sandbox model means that the following additional restrictions apply:

e TheJavaNative Interface (JNI) is not available, in order to prevent backdoor access to
native functionality that is not exposed through the Java APIs provided with the device.

36

e User-defined class loaders cannot be created, in order to prevent programmers from
overriding the class loading mechanism provided by the VM.

For PDAP, an additional security layer allows the user to grant applications access permissions
such as network and persona information management access. By default, PDAP applications are
not allowed to establish network connections or access information stored in the device address
database or calendar. However, such access can be allowed via the application manager.

Off-Device Preverification

The preverification step was discussed in Chapter 1. This additional step is applied to Java class
files after they are generated from the corresponding Java source files. The reason for introducing
this additional step, which leads to much confusion for developers, was that the original classfile
verification performed by the VM was very expensive in terms of memory and computational
power. Basically, the preverification step enriches the class file with hints for the on-device
verifier. Thus, the final verification can be performed more efficiently.

Please note that preverification does not mean less security. If you think of the verification process
as confirming that away exists through a labyrinth, then the preverification step marks the way.
The way can till be verified in the device, and if the way is not valid, verification will detect that;
but preverification lets you avoid the much greater effort involved in finding the way.

General Device Hardware Limitations
General hardware limitations of CLDC devices are

e Limited computing capabilities
e Limited memory
e Limited heap space

The computing power of processors used for mobile phonesis usually very limited when
compared to desktop systems. Also the memory provided by CLDC devicesisvery limited. Even
worse, for many devices, there is a distinction between persistent (flash) memory and the heap
space available, and the heap space usually is only asmall fraction of the total memory (32—
512K B). So the memory available at runtime may be even more restricted than the memory
availablein the device.

CLDC11

CLDC 1.1, the "next generation” of the CLDC configuration, which is used in the PDA profile,
lifts some of the original CLDC limitations. Namely, CLDC-NG no longer explicitly forbids
floating point operations, and weak references are added.

CLDC Application Design

The design rules for CLDC applications are quite simple: Keep everything as small and as ssimple
as possible. CLDC applications should be designed to consume as few resources as possible, and
the user should be allowed to exit at any time without losing data. Design rules concerning the
user interface will be covered in more detail in Chapters 3, "MIDP Programming," and 4, "PDAP
Programming."

37

CLDC APIs

Packagesincluded in CLDC are java.io, java. lang, java.util, and
Jjavax.microedition.io, where javax.microedition. ioismainly areplacement for
the missing java.net package. Here, we will give only a short overview of the classes available.
Please note that most classes do not provide all the methods of their J2SE counterparts. For
detailed information, please consult the CLDC API documentation.

In Appendix B, "Comparison Charts," you can find a table with hints for mapping functionality of
J2SE classes and methods omitted in CLDC. The following classes are availablein CLDC 1.1

only: Float, Double, java.lang.ref.Reference, java.lang.ref.Reference, and java. lang.ref.
WeakReference.

The java.lang Package

Supported classes from java. lang are Object, the wrapper classes for the built-in data types,
Math, Runtime, String, StringBuffer, System, Thread, and Throwable.

Depending on the CLDC version java. lang.Math might not contain operations for floating
point numbers. java. lang.Class provides only very limited support for reflection.

The following classes are availablein CLDC 1.1 only: Float, Double, java. lang.ref.
Reference, java.lang.ref._Reference, and java.lang.ref.WeakReference.

The java.util Package

Supported classes from java.util are Calendar, Date, Hashtable, Random, Stack,
TimeZone, and Vector.

The Java 2 collection framework is not supported at al. The Vector class contains only the old
access methods e lementAt(), setElementAt(), and addElement(), instead of the get(),
set(), and add () methods introduced with the Java 2 collection framework. The only time

zone required is GMT.

The java.io Package

Supported classes from java. io are ByteArraylnputStream, ByteArrayOutputStream,
DatalnputStream, DataOutputStream, InputStream, InputStreamReader,
OutputStream, OutputStreamWriter, PrintStream, Reader, and Writer. Asyou can
infer from the list, al file-related classes are missing. The CLDC does not provide any
replacement, but MIDP provides the package javax.microedition.rms for persistent storage,
and PDAP addsaFi leConnection interfaceto the javax.microedition. io package.

The javax.microedition.io Package

The package javax.microedition. ioismainly acompact replacement for the java.net
package, the so-called Generic Connection Framework (described in detail in Chapter 6,
"Networking: The Generic Connection Framework™). It provides a set of classes and interfaces
that let you establish different kinds of network connections.

38

CLDC Profiles

CLDC itself provides only abasic set of classesfor aJ2ME profile. In Chapter 1, you were given
an overview of the two profiles available for CLDC: the Mobile Information Device Profile
(MIDP) and the PDA Profile (PDAP). Now, we will present the additional functionality the
profiles add to CLDC. We will start with MIDP and then give an overview of PDAP. Figure 2.1
shows an overview of the 2ME CLDC packages and their intersections with J2SE.

Figure 2.1. J2ME CLDC packages including the MID and PDA profiles and
intersections with J2SE.

J2SE
[T e e s T s =T s = T =T =T =TT~ T ===
| MIDP CLDC , ;'J-
1 ' java.lang |
i : i |
|' . java.util i
1 . :l
1 ! -=
Il java.microedition.midlet | | java.microedition.io java.io :||
I e |} - e =Y
| 1 | java microedition lcdui java.microedition.rms :
I ----------------------- - o e - - o o = -
javax.microedition.pim .
I java.awt]
PDAP
L 4]
java.net
javax.swing
MID Profile

As described in Chapter 1, MIDP is designed for maobile information devices such as cellular
phones and two-way pagers. MIDP adds several new packages and classesto CLDC. The
following sections list the additions per package.

Additions to Java.util

MIDP adds the classes Timer and TimerTask in the package java. lang to the set of
supported classes. Timer and TimerTask alow simplified scheduling of tasks for a point of
time in the future, including repeated tasks.

Additions to java. lang

MIDP addsthe I I legal StateException inthe package java. lang. The
Il legalStateException isthrown when amethod is called in a state of the application

39

where doing so is not allowed. For example, you can't access the display of aMIDlet before the
corresponding startApp() method isinvoked by the system.

Additions to Javax.microedition.io

MIDP adds an HttpConnection for HTTP connections to the generic connection framework.
TheHttpConnection classisdescribed in detail in Chapter 6.

Package Javax.microedition.midlet

The javax.microedition.midlet packageisacompletely new package of MIDP. It mainly
contains the classMIDI et, encapsulating the life cycle of an MIDP application. TheMIDlet
class can be compared to an applet to some extent, except that it is not related to the display. The
life cycle of MIDP applications—including the MIDl et class—is described in detail in Chapter 3.

Package jJavax.microedition. lcdui

The javax.microedition. Icdui package containsthe graphical user interface (GUI) classes
for MIDP. These classes are not compatible to J2SE and provide only very basic elements
adequate to the limited display of a mobile information device. The MIDP GUI classes are
described in detail in Chapter 3, together with the MIDP application life cycle.

Package javax.microedition.rms

MIDP does not contain a file system, but instead uses a record management API for persistent
storage. The record system is more adequate to the persistent memory of mobile devices, where
datais usually stored persistently in random access memory instead of sequential files. The record
management system is described in detail in Chapter 5, "Data Persistency."

PDA Profile

Like the MID Profile, the PDA Profile makes many additions to the CLD Configuration required
for the targeted class of devices. Because PDAP is a superset of MIDP, al MIDP packages and
CLDC additions are available in PDAP. Please note that PDAP 1.0 isbased on CLDC 1.1, in
contrast to MIDP 1.0, which is based on CLDC 1.0.

In addition to the MIDP additions to CLDC, PDAP provides a more sophisticated user interface
based on a subset of the Abstract Window Toolkit (AWT) and access to the device address and
calendar databases.

Package java.awt and Subpackages

In contrast to MIDP, PDAP does not provide a user interface API designed from scratch. The
PDAP user interface is a subset of the 2SE AWT classes.

Package Javax.microedition.pim

The persona information management classes provide access to the built-in calendar and address
book databases of the PDA. The pim classes are described in detail in Chapter 7, "PIM: Accessing
the Personal Information Manager."

Additions to Javax.microedition.io

40

PDAP adds a CommConnection and aFileConnection for serial port and file access to the
generic connection framework, which are described in detail in Chapter 6.

Java Application Deployment

For desktop computers, there are different ways to install an application. In order to install new
software properly, the user needs to insert the medium containing the software into the computer
system and start the installation. It is common practice for awizard to guide the user through a
predefined procedure for installing the software. Software or software updates can be downloaded
from the Internet using a Web browser as well. When the software is downloaded, the installation
usually needsto be initiated by the user or system administrator.

For limited devices, software installation is different. PDA software is usually installed through a
connection to the desktop computer; for example, a serial cable or an Infrared Data Association
(IrDA) connection. The installation is initiated on the desktop computer.

Using devices that provide awireless Internet connection, it seems quite straightforward to
download applications from the Internet directly to the device without going through a desktop PC.

A downloaded application must be saved in the device's storage, installed, and inspected by the
platform. Applications of that kind can be launched and later deleted from the device when the
user no longer needsit. A mechanism covering these issues is called Java Application Manager
(JAM).

JAM Implementation

The JAM reference implementation is generally described in the CLDC reference implementation
(RI) by SUN. In the Rl documentation, the JAM is divided into the following steps:

Installing the application toc the device
Executing the application

Updating the installed application

Deleting the application from the target device

In order to use the JAM mechanism, the KVM version that is used should support this feature. The
RI does not state how the implementation platform has to support browsing of descriptor filesin
the Internet, for example, but describes al the information that needs to be included in a descriptor
file. A complete specification of how JAM should be implemented is given in the 2ME profiles.

The Descriptor File

The Java Application Descriptor (JAD) file is downloaded into the device and analyzed by the
platform. According to the information that is stored in the descriptor file, the platform decides
whether the related JAR file containing the application classes should be downloaded or rejected.
The association between the descriptor file and the JAR fileis shown in Figure 2.2.

Figure 2.2. The association between JAD and JAR file including a KVM application.

41

Mobile Device Browser

{WMLXHTML Basic)
download

— = —
BloodSugarMidp.jad ¥
MIDiet-Name: BloodSugarMidp _
MiDiet-Jar-Size: 9220 BloodSugarMidp.jar
MiDiet-Jar-URL: BloodSugarMidp.jar > Containing application
MIDigt-Viendor: Michael kroll and Stefan Haustein classes and resources
MIDiet-Version: 1.0
MiDiet-1: BloodSugarMidp./Blood.png, BloodSugarMidp

B

A JAD descriptor file consists of readable text including name-value pairs describing properties of
its associated Java application. Each line of the descriptor file holds one attribute, where an
attribute consists of a name and a value, separated by a colon. The following attribute describes
the file size of the application JAR file:

Jar-File-Size: 2123

The application developer is responsible for maintaining the JAD and JAR files. Additionally, the
descriptor file and the associated JAR file must be placed on the same Web site.

JAM on MIDP

Whereas the CLDC JAM specification is relatively vague, MIDP contains a concrete definition of
the JAD filesfor MIDP applications. This section first takes a closer ook at the contents of a JAD
file, and then describes the actual transfer of an MIDP application to the target device. However,

before we go into details of the JAD files, we need to explain the MIDP concept of MIDlet suites.

MIDlet Suites

A MIDlet suiteis a set of Java applications distributed together. A group of MIDletsinside a
MIDlet suite can share their persistent databases. For example, a database might consist of user
logins that are used by all network-related MIDlets in one suite.

Since MIDP devices offer only alimited amount of heap space for the Java Runtime Environment,
it may make sense to split application functionality into two or more MIDlets. For instance, one
MIDlet of asuite could be responsible for providing a user interface for entering application data.
A second MIDlet in the same suite could be responsible for synchronizing the data with aremote
server over the Internet. Both MIDlets would access the same data stored in a persistent database
accessible from all MIDlets of the suite.

MIDP JAD Files

JAD files have aready been defined in general CLDC terms. MIDP extends the specification with
respect to the special requirements of mobile information devices. The JAD filein MIDP consists
of mandatory and optional attributes. The application provider must fill the mandatory attributes

42

that arelisted in Table 2.1. The syntax is the same as described in the section " Java Application
Deployment.” Table 2.2 shows additional optional entries.

Table 2.1. Mandatory JAD File Attributes in MIDP

IAttribute Name

|Description

MIDlIet-Name

The name of the MIDlet suite.

MIDlet-Version

The version number of the MIDlet suite.

MIDlet-Vendor

The vendor of the given MIDlet suite.

MIDlet-Jar-URL

The URL from which the JAR file can be downloaded.

MIDlet-Jar-Size

The size of the JAR file in bytes.

MicroEdition- The J2ME profile that is required to run the MIDlet.
Profile

MicroEdition- The J2ME configuration that is needed to run the MiDlet.
Configuration

MIDIlet-<Number>

For each midlet contained in a midlet suit, a separate MIDlet-<number>
entry isrequired, where <number> must be replaced by a number ranging
from 1 to the number of MIDlets contained in the suite. The value of the
MIDIet-<Number> attribute consists of three parameters:
MIDlet-<Number>: <name>, <icon>, <class>

<Number> isan enumeration of the MIDletsin the JAR file. The first MIDlet
isMIDIet-1. If more MIDlets are stored in the JAR file, the entries are

named MIDlet-2, MIDIet-3, and so on.

The parameter <name> describes the name of the MIDlet that is displayed on
the device after the descriptor file isloaded. The <icon> parameter specifies
an icon that can be displayed in the list. The last parameter, <class>,
specifies the name of the actual subclass of MIDlet implemented by the
application.

Table 2.2. Optional JAD File Attributes in MIDP

Attribute Name

Description

MIDIet-
Description

The description of the MIDlet suite.

MIDlet-1con

The name of the PNG file representing the MIDlet suite that is
contained in the JAR file.

MIDlet-Info-URL

The URL providing further information about the MIDlet suite.

MIDlet-Data-Size

The minimum number of bytes of persistent data that is needed to run
the MIDlet.

Specialized devel opment tools for J2ME applications might provide support for setting the JAD
file properties. For example, the SUN Wireless Toolkit provides a Settings button where the JAD

options can be entered

in adialog box. Moreover, some options such as the file size of the JAR

file arefilled in automatically.

MIDP JAR Manifest Entries

The JAR manifest file of a MIDlet suite must contain the same attributes as the JAD file, except
from the JAR URL and JAR size attributes. Note that some devices access the JAD file only for
transmission, but do not store the information contained in it. Thus, application-specific attributes
should be duplicated in both files for safety.

Over the Air User Initiated Provisioning for MIDP

Although the JAD file format is specified completely in the MIDP specification, questions
concerning the concrete details of downloading and discovering MIDlets are | eft open by the
specification. For that reason, the three specification leads have released a document titled "Over
the Air User Initiated Provisioning Best Practice" (OTA), covering the HTTP transfer steps and
application installation in detail. This can be downloaded using the following URL:
http://java.sun.com/products/midp/OTAProvisioning-1.0.pdf

For MIDP developers, it isimportant to know that the installation is initiated when the user selects
thelink to afile of the MIME type text/vnd.sun. j2me.app-descriptor or with the
suffix . jad.

The OTA document further specifies the recommended behavior and user interaction of the
application manager. It aso specifies how the device identifiesitself in additional HTTP header
fields. However, these technical details of the application deployment protocol are mainly
important for implementers of the device application manager software and specialized Internet
servers. If you are interested, the whole OTA document is available for download on the SUN
Internet pages. For convenience, it is directly linked from the Web page of this book.

JAM for PDAP

Because PDAP is a superset of MIDP, aMIDP JAR fileisalso avalid PDAP JAR file. However,
PDAP provides one extension of the JAR file format. PDA applications using PDA capahilities
beyond MIDP must use PDAlet-<Number> entries. The syntax of the PDAlet-<Number>
entriesisidentical to theMIDIlet-<Number> entries. A PDAIlet entry with the same number as a
MIDlet entry overrides the corresponding MIDlet entry. Thus, different versions of the same
applications for both profiles can be included in the same JAD and JAR files. If the device
supports PDAP, the PDA applications will be loaded; otherwise the application manager
automatically falls back to the MIDIlet entry because PDAIlet entries have no meaning for the
MIDP application manager. The Hel loPdap example (Listing 1.5) in the first chapter shows a
corresponding dual-profile JAD file.

Summary

In this chapter, you have learned the limitations of the CLD configuration. Y ou have had an
overview of the CLDC API packages and the PDAP and MIDP additions. Y ou also know about
the Java Application Management mechanism for deploying J2ME applications and the JAD
entries for PDAP and MIDP applications.

The next chapters will first revisit the MIDP and PDAP "Hello World" applications from an AP
point of view and explain the application lifecycle. Then the user interfaces of MID and PDA
applications are explained in depth.

http://java.sun.com/products/midp/OTAProvisioning-1.0.pdf

Chapter 3. MIDP Programming
INTHISCHAPTER

MIDlets

High-Level AP
Low-Level API
MIDP 2.0 Additions

This chapter handles the life cycle and user interface of Mobile Information Device Profile (MIDP)
applications. First, the general design of MIDP applications will be discussed. Then, the high-level
user interface APl will be explained. Finally, the low-level user interface API for free graphics

and games will be described.

MIDlets

All applications for the MID Profile must be derived from a specia class, MIDlet. TheMIDlet
class manages the life cycle of the application. It islocated in the package
Javax.microedition.midlet.

MIDlets can be compared to J2SE applets, except that their state is more independent from the
display state. A MIDlet can exist in four different states: loaded, active, paused, and destroyed.
Figure 3.1 gives an overview of the MIDlet lifecycle. When aMIDlet isloaded into the device and
the constructor iscaled, it isin the loaded state. This can happen at any time before the program
manager starts the application by calling the startApp() method. After startApp() iscalled,
the MIDlet isin the active state until the program manager calls pauseApp() or
destroyApp(); pauseApp() pauses the MIDlet, and desroyApp() terminates the MIDlet. All
state change callback methods should terminate quickly, because the state is not changed
completely before the method returns.

Figure 3.1. The life cycle of a MIDlet.

loaded/paused
startApp()
active
startApp() pauseApp()
paused
destroyApp(boolean)
destroyed
destroyApp({boolean)

In the pauseApp () method, applications should stop animations and release resources that are
not needed while the application is paused. This behavior avoids resource conflicts with the

45

application running in the foreground and unnecessary battery consumption. The destroyApp()
method provides an unconditional parameter; if it is set to false, the MIDlet is alowed to refuseits
termination by throwing aMIDletStateChangeException. MIDlets can request to resume
activity by calling resumeRequest(). If aMIDlet decidesto go to the paused state, it should
notify the application manager by calling noti fyPaused(). In order to terminate, aMIDlet can
call notifyDestroyed(). Notethat System.exit() isnot supported in MIDP and will
throw an exception instead of terminating the application.

Note

Some devices might terminate a MIDlet under some circumstances without calling
destroyApp(), for example on incoming phone calls or when the batteries are exhausted. Thus,
it might be dangerousto rely on destroyApp () for saving data entered or modified by the user.

Display and Displayable

MIDlets can be pure background applications or applications interacting with the user. Interactive
applications can get access to the display by obtaining an instance of the Display class. A
MIDlet can getitsDisplay instance by callingDisplay.getDisplay(MIDlet midlet),
where the MIDlet itself is given as parameter.

TheDisplay classand all other user interface classes of MIDP are located in the package
jJavax.microedition. Icdui. TheDisplay class provides asetCurrent() method that
sets the current display content of the MIDlet. The actual device screenis not required to reflect
the MIDlet display immediately—the setCurrent() method just influences the internal state of
the MIDlet display and notifies the application manager that the MIDlet would like to have the
given Displayable object displayed. The difference between Display and Displayable is
that the Displlay class represents the display hardware, whereas Displayabl e is something
that can be shown on the display. The MIDIet can cal the isShown () method of Displayable
in order to determine whether the content is really shown on the screen.

HelloMidp Revisited

TheHel IoMidp example from Chapter 1, "Java 2 Micro Edition Overview," isaready a
complete MIDlet. Now that you have the necessary foundation, you can revisit Hel loMidp from
an API point of view.

First, you import the necessary midlet and Icdui packages:

import javax.microedition.midlet.*;
import javax.microedition.lcdui.*;

Likeall MIDP applications, the He l loMidp exampleisrequired to extend the MIDl et class:
public class HelloMidp extends MIDlet {
In the constructor, you obtain the Display and createa Form:

Display display;
Form mainForm;

public HelloMidp(Q) {

46

mainForm = new Form (“"HelloMidp™);

}

A Formisaspecialized Displayable class. The Form has atitle that is given in the constructor.
Y ou do not add content to the form yet, so only the title will be displayed. (A detailed description of
the Form classis contained in the next section.)

When your MIDlet is started the first time, or when the MIDIlet resumes from a paused state, the
startApp() method is caled by the program manager. Here, you set the display to your form, thus
requesting the form to be displayed:

public void startApp() {
display = Displayable._getDisplay (this);
display.setCurrent (mainForm);

}

When the application is paused, you do nothing because you do not have any allocated resources to free.
However, you need to provide an empty implementation because implementation of pauseApp() is
mandatory:

public void pauseApp() {
}

Like pauseApp (), implementation of destroyApp() is mandatory. Again, you don't need to do
anything here for this simple application:

public void destroyApp(boolean unconditional) {

}
}

Note

TheHel loMidp Midlet does not provide a command to exit the MIDlet, assuming that the device
provides a general method of terminating MIDlets. For real MIDP applications, we recommend that
you add a command to terminate the MIDlet because the M1DP specification does not explicitly
support this assumption. More information about commands can be found in the section "Using
Commands for User Interaction."

MIDP User Interface APIs

The MIDP user interface API isdivided into a high- and low-level API. The high-level API provides
input elements such as text fields, choices, and gauges. In contrast to the Abstract Window Toolkit
(AWT), the high-level components cannot be positioned or nested freely. There are only two fixed
levels: Screensand Items. The I'temscan be placed inaForm, which isa specialized Screen.

The high-level Screens and the low-level class Canvas have the common base class
Displayable. All subclasses of Displayable fill the whole screen of the device. Subclasses of
Displayable can be shown on the device using the setCurrent() method of theDisplay
object. The display hardware of a MIDIlet can be accessed by calling the static method
getDisplay(), wherethe MIDlet itself is given as parameter. In the He l loMidp example, this
step is performed in the following two lines:

Display display = Display.getDisplay (this);

display.setCurrent (mainForm);

47

Figure 3.2 shows an overview of the MIDP GUI classes and their inheritance structure.

Figure 3.2. The MIDP GUI classes.

1 1 1 *
MIDlet Display Displayable
ST - l% - Low-Level AP

| - ©

High-Level AP =~ "
g Screen = Canvas
™o
} -
‘| L3
Alert List TextBox Form [term
ChoiceGroup | | DateField Gauge Imageltem | | Stringltem TextField

The following sections first describe the high-level API and then the low-level API. A more complex
sample application that uses both levels of the Icdui package together is shown in Chapter 9,
"Advanced Application: Blood Sugar Log."

High-Level API

Now that you know the basics of the MIDlet's life cycle and general display model, we can start to look
deeper into the Icdui package. We will start with another subclass of Screen: Alert. Then we will
discuss some simple I'temslike Stringltem and Image I tem. We will explain the use of more
advanced I temssuch as TextField and ChoiceGroup by creating asimple TeleTransfer
example application. As we introduce new MIDP high-level Ul capabilities like other Screen
subclasses, we will extend the TeleTransfer sample step by step.

Alerts

Y ou aready know the Form class from the first example. The simplest subclass of ScreenisAlert.
Alert provides amechanism to show adialog for alimited period of time. It consists of alabel, text,
and an optional Image. Furthermore, it is possible to set a period of time the Alert will be displayed
before another Screen is shown. Alternatively, an Alert can be shown until the user confirmsit. If
the Alert does not fit on the screen and scrolling is necessary to view it entire contents, the time limit
is disabled automatically.

The following code snippet creates an Al ert with the title "HelloAlert" and displaysit until it is
confirmed by the user:

Alert alert = new Alert ("HelloAlert™);
alert.setTimeout (Alert.FOREVER);
display.setCurrent (alert);

48

Forms and ltems

The most important subclass of Screen isthe class Form. A Form can hold any number of Items
suchasStringltems TextFields, and ChoiceGroups. I'temscan be added to the Form using
the append () method.

The I'tem classitself isan abstract base class that cannot be instantiated. It provides alabel that isa
common property of all subclasses. The label can be set and queried using the setLabel ()and
getLabel () methods, respectively. Thelabel isoptional, and anull I value indicates that the item
does not have alabel. However, several widgets switch to separate screens for user interaction, where
the label is used asthettitle of the screen. In order to allow the user to keep track of the program state, it
is recommended that you provide alabel at least for interactive items.

I tems can neither be placed freely nor can their size be set explicitly. Unfortunately, it is not possible
to implement Item subclasses with a custom appearance. The Form handles layout and scrolling
automatically. Table 3.1 provides an overview of all I'temsavailablein MIDP.

Table 3.1. All Subclasses of Item
|Item |Description
ChoiceGroup Enables the selection of elements in group.
DateField Used for editing date and time information.
]Gauge |Displays a bar graph for integer values.
Imageltem Used to control the layout of an Image.
Stringltem Used for read-only text elements.
]TextFieId |Holds a single-line input field.
Stringltem

Stringltemsare simple read-only text elements that are initialized with the label and a text
String parameter only. The following code snippet shows the creation of a simple version label.
After creation, the label is added to the main form in the constructor of the He I loMidp application:

public HelloMidp() {
mainForm = new Form (“"HelloMidp'™);
Stringltem versionltem = new Stringltem ("'Version: ", "1.0");
mainForm_append (versionltem);

}

Thelabel of the Stringltem can be accessed using the setLabel () and getLabel () methods
inherited from I'tem. To access the text, you can use the methods setText() and getText().

Imageltem

Similar to the Stringltem, the Image I tem isaplain non-interactive Item. In addition to the label,
the Image I tem constructor takes an Image object, alayout parameter, and an alternative text string
that is displayed when the device is not able to display the image. The image given to the constructor
must be non-mutable. All images|oaded fromthe MIDI et suite's JAR file are not mutable.

The difference between mutable and non-mutable Imagesis described in more detail in the section
about Imagesin this chapter. For now, we will treat the Image class asa"black box" that has a string
constructor that denotes the location of the image in the JAR file. Please note that Image construction
fromaJAR filethrows an 10Exception if theimage cannot be loaded for some reason. The layout
parameter is one of the integer constants listed in Table 3.2, where the newline constants can be
combined with the horizontal alignment constants.

49

Table 3.2. Imageltem Layout Constants

Constant Value

LAYOUT_CENTER The image is centered horizontally.

LAYOUT_DEFAULT A device-dependent default formatting is applied to the image.
LAYOUT LEFT The image is left-aligned.

LAYOUT_NEWLINE_AFTER |A new line will be started after the image is drawn.

LAYOUT_NEWLINE_BEFORE |A new line will be started before the image is drawn.

LAYOUT _RIGHT The image is aligned to the right.

The following code snippet shows how a center aligned Image I tem is added to theHel loMidp
sample MIDlet:

public HelloMidp() {
display = Display.getDisplay (this);
mainForm = new Form (*'HelloMidp™);

try {
Imageltem logo = new Imageltem

("Copyright: ", Image.createlmage (*'/mcp.png™),
Imageltem_.LAYOUT_CENTER | mageltem.LAYOUT_ NEWLINE BEFORE

| Imageltem.LAYOUT NEWLINE_AFTER, "Macmillian USA™);

mainForm.append (logo);
} catch (10Exception e) {
mainForm.append (new Stringltem ('Copyright™, "Sams
Publishing; Image not available:" + e));

}
}

By forcing a new line before and after the image, you ensure that the image is centered in its own line.
Figure 3.3 shows the corresponding display on the device. If the image cannot be loaded and an
exception isthrown, asimple Stringltem isappended to the form instead of the image.

Figure 3.3. The Hel loMidp application showing an Image Item.
Famil B

ellolmage

opyright:

@E’

Handling Textual Input in TextFields

Asshownin Table 3.1, textual input is handled by the class TextField. The constructor of
TextField takesfour values: alabd, initial text, a maximum text size, and constraints that indicate
the type of input allowed. In addition to avoiding input of illegal characters, the constraints may also
influence the keyboard mode. Several MIDP devices have a numeric keyboard only, and the constraints
allow the application manager to switch the key assignments accordingly. The constants listed in Table
3.3, declared in the class TextField, are valid constraint values.

Table 3.3. TextField Constraint Constant Values

IConstant |Va|ue

50

ANY Allows any text to be added.

EMATLADDR Adds a valid e-mail address, for instance myemail@mydomain.com.
NUMERIC Allows integer values.

PASSWORD Lets the user enter a password, where the entered text is masked.
IPHONENUMBER |Lets the user enter a phone number.

JURL \Allows a valid URL.

We will now show the usage of TextFieldsby creating asimple example Form for bank transfers.
A bank transfer form contains at least the amount of money to be transferred and the name of the
receiver.

To start the implementation of the TeleTransfer MIDIet, you first need to import the two packages
containingthemidlet and Icdui classes:

import javax.microedition.midlet.*;
import javax.microedition.lcdui.*;

Every MID application is derived fromMIDlet, so you need to extend the MIDl et class, too:

public class TeleTransfer extends MIDlet {

Because you want to create a Form that contains 1 temsfor entering the transfer information, you need
a corresponding member variable mainForm. You can already initialize the variable at its declaration
because it has no dependencies from constructor parameters:

Form mainForm = new Form (“"TeleTransfer'™);

In order to let the user enter the transfer information, add TextFie ldsfor the name of the receiver
for entering the amount to be transferred. Because of the lack of floating-point valuesin the CLDC, the
numeric TextFieldsin MIDP can hoid integer values only. So you need to split the amount into
separate fields for dollars and cents. An dternative would be to use an a phanumeric field and parse the
string into two separate values. However, this may result in switching the keyboard to alpha mode on
cell phones, making numeric input unnecessarily complicated. In this case, you'll limit the size of
possible values to five digits for the whole dollar part and two digits for the fractional cent part. Again,
you initialize the variables where they are declared:

TextField receiverName = new TextField

("'Receiver Name'"™, ", 20, TextField.ANY);
TextField receiverAccount = new TextField

("'Receiver Account#", "', 12, TextField.NUMERIC);
TextField amountWhole = new TextField (“Dollar'™, ", 6,
TextField.NUMERIC);
TextField amountFraction = new TextField ("Cent"™, "', 2,
TextField .NUMERIC);

Finally, you add a variable storing the Disp lay instance for your application:
Display display = Display.getDisplay (this);

Now you can add the constructor to your application where you added the previous TextFieldsto
the main form:

public TeleTransfer() {
mainForm.append (receiverName);
mainForm.append (receiverAccount);

mailto:myemail@mydomain.com

mainForm.append (amountWhole);
mainForm.append (amountFraction);

}

When the application is started, you request the display to show your money transfer form by calling
setCurrent(). Asexplained inthe "MIDlets" section, the application manager notifies you about
the application start by calling the startApp () method. So you implement this method accordingly:

public void startApp() {
display.setCurrent (mainForm);
}

Please note that startApp() iscalled aso when the MIDlet resumes from the paused state, so you
cannot move the initialization code from the constructor to this method.

Both pauseApp () and destroyApp() are declared asabstract inthe MIDI et class, so you need
to implement these methods in your application, even if you do not have real content for them. Y ou just
provide empty implementations, likein the He l loMidp example in the first section:

public void pauseApp() {
}

public void destroyApp (boolean unconditional) {
}

Selecting Elements Using ChoiceGroups

In the previous section, you created a simple to enter information for transferring money between two
accounts. Now you will extend the application to allow the user to select different currencies. For this
purpose, you will now add aChoiceGroup to your application.

The ChoiceGroup isan MIDP Ul widget enabling the user to choose between different elementsin a
Form. These elements consist of simple Strings, but can display an optional image per element as
well. ChoiceGroups can be of two different types. Corresponding type constants are defined in the
Choice interface. These constantsare used inthe List classaswell; the List classalowsan
additional third type. The three type constants are listed in Table 3.4.

Table 3.4. Choice Type Constants

IConstant |Va|ue

EXCLUSIVE|Specifies a ChoiceGroup or List having only one element selected at the
same time.

‘IMPLICIT ‘Valid for Lists only. It lets the List send Commands to indicate state changes.
‘MULTIPLE ‘In contrast to EXPLICIT, MULTIPLE allows the selection of multiple elements.

The ChoiceGroup constructor requires at least alabel and atype value. Additionally, aString
array and an Image array containing the elements can be passed to the constructor. Elements can also
be added dynamically using the append () method. The append () method has two parameters, a
String for thelabel and an Image. In both cases, the image parameter may be nul I if no images
are desired.

In order to add aChoiceGroup tothe TeleTransfer application, you introduce a new variable
currency of type ChoiceGroup. By setting the type to EXCLUSIVE, you get aChoiceGroup
where only one item can be selected at atime. Y ou directly add elements for the United States (USD),
the European Union (EUR), and Japan (JPY) by passing a String array created inline. The
ChoiceGroup enablesthe user to choose between three currencies that are represented textually by

52

the abbreviations specified in the String array. The last parameter of the constructor isset tonul l
because you do not want Imagesto be displayed at thistime:

ChoiceGroup currency = new ChoiceGroup

("'Currency', Choice.EXCLUSIVE,
new String[] {"UsSD", "EUR", "JPY"} , null);

You still need to add the currency ChoiceGroup to your main Form. Asfor the text fields, thisis
done viathe append () method of Form:

mainForm.append (currency);

Figure 3.4 showsthe TeleTransTer application extended to choose a currency using a
ChoiceGroup.

Figure 3.4. The TeleTransfer MIDlet extended to enable the user to choose a
currency.

ITlll“ BN
TeleTranster

CUrrency
< N
[JELR
Py

+

Receiving Changes from Interactive Ul ltems

If you run the new version of the TeleTransfer MIDIet, you can change the currency using the
ChoiceGroup, but the TextField labelsfor Dollar and Cent are not changed accordingly. Y ou
need a way to notify the application if a selection is made in the currency ChoiceGroup.

Receiving changes of interactive high-level Ul itemsin MIDP is based on a listener model similar to
AWT. Classesimplementing the I temStateL i stener interface are able to receive notifications for
the following events:

e State changes of aChoiceGroup

e Vaue adjustments of an interactive Gauge
e TextField vauechanges

e DateField changes

The events are sent to the method 1 temStateChanged() of the ItemStateListener, where
the item that has changed is given as a parameter. In order to actually receive these events, the
ItemStateChangelListener must beregistered using the setltemStatelListener()
method of the corresponding Form.

Now that you know about item state change events, you can add the desired functionality to your
TeleTransfer MIDlet. Firgt, you need to add the I temStateL i stener interface to the class
declaration:

public class TeleTransfer extends MIDlet implements ltemStatelListener

{

53

Y ou aso need to implement a corresponding i temStateChanged() method. Since the
itemStateChanged() method is called for changes of all I'temsinthe Form, you need to check
the item parameter indicating the event source first. If the source of the event is the currency
ChoiceGroup, you set the labels of the amount and fraction TextFields correspondingly:

public void itemStateChanged (ltem item) {
if (item == currency) {
int index = currency.getSelectedindex();
switch (index) {
case 0: amountWhole.setlLabel ('Dollar™);
amountFraction.setlLabel ('Cent'™);
break;
case 1: amountWhole.setlLabel ("'Euro™);
amountFraction.setlLabel ('Cent'™);
break;
case 2: amountWhole.setlLabel ('Yen™);
amountFraction.setlLabel ('Sen™);
}

}

Just adding the interface and implementing the corresponding methods is not sufficient to enable the
MIDlet to receive state changes. Additionally, you need to register your 1 temStatelL istener at
the Form containing the currency item. Y ou do so by calling the setltemStateListener()
method inthe TeleTransfer constructor:

public TeleTransfer() {
mainForm.append (senderAccount);

mainForm.append (currency);
mainForm.setltemStateListener(this);

}

Figure 3.5 shows the new version of the TelleTransfer example, where the labels are changed
depending on the state of the currency ChoiceGroup.

Figure 3.5. The TeleTransfer MIDlet extended to change the labels depending on the
state of the currency ChoiceGroup.

Fanil B
TeleTranster

en 223

—en |22

Using Commands for User Interaction

Now you can enter all the information required for a telegraphic transfer, but you have no meansto
initiate the actual transfer.

In contrast to desktop computers, which have plenty of screen space for displaying buttons or menus, a
different approach is necessary for mobile devices. Some devices provide so-called soft buttons, which
are buttons without fixed functionality that are assigned dynamically depending on the application
context. The number of soft buttons may vary if they are available. Other mobile devices do not even

have space for soft buttons, but provide scrolling menus. MIDP needs to abstract from the concrete
device and to provide a mechanism that is suitable for all devices, independent of the availability and
number of soft buttons. Thus, the Icdui package does not provide buttons or menus, but an
abstraction called Command.

Commands can be added to all classes derived from the Displayable class. These classes are
Screen and its subclasses such as Form, List, and TextBox for the high-level API and Canvas
for the low-level API.

No positioning or layout information is passed to the Command—the Displayable classitself is
completely responsible for arranging the visible components corresponding to Commandson a
concrete device. The only layout and display information that can be assigned to a Command except
from the command label is semantic information. The semantic information consists of atype and a
priority. The priority allows the device to decide which commands are displayed as soft buttonsiif the
number of commands exceeds the number of soft buttons available. For additional commands not
displayed as soft buttons, a separate menu is created automatically. The type information is an
additional hint for the device about how to display the command. For example, if the Exit command is
always assigned to the leftmost soft button in native applications of a certain device type, the MIDP
implementation is able to make the same assignment. Thus, a consistent ook and feel can be
accomplished for adevice.

The available command type constants are listed in Table 3.5.

Table 3.5. Command Type Constants

IConstant |Va|ue

Command.BACK |Used for navigation commands that are used to return the user to the
previous Screen.

[Command . CANCEL |Needed to notify the screen that a negative answer occurred.

Command.EXIT |Used to specify a Command for exiting the application.

Command.HELP |Passed when the application requests a help screen.

Command.ITEM |A command type to tell the application that it is appended to an explicit
item on the screen.

Command .OK Needed to notify the screen that a positive answer occurred.

Command . SCREEN A type that specifies a screen-specific Command of the application.

Command.STOP |Interrupts a procedure that is currently running.

The Command constructor takes the label, the command type and the priority asinput. The Command
class provides read () methods for all these fields, but it is not possible to change the parameters after
creation. Using the addCommand () method, commands can be added to a Form or any other
subclass of Displayable.

Asin the case of receiving state changes of Ul widgets, the MIDP uses a listener model for detecting
command actions. For this purpose, the Icdui package contains the interface CommandL istener.
A CommandListener can beregistered to any Displayable class using the
setCommandListener method. After registration, the method commandAction() of the
Commandl istener isinvoked whenever the user issues a Command. In contrast to AWT, only one
listener isallowed for each Displayabl e class. The commandAction() callback method
providesthe Displayable class where the command was issued and the corresponding Command
object as parameters.

With thisinformation, you can extend your Te leTransTer application with the desired Commands.
But before going into actual command implementation, you need to add some corresponding
functionality. You'll add three commands; a Send command, a Clear command, and an Exit command.
For Clear, you just add a method setting the content of the fields of your form to empty strings:

55

public void clear() {
receiverName.setString ('"");
receiverAccount.setString ("''");
amountWhole.setString (''");
amountFraction.setString ("''");

}

The Send command is a bit more difficult since you do not yet have the background to really submit
information over the network. (Network connections will be handled in Chapter 6, "Networking: The
Generic Connection Framework.") So you just display the content to be transmitted in an alert screen as
atemporary replacement:

public void send() {

Alert alert = new Alert (*'Send™);

alert.setString (“"transfer " + amountWhole.getString()
+ "." + amountFraction.getString() +
+ amountWhole.getLabel ()
+ "\nto Acc#" + receiverAccount.getString()
+ "\nof " + receiverName.getString());

alert.setTimeout (2000);

display.setCurrent (alert);

clear();

}

For leaving the application, the MIDlet already providesthe noti fyDestroyed() method, so you
do not need to add anything here.

Now that you have implemented the corresponding functionality, the next step is to add the actual
Command objects to your application class:

static final Command sendCommand = new Command (*'Send",

Command .SCREEN, 1);

static final Command clearCommand = new Command (“'Clear"™,
Command.SCREEN, 2);

static final Command exitCommand = new Command ("Exit', Command.EXIT,

2);

In order to enable the MIDIet to receive command actions, you need to implement the
CommandListener interface, and the corresponding commandAction() method. Depending on
the command received, you call send(), clear (), or notifyDestroyed()

public class TeleTransfer extends MIDlet
implements ItemStateListener, CommandListener {

public void commandAction (Command c, Displayable d) {
if (c == exitCommand) {

notifyDestroyed();

b

else if (c == sendCommand) {
send();

else if (c == clearCommand) {
clear(Q);

b

56

With these modifications, your TeleTransfer MIDIet is able to handle the desired commands. Y ou
till need to add the Commandsto the Form, and register the TeleTransfer MIDlet asa
CommandListener in order to actually receive the commands:

public TeleTransfer() {

mainForm.addCommand (sendCommand);
mainForm.addCommand (clearCommand);
mainForm.addCommand (exitCommand);
mainForm.setCommandListener(this);

}

Figure 3.6 showsthe Send Al ert of the new version of your TelleTransfer application.

Figure 3.6. The TeleTransfer MIDlet showing an alert that displays the transfer
information as a summary before sending.

Foaml B
=end
transfer 22322
en
bo Acof 23456
of MICHAEL

Further Item Classes: Gauge and DateField

Now you have used al the I'tem subclasses except Gauge and DateField. Both classes are
specialized input el ements, where the Gauge may also make sense as a pure read-only information
item.

The Gauge item visualizes an integer value by displaying a horizontal bar. It isinitialized with alabel,
aflag indicating whether it isinteractive, and a maximum and an initial value. If aGauge isinteractive,
the user is allowed to change the value using a device-dependent input method. Changes to the gauge
value will cause ItemEventsif a corresponding listener is registered to the form.

The following code snippet shows the construction of a non-interactive Gauge labeled Progressthat is
initialized with a value of 0 and a maximum of 100:

Gauge gauge = new Gauge ('Progress'™, false, 0, 100);

If aGauge isused to display progress of a process that takes alonger amount of time, you should also
add a corresponding Stop command to the form to abort the progress.

The current value of the Gauge can be set using the method setValue () and read using the method
getValue(). Analogous setMaxValue () and getMaxValue () methodslet you access the
maximum value of the Gauge.

TheDateField isaspeciaized widget for entering date and time information in asimple way. It can
be used to enter adate, atime, or both types of information at once. The appearance of the
DateField isspecified using three possible input mode constants in the constructor. Possible
DateField mode constants are listed in Table 3.6.

Table 3.6. DateField Mode Constants

57

Constant Value

DATE Passed if the DateField should be used for entering a date only.

DATE_TIME |Used for creating a DateField to enter both date and time information.

TIME Used to enter time information only.

The DateField hastwo constructorsin which alabel and the mode can be specified. Using the
second constructor, an additional TimeZone can be passed. The following code snippet shows how a
DateField for entering the date of birth can be initialized:

DateField dateOfBirth = new DateField (‘'Date of birth:",
DateField.DATE);

After you enter the date into the DateField, it can be accessed using the getDate () method. The
DateField offers some additional methods for getting information about the input mode and
methods for setting the date and the input mode as well. The concrete usage of the DateField is
shown in Chapter 9 in the Blood Sugar Log application.

Further Screen Classes: List and TextBox

The current version of the TeleTransfer MIDlet shows how to use the Form and the
corresponding items available in the Icdui package. The application consists of one main form that
holds all application widgets. However, your main form is rather long now, so the question arises how
to improve the usability of the application. This section shows how to structure the user interface by
using multiple screens and introduces the L i st and TextBox classes.

The List Class

One possibility to clean up the user interface is to move the currency selection to a separate screen. It
takes alot of space and may need even more room if additional options are added. Also, you can
assume that the currency is not changed very often.

Y ou could create a new Form and just move the ChoiceGroup there. However, Icdui providesa
special List classinherited from Screen for this purpose. The advantage of the List classisthat it
providesthe IMPLICIT mode that was aready mentioned in the section " Selecting Elements Using
ChoiceGroups." Using the IMPLICIT mode, the application gets immediate notification when an item
is selected. Whenever an element inthe List is selected, aCommand of the type

List.SELECT_ COMMAND isissued. Asinthe ChoiceGroup, the elements consist of Strings
and optiona Images.

For initializing the List, the Icdui packages offers constructors. The constructors work like the
ChoiceGroup constructors. The first one creates an empty L i st with agiven title and type only.
The second one takes the title, the type, an array of Stringsasinitial amount of List elements, and
an optional array of Imagesfor each List element. In the implementation of the TeleTransfer
application, you implement a new class CurrencyL ist extending List that will be used as your
new currency selector. Since you will use the IMPLICIT mode, you need to implement a command
listener, so you can already add the corresponding declaration:

public class CurrencylList extends List implements CommandListener {
To set the labels of the main form TextFields according to the index of the selected element in the
CurrencylList, you create two String arrays, CURRENCY_NAMES and
CURRENCY_FRACTIONS:

static final String [] CURRENCY_NAMES = {"Dollar™, "Euro"™, "Yen"} ;

58

static final String [] CURRENCY_FRACTIONS = {"Cent", "Cent', *"Sen"} ;

In order to set the labels of the main forms TextFields for the whole and the fractional amount
according to the selected currency in the CurrencyL i st, you need areference back to the main
TeleTransTer MIDlet. For thisreason, you storethe TeleTransTer referencein avariable
cdled teleTransfer. Thereferenceis set in the constructor of your CurrencyList:

TeleTransfer teleTransfer;

In the constructor, you also add currency symbol imagesto thelist. Y ou need to load them, but the call
to the super constructor must be the first statement in a constructor. So you call the constructor of the
super class by specifying the title and type only. Then you create the Images needed for each list
element, which are stored in the MIDlet suite's JAR file. You also call setCommandListener() to
register the currency list for handling commands that are issued:

public CurrencyList (TeleTransfer teletransfer) {
super (“'Select Currency', Choice.IMPLICIT);

this.teleTransfer = teletransfer;

try {
append (*'USD"™, Image.createlmage (*"/Dollar.png™));

append ('EUR"™, Image.createlmage (*'/Euro.png'™));
append ('JPY"™, Image.createlmage ("'/Yen.png™));

}

catch (Java.io.l0OException x) {
throw new RuntimeException (“Images not found'™);
}

setCommandListener(this);

}

Thefinal step in creating the CurrencyList isto implement the commandAction() method of
the CommandL istener interface. Asyou already know, aList of IMPLICIT typeissuesa
List.SELECT_COMMAND to the registered CommandL i stener whenever anew element is
selected to indicate the selection change. In case of a selection change, you modify the labels of the
main form TextFields. The actual labels are obtained from the String arrays CURRENCY_NAMES
and CURRENCY_FRACTIONS. Using the telleTransfer reference, you can access the
TextFields. Finaly, you call the new method teleTransfer .back(), which setsthe screen
back to the main form (the back () method will be given at the end of this section):

public void commandAction (Command c, Displayable d) {
if (c == List.SELECT_COMMAND) {
teleTransfer.amountWhole.setLabel
(CURRENCY_NAMES [getSelectedIndex()]);
teleTransfer.amountFraction.setLabel
(CURRENCY_FRACTIONS [getSelectedindex()]);
teleTransfer._back();

}
Figure 3.7 shows currency Images and abbreviationsin the CurrencyList.

Figure 3.7. The new CurrencyList.

59

Faull B
elect Currency

£ ELIR
YRy

The TextBox Class

Beneath Alert, List, and Form, thereisonly one further subclass of Screen: the TextBox. The
TextBox alowsthe user to enter multi-line text on a separate screen. The constructor parameters and
the constraint constants are identical to those of TextField.

Asfor the currency list, you can also add a new screen enabling the user to enter atransfer reason if
desired. Similar to the CurrencyL ist, you implement a new class handling the commands related to
the new screen. However, thistime it is derived from the TextBox. Again, you implement the
CommandListener interface:

public class TransferReason extends TextBox implements
CommandListener {

In the TextBox, you provide two commands, okCommand for applying the entered text and
clearCommand for clearing the text:

static final Command okCommand = new Command ('OK', Command.BACK, 1);
static final Command clearCommand = new Command (“'Clear™,
Command.SCREEN, 2);

Again, you store areference back to the TeleTransfer MIDlet in the TransferReason
TextBox:

TeleTransfer teleTransfer;

The constructor gets the reference back to TeleTransfer MIDlet and storesit in the variable
declared previoudly. Y ou also add the commands to the TextBox, and register it as
CommandListener:

public TransferReason (TeleTransfer teleTransfer) {
super (“"Transfer Reason', """, 50, TextField.ANY);
this.teleTransfer = teleTransfer;

addCommand (okCommand) ;
addCommand (clearCommand) ;
setCommandListener(this);

}

Your commandAction() implementation clears the text or returns to the main screen, depending on
the Command sel ected:

public void commandAction (Command c, Displayable d) {
if (c == clearCommand) {
setString ('"');

else if (c == okCommand) {

60

teleTransfer.back();

}
Figure 3.8 showsthe TransferReason TextBox.
Figure 3.8. The TransferReason TextBox showing a sample transfer reason text.

Faunll 123 B
Transfer Reason

EXTORTION #1236

Db Clear

TeleTransfer with Multiple Screens

Now you have created two additional screens, but you still need to integrate them in your main
application. To do so, you need to change the Te leTransfer implementation somewhat. Since the
TeleTransTer'sChoiceGroup for selecting the currency is replaced by the CurrencyList,
you do not need the | temStateL istener for detecting item changes any more. So you remove the
listener and also the corresponding callback method 1 temStateChanged(). To display the two
new ScreensCurrencylList and TransferReason, you implement the two commands
currencyCommand and reasonCommand. The new commands are added to the MIDlet in the
constructor using the addCommand () method. In the clear () method, the new TextBox isaso
cleared by calling the corresponding setString() method. Finaly you add the back () method to
the TeleTransTer application; this method is calied from the new Screensto return to the main
form. The commandAction() method is extended to handle the new commands, displaying the new
Screens. Ligting 3.1 shows the complete source code of the final version of the TeleTransfer
application.

Listing 3.1 TeleTransfer.java—The Complete TeleTransfer Sample Source Code

import javax.microedition.midlet.*;
import javax.microedition.lcdui.*;

class CurrencyList extends List implements CommandListener {

TeleTransfer teleTransfer;

static final String [] CURRENCY_NAMES = {"Dollar", "Euro",
"Yen"} ;

static final String [] CURRENCY_FRACTIONS = {"Cent", "Cent",
"Sen"} ;

public CurrencyList (TeleTransfer teletransfer) {
super (“'Select Currency', Choice.IMPLICIT);

this.teleTransfer = teletransfer;

try {
append ('USD"™, Image.createlmage (*'/Dollar.png™));

append (""EUR"™, Image.createlmage ('/Euro.png'™));
append (""JPY'™, Image.createlmage ("'/Yen.png™));

catch (Java.io.l0Exception x) {
throw new RuntimeException (“"Images not found'™);
}

setCommandListener(this);

public void commandAction (Command c, Displayable d) {
if (c == List.SELECT_COMMAND) {
teleTransfer.amountWhole.setLabel
(CURRENCY_NAMES [getSelectedIndex()]);
teleTransfer.amountFraction.setlLabel
(CURRENCY_FRACTIONS [getSelectedIindex()]):
teleTransfer._back();

class TransferReason extends TextBox implements CommandListener {

static final Command okCommand = new Command ('OK', Command.BACK,
1);
static final Command clearCommand = new Command
("Clear'™, Command.SCREEN, 2);

TeleTransfer teleTransfer;

public TransferReason (TeleTransfer teleTransfer) {
super (“"Transfer Reason', "', 50, TextField.ANY);
this.teleTransfer = teleTransfer;

addCommand (okCommand) ;
addCommand (clearCommand) ;
setCommandListener(this);

}
public void commandAction (Command c, Displayable d) {
if (c == clearCommand) {
setString ('"");
else if (c == okCommand) {
teleTransfer._back();
}
}

}

public class TeleTransfer extends MIDIet implements CommandListener {

static final Command sendCommand = new Command (*'Send",
Command.SCREEN, 2);
static final Command clearCommand = new Command
('Clear', Command.SCREEN, 2);
static final Command exitCommand = new Command (“Exit",
Command.SCREEN, 1);
static final Command currencyCommand = new Command
(""Currency', Command.SCREEN, 2);
static final Command reasonCommand = new Command
("'Reason’, Command.SCREEN, 2);
Form mainForm = new Form (“"TeleTransfer');

62

TextField receiverName = new TextField
("'Receiver Name'"™, """, 20, TextField.ANY);
TextField receiverAccount = new TextField
("'Receiver Account#", ", 8, TextField.NUMERIC);
TextField amountWhole = new TextField (“Dollar'™, "', 6,
TextField.NUMERIC);
TextField amountFraction = new TextField
('Cent, "', 2,
TextField .NUMERIC);

CurrencyList currencyList = new CurrencyList (this);
TransferReason transferReason = new TransferReason (this);
Display display;

public TeleTransfer() {
mainForm.append (receiverName);
mainForm.append (receiverAccount);
mainForm_.append (amountWhole);
mainForm.append (amountFraction);

mainForm.addCommand (currencyCommand);
mainForm.addCommand (reasonCommand) ;
mainForm.addCommand (sendCommand) ;
mainForm.addCommand (exitCommand) ;
mainForm.setCommandListener(this);

}

public void startApp() {
display = Display.getDisplay (this);
display.setCurrent (mainForm);

public void clear() {
receiverName.setString ('"'");
receiverAccount.setString ("''");
amountWhole.setString ("''");
amountFraction.setString (''");
transferReason.setString ('"'");

}

public void send() {
Alert alert = new Alert (*'Send™);
alert._setString ("transfer " + amountWhole.getString()
+ "." + amountFraction.getString(Q)
+ " " + amountWhole.getLabel ()
+ "\nto Acc#" + receiverAccount.getString()
+ "\nof " + receiverName.getString());
alert_setTimeout (2000);

display.setCurrent (alert);

clearQ;
}
public void pauseApp() {
}

public void destroyApp (boolean unconditional) {

}

public void back() {
display.setCurrent (mainForm);

63

public void commandAction (Command c, Displayable d) {
if (c == exitCommand) {
notifyDestroyed();
}

else if (c == sendCommand) {
sendTransferInformation();

else if (c == clearCommand) {
resetTransferinformation();

else if (c == currencyCommand) {
display.setCurrent (currencylList);
}

else if (c == reasonCommand) {
display.setCurrent (transferReason);
}

Low-Level API

In contrast to the high-level API, the low-level API alows full control of the MID display at pixel level.
For this purpose, the I cdui package contains a specia kind of screen called Canvas. The Canvas
itself does not provide any drawing methods, but it does provide apaint() callback method similar
to the paint() method in AWT components. Whenever the program manager determinesthat it is
necessary to draw the content of the screen, the paint () callback method of Canvas iscalled. The
only parameter of the paint() method isaGraphics object. In contrast to the Icdui high-level
classes, there are many paralelsto AWT in the low-level API.

The Graphics object provides all the methods required for actually drawing the content of the screen,
such asdrawL ine() for drawing lines, fi I IRect() for drawing afilled rectangular area or
drawstring() for drawing text strings.

In contrast to AWT, Icdui doesnot let you mix high-level and low-level graphics. It is not possible to
display high-level and low-level components on the screen simultaneously.

The program manager knows that it must call the paint() method of Canvas when the instance of
Canvas is shown on the screen. However, arepaint can also be triggered by the application at any
time. By calling the repaint() method of Canvas, the systemis notified that a repaint is necessary,
and it will call the paint() method. The call of the paint() method is not performed immediately;
it may be delayed until the control flow returns from the current event handling method. The system
may also collect several repaint requests before paint() isactualy called. Thisdelay normally is not
aproblem, but when you're doing animation, the safest way to trigger repaintsisto use
Display.callSerially() ortorequest the repaint from a separate Thread or TimerTask.
Alternatively, the application can force an immediate repaint by calling serviceRepaints(). (For
more information, see the section "Animation” at the end of this chapter.)

The Canvas class also provides some input callback methods that are called when the user presses or
releases a key or touches the screen with the stylus (if one is supported by the device).

Basic Drawing

Before we go into the details of user input or animation, we will start with a small drawing example
showing the concrete usage of the Canvas and Graphics classes.

64

The example clears the screen by setting the color to white and filling a rectangle the size of the screen,
determined by calling getWidth() and getHeight(). Then it draws aline from coordinates (0,0)
to (100,200). Finally, it draws arectangle starting at (20,30), 30 pixels wide and 20 pixels high:

import javax.microedition.lcdui.*;
class DrawingDemoCanvas extends Canvas {

public void paint (Graphics g) {
g-setGrayScale (255);
g-FillRect (0, 0, getwWwidth(), getHeight());

g.-setGrayScale (0);
g-drawLine (0, 0, 100, 200);
g-FillRect (20, 30, 30, 20);

}

Asyou can see in the example code, you create a custom class DrawingDemoCanvas in order to fill
the paint() method. Actually, it is not possible to draw custom graphics without creating a new class
and implementing the paint () method.

In order to really see your Canvas implementation running, you still need a corresponding MIDIet.
Here's the missing code:

import javax.microedition.midlet.*;
import javax.microedition.lcdui.*;

public class DrawingDemo extends MIDlet {

public void startApp() {
Display.getDisplay (this).setCurrent (new
DrawingDemoCanvas());

}
public void pauseApp() {}

public void destroyApp (boolean forced) {}
}

Now you can start your DrawingDemo MIDIlet. Depending on the screen size of the device, it will
create output similar to Figure 3.9. In most subsequent examples, you will omit the MIDlet sinceit is
basically the same as this one, except that the name of your Canvas class will be different.

Figure 3.9. Output of the DrawingDemo MIDlet.

Full E

In the example, the screenis cleared before drawing because the system relies on the paint()

method to fill every pixel of the draw region with avalid value. Y ou don't erase the previous content of
the screen automatically because doing so may cause flickering of animations. The application cannot
make any assumptions about the content of the Screen before paint() iscaled. The screen may be
filled with the content drawn at the last call of paint(), but it may also befilled with an aert box
remaining from an incoming phone call, for example.

65

Drawing Style and Color

In the DrawingDemoCanvas implementation, you can find two callsto setGrayScale(). The
setGrayScale() method setsthe gray scale value for the following drawing operations. Valid
grayscale values range from 0 to 255, where 0 means black and 255 means white. Not all possible
values may actually render to different gray values on the screen. If the device provides fewer than 256
shades of gray, the best fitting value supported by the device is chosen. In the example, the value isfirst
set to white, and the screen is cleared by the following call to drawRect (). Then, the color is set to
black for the subsequent drawing operations.

The setGrayScale() method is not the only way to influence the color of subsequent drawing.
MIDP also providesa setColor () method. The setColor () method has three parameters

holding the red, green, and blue components of the desired color. Again, the values range from 0 to 255,
where 255 means brightest and O means darkest. If all three parameters are set to the same value, the
cal isequivalent to a corresponding call of setGrayScale(). If thedeviceisnot able to display the
desired color, it chooses the best fitting color or grayscale supported by the device automatically. Some
examples are listed in Table 3.7.

Table 3.7. Example Color Parameter Settings
Parameter Settings Resulting Color
setColor (255, 0, 0) Red
setColor (0, 255, 0) Green
‘setColor (0, 0, 255) \Blue
'setColor (128, 0, 0) Dark red
'setColor (255, 255, 0) Yellow
‘setColor (0,0,0) \Black
setColor (255, 255, 255) White
setColor (128, 128, 128) 50% gray

The only other method that influences the current style of drawing isthe setStrokeStyle()
method. The setStrokeStyle() command sets the drawing style of lines to dotted or solid. You
determine the style by setting the parameter to one of the constants DOTTED or SOL 1D, defined in the
Graphics class.

When the paint() method is entered, the initial drawing color is aways set to black and the line
styleisSOLID.

Simple Drawing Methods

In the example, you have already seen Fil IRect() and drawLine(). Table 3.8 showsall drawing
primitives contained in the Graphics class. All operations where the method names begin with draw,
except drawString() and drawlmage (), are influenced by the current color and line style. They
draw the outline of afigure, whereasthe Fi I I methodsfill the corresponding area with the current
color and do not depend on the line style.

Table 3.8. Drawing Methods of the Graphics Class

IMethod |Purpose

drawlmage (Image |[Draws an Image. Explained in detail in the "Images" section.

image,

int x, int vy,

int align)

drawString Draws a text string at the given position in the current color; see "Text
(String text, and Fonts."

66

int x, int vy,
int align)
drawRect (int X, [Draws an empty rectangle with the upper-left corner at the given
!nt T (x,y)coordinate, with the given width and a height. The next section
int w, int h) explains why the rectangle is one pixel larger than you might expect.
dt_"awRoun(_jRect Like drawRect(), except that an additional radius is given for
(int x, inty, rounded corners of the rectangle.

int w, int h,

int r)
drawLine (int Draws a line from (x0,y0) to (x1,y1).
x0, int yO0,
int x1, int yl)
drawArc (int X, |Draws the outline of a circular or elliptical arc covering the specified
inty, i rectangle, using the current color and stroke style. The resulting arc

int w, int h, |pegins at startAng and extends for arcAng degrees. Angles are

int startAng,
int arcArc)

interpreted such that O degrees is at the 3 o'clock position. A positive
value indicates a counter-clockwise rotation while a negative value
indicates a clockwise rotation.

FfillRect (int x,

Similar to drawRect(), but fills the given area with the current color.

int y, int w,
int h)
fi I IRounc_iReCt Related to fillRect() as drawRoundRect() is related to
(int x, inty, |drawRect().
int w, 1int h,

int startAng,
int endAng);

FfillArc (int x,
int y,
int w, 1int h,
int startAng,
int endAng);

Like drawArc(), but fills the corresponding region.

Coordinate System and Clipping

In the drawing example, we already have used screen coordinates without explaining what they
actually mean. Y ou might know that the device display consists of little picture elements (pixels). Each
of these pixelsis addressed by its position on the screen, measured from the upper-left corner of the
device, which isthe origin of the coordinate system. Figure 3.10 showsthe Icdui coordinate system.

Figure 3.10. The Icdui coordinate system.

67

(0,0)

getHeight()
(getWidth() - 1,
getHeight() — 1)

< »
getWidth()

Actually, in Java the coordinates do not address the pixel itself, but the space between two pixels,
where the "drawing pen" hangs to the lower right. For drawing lines, this does not make any difference,
but for rectangles and filled rectangles this results in a difference of one pixel in width and height: In
contrast to filled rectangles, rectangles become one pixel wider and higher than you might expect.
While this may be confusing at first glance, it respects the mathematical notation that lines are
infinitely thin and avoids problems when extending the coordinate system to real distance measures, as
in the J2SE class Graphics2D.

In all drawing methods, the first coordinate (X) denotes the horizontal distance from the origin and the
second coordinate (y) denotes the vertical distance. Positive coordinates mean a movement down and
to the right. Many drawing methods require additional width and height parameters. An exceptionis
the drawL i ne () method, which requires the absol ute coordinates of the destination point.

The origin of the coordinate system can be changed using the translate () method. The given
coordinates are added to all subsequent drawing operations automatically. This may make sense if
addressing coordinates relative to the middle of the display is more convenient for some applications,
as shown in the section "Scaling and Fitting," later in the chapter.

The actual size of the accessible display area can be queried using the getWidth() and
getHeight() methods, as performed in the first example that cleared the screen before drawing. The
region of the screen where drawing takes effect can be further limited to a rectangular area by the
clipRect() method. Drawing outside the clip area will have no effect.

The following example demonstrates the effects of the cl i pRect () method. First, adotted lineis
drawn diagonally over the display. Then aclipping region is set. Finally, the same line as before is
drawn using the SOL ID style:

import javax.microedition.lcdui.*;

68

class ClipDemoCanvas extends Canvas {
public void paint (Graphics g) {
g-setGrayScale (255);
g-FillRect (0, 0, getWidth(), getHeight());

int m = Math.min (getWidth(), getHeight());
g-setGrayScale (0);

g.-setStrokeStyle (Graphics.DOTTED);
g.drawLine (0, 0, m, m);

g-setClip (n /74, m/ 4, m/ 2, m/ 2);

g.setStrokeStyle (Graphics.SOLID);
g.drawLine (0, 0, m, m);

}

Figure 3.11 shows the resulting image. Although both lines have identical start and end points, only the
part covered by the clipping areais replaced by a solid line.

Figure 3.11. Output of the clipRect() example: Only the part covered by the clipping
area is redrawn solid, although the line coordinates are identical.

| Clipping Area

———— Device Screen

When the paint() method is called from the system, a clip area may already be set. This may be the
case if the application just requested repainting of alimited area using the parameterized repaint call, or
if the device just invalidated a limited area of the display, for example if a pop-up dialog indicating an
incoming call was displayed but did not cover the whole display area.

Actually, clipRect() does not set a new clipping area, but instead shrinks the current clip areato
the intersection with the given rectangle. In order to enlarge the clip area, use the setClip() method.

The current clip area can be queried using the getClipX(), getClipY(), getClipWidth()
and getCl ipHeight() methods. When drawing is computationally expensive, thisinformation can
be taken into account in order to redraw only the areas of the screen that need an update.

Text and Fonts

69

For drawing text, Icdui providesthe method drawString(). In addition to the basic
drawString() method, several variants let you draw partial strings or single characters. (Details
about the additional methods can be found inthe Icdui APl documentation.) The smple
drawString() method takes four parameters: The character string to be displayed, the x and y
coordinates, and an integer determining the horizontal and vertical alignment of the text. The alignment
parameter lets you position the text relative to any of the four corners of itsinvisible surrounding box.
Additionally, the text can be aligned to the text baseline and the horizontal center. The sum or logical
or (]) of aconstant for horizontal alignment (LEFT, RIGHT, and HCENTER) and constants for vertical
alignment (TOP, BOTTOM, and BASEL INE) determine the actual alignment. Figure 3.12 showsthe
anchor points for the valid constant combinations.

Figure 3.12. Valid combinations of the alignment constants and the corresponding
anchor points.

TOP | LEFT TOP | HCENTER TOP | RIGHT
BASELINE | LEFT BASELINE | RIGHT
BOTTOM | LEFT K BOTTOM | HOENTER BOTTOM | RIGHT

BASELIME | HCENTER

The following example illustrates the usage of the drawString() method. By choosing the anchor
point correspondingly, the text is displayed relative to the upper-left and lower-right corner of the
screen without overlapping the screen border:

import javax.microedition.lcdui.*;
class TextDemoCanvas extends Canvas {

public void paint (Graphics g) {
g-setGrayScale (255);
g-FillRect (0, 0, getWidth(), getHeight());

g-setGrayScale (0);

g-drawString ("'Top/Left”, O, O, Graphics.TOP |
Graphics.LEFT);

g-drawString ('Baseline/Center™, getWidth() /7 2, getHeight()

/ 2,
Graphics.HCENTER | Graphics.BASELINE);
g-drawString (“'Bottom/Right", getWidth(), getHeight(),
Graphics.BOTTOM | Graphics.RIGHT);
}
}

Figure 3.13 shows the output of the TextDemo example.

Figure 3.13. Output of the TextDemo example.

_ BottomiRight

70

In addition to the current drawing color, the result of the drawString() method isinfluenced by the
current font. MIDP provides support for three different fontsin three different sizes and with the three
different attributes: bold, italic, and underlined.

A font is not selected directly, but the setFont () method takes a separate Font object, describing
the desired font, as a parameter. The explicit Font class provides additional information about the font,
such asits width and height in pixels, baseline position, ascent and descent, and so on. Figure 3.14
illustrates the meaning of the corresponding values. Thisinformation isimportant for operations such
as drawing boxes around text strings. In addition, word-wrapping algorithms rely on the actual pixel
width of character strings when rendered to the screen.

Figure 3.14. Font properties and the corresponding query methods.

getBaselinePosition()

getHeight()

< >
stringWidth ("Geeky")

A Font object is created by calling the static method createFont{) of the class Font in the
Icdui package. The createFont() method takes three parameters: the font type, style, and size of
the font. Similar to the text alignment, there are predefined constants for setting the corresponding
value; these constants are listed in Table 3.9.

Table 3.9. createfFont() Property Constants
|Property |Constants

‘Size ‘SIZE_SMALL, SI1ZE_MEDIUM, SIZE_LARGE
‘Style ‘STYLE_PLAIN, STYLE_ITALICS, STYLE_BOLD, STYLE_UNDERLINED
‘Face ‘FACE_SYSTEM, FACE_MONOSPACE, FACE_PROPORT IONAL

The style constants can be combined—for example, STYLE_ITALICS | STYLE_BOLD will result
inabold italics font style.

The following example shows alist of all fonts available, as far asthe list fits on the screen of the
device:

import javax.microedition.lcdui.*;
class FontDemoCanvas extends Canvas {

static final int [] styles = {Font.STYLE PLAIN,
Font.STYLE_BOLD,
Font.STYLE_ITALIC} ;
static final int [] sizes = {Font.SIZE_SMALL,
Font.SI1ZE_MEDIUM,
Font.SIZE _LARGE} ;
{Font_.FACE_SYSTEM,
Font.FACE_MONOSPACE,
Font.FACE_PROPORTIONAL} ;
public void paint (Graphics g) {
Font font = null;

static final int [] faces

71

int y = 0;

g.-setGrayScale (255);

g-fillRect (0, 0, getWidth(), getHeight());
g-setGrayScale (0);

for (int size = 0; size < sizes.length; size++) {
for (int face = 0; face < faces.length; face++) {
int x = 0;
for (int style = 0; style < styles.length; style++) {
font = Font.getFont
(faces [face], styles [style], sizes
[size]);
g-setFont (font);
g-drawString
('Test™, x+1, y+1, Graphics.TOP |
Graphics.LEFT);
g-drawRect
(x, y, font.stringWidth ("'Test')+1,
font_getHeight() + 1);
x += font.stringWidth ("Test')+1;

3
y += font.getHeight() + 1;

}

Figure 3.15 shows the output of the FontDemo example.
Figure 3.15. Output of the FontDemo example.

ITlll“
[Test[Tast Tes

e fres s

[Test|Tast|Te st TesY

TESTITESﬂT&StiTMIi

Te sth‘est|Tes t|T

TestITest|T-95i1Tﬂsf|

Images

The Graphics class aso provides a method for drawing images. As shown in the final version of
TeleTransTer application, Images can be predefined and contained in the JAR file of the MIDIet.
The only file format that is mandatory for MIDP is the Portable Network Graphics (PNG) file format.
The PNG format has several advantages over other graphics formats; for example, it islicense free and
supports true color images, including a full transparency (a pha) channel. PNG images are always
compressed with aloss-less algorithm. The algorithm is identical to the algorithm used for JAR files,
so the MIDP implementation can save space by using the same algorithm for both purposes.

An image can be loaded from the JAR file using the static method Image .create (String
name). The name parameter denotes the filename of the image in the JAR file. Please note that this
create() method may throw an I0Exception

Thedrawlmage() method in Graphics requires an Image object, the coordinates, and an integer
denoting the alignment as parameters. The alignment parameter is similar the alignment of
drawString(), except that the BASEL INE constant is not supported. An additional alignment
constant available for images only is VCENTER, which forces the image to be vertically centered

72

relative to the given coordinates. Figure 3.16 shows the valid constant combinations and the
corresponding anchor points.

Figure 3.16. Alignment constant combinations valid for images and the corresponding
anchor points.

TOP | LEFT TOP | HCENTER TOP | RIGHT

VCENTER | LEFT VCENTER | RIGHT

NS

BOTTOM | LEFT BOTTOM | HCENTER BOTTOM | RIGHT

(HCENTER | VCENTER) is a valid combination, too.

The following example first loads the image ogo . png fromthe MIDI et JAR filein the constructor,
and then displays the image three times. One image is drawn in the upper-left corner, one in the lower-
right corner, and one in the center of the display, as shown in Figure 3.17:

import java.io.*;

import javax.microedition.midlet.*;
import javax.microedition.lcdui.*;
class ImageDemoCanvas extends Canvas {

Image image;

public ImageDemoCanvas() {

try {
image = Image.createlmage (*'/logo.png™);

catch (10Exception e) {
throw new RuntimeException (“"Unable to load Image: '+e);
}

}

public void paint (Graphics g) {
g-setGrayScale (255);
g-FillRect (0, 0, getWidth(), getHeight());

g-drawlmage (image, 0, 0O, Graphics.TOP | Graphics.LEFT);

g-drawlmage (image, getWidth() 7/ 2, getHeight() / 2,
Graphics.HCENTER | Graphics.VCENTER);

g.-drawlmage (image, getWidth(), getHeight(),
Graphics.BOTTOM | Graphics.RIGHT);

73

Figure 3.17. Output of the ImageDemo example.

Images can also be created at runtime from scratch. The static method Image .create (int
width, int height) createsanew dynamic image of the given size. In contrast to images |oaded
from a JAR file, these images are mutable. Mutable images can be modified by calling
getGraphics(). TheGraphics object returned can be used for modifying the image with all the
methods provided by the Graphics class. Please note that images loaded from a JAR file cannot be
modified. However, it is possible to create a mutable image, and then draw any other image in the
mutable image.

By modifying the constructor of the previous example canvas as follows, the image drawn in the
paint() method is created and filled at runtime instead of loading an image from the JAR file:

public ImageDemoCanvas() {
image = Image.createlmage (10,10);
image.getGraphics() -fillArc (0,0,10,10,0, 360);
}

The disadvantage of mutable imagesis that they cannot be used in high-level GUI elements sinceit is
possible to modify them at any time, possibly leading to inconsistent display of widgets. For that
reason, another static create method, createlmage(Image image), is provided that creates an
immutable image from another image.

Interaction

Because the Canvas classis asubclass of Displayable, it provides the same support for
commands as the high-level screen classes. Here, you will concentrate on the additional interaction
possibilities the Canvas class offers: direct key input and pointer support.

Please note that all input events and command netifications and the paint() method are called
serialy. That means that the application manager will call none of the methods until the previous event
handling method has returned. So all these methods should return quickly, or the user will be unable to
interact with the application. For longer tasks, a separate thread can be started.

Key Input

For key input, the Canvas class provides three callback methods: keyPressed(),
keyReleased(), and keyRepeated(). Asthe names suggest, keyPressed() iscaled when a
key is pressed, keyRepeated() is called when the user holds down the key for alonger period of
time, and keyRe leased () iscalled when the user releases the key.

All three callback methods provide an integer parameter, denoting the Unicode character code assigned
to the corresponding key. If akey has no Unicode correspondence, the given integer is negative. MIDP
defines the following constant for the keys of a standard ITU-T keypad: KEY_NUMO, KEY_NUM1,
KEY_NUM2, KEY_NUM3, KEY_NUM4, KEY_NUM5, KEY_NUM6, KEY_NUM7, KEY_NUMS,

74

KEY_NUM9, KEY_POUND, and KEY_ _STAR. Applications should not rely on the presence of any
additional key codes. In particular, upper- and lowercase or characters generated by pressing a key
multiple times are not supported by low-level key events. A "name" assigned to the key can be queried
using the getKeyName () method.

Some keys may have an additional meaning in games. For this purpose, MIDP provides the constants
UP, DOWN, LEFT, RIGHT, FIRE, GAME_A, GAME_B, GAME_C, and GAME_D. The "game" meaning
of akeypress can be determined by calling the getGameAction() method. The mapping from key
codes to game actions is device dependent, so different keys may map to the same game action on
different devices. For example, some devices may have separate cursor keys; others may map the
number pad to four-way movement. Also, several keys may be mapped to the same game code. The
game code can be translated back to a key code using the getKeyCode () method. Thisalso offersa
way to get the name of the key assigned to a game action. For example, the help screen of an

application may display
"press ""+getkKeyName (getKeyCode (GAME_A))
instead of "press GAME_A".

The following canvas implementation shows the usage of the key event methods. For each key pressed,
repeated, or released, it shows the event type, character and code, key name, and game action.

Thefirst part of the implementation stores the event type and code in two variables and schedules a
repaint whenever akey event occurs:

import javax.microedition.lcdui.*;
class KeyDemoCanvas extends Canvas {

String eventType = "- Press any!";
int keyCode;

public void keyPressed (int keyCode) {

eventType = "pressed";
this.keyCode = keyCode;
repaint();

}

public void keyReleased (int keyCode) {
eventType = "released";
this.keyCode = keyCode;
repaint();

}

public void keyRepeated (int keyCode) {
eventType = "repeated";
this.keyCode = keyCode;
repaint();

}

The second part prints al event properties available to the device screen. For this purpose, you first
implement an additional wr i te () method that helpsthe paint() method to identify the current y
position on the screen. Thisis necessary because drawText () does not advance to anew line
automatically. The wr i te() method draws the string at the given y position and returns the y position
plusthe line height of the current font, so paint() knows where to draw the next line:

public int write (Graphics g, int y, String s) {
g-drawString (s, 0, y, Graphics.LEFT|Graphics.TOP);

75

return y + g.getFont().getHeight();
}

The paint() method analyzes the keyCode and prints the result by calling thewr i te () method
defined previously, as shown in Figure 3.18:

public void paint (Graphics g) {
g-setGrayScale (255);
g-FillRect (0, 0, getwWidth(), getHeight());

g-setGrayScale (0);

int y = 0;
y = write (g, y, "Key "+ eventType);
if (keyCode == 0) return;

y = write (g, y, "Char/Code: "+ ((keyCode < 0) ? "N/A™ - "™
+(char) keyCode) + "'/ + keyCode);

y = write (g, y, ""Name: "+getkKeyName (keyCode));

String gameAction;

switch (getGameAction (keyCode)) {

case LEFT: gameAction = "LEFT"; break;

case RIGHT: gameAction = "RIGHT"; break;

case UP: gameAction = "UP"; break;

case DOWN: gameAction = "DOWN'"; break;

case FIRE: gameAction = "FIRE"; break;

case GAME_A: gameAction "“"GAME_A™"; break;

case GAME_B: gameAction "“"GAME_B"; break;

case GAME_C: gameAction "GAME_C'"'; break;

case GAME_D: gameAction "GAME_D"; break;

default: gameAction = ""N/A";

}

write (g, y, "Action: '‘+gameAction);

Figure 3.18. Output of the KeyDemo example when the "Fire" key was released.

Famil B
Hey released

Char/Code; MiASS
Marme: SEL
W ction: FIRE

Pointer Events

For devices supporting a pointer device such as a stylus, touch screen, or trackball, the Canvas class
provides three notification methods: pointerPressed(), pointerDragged(), and
pointerReleased(). These methods work similarly to the key event methods, except that they
provide two integer parameters, denoting the x and y position of the pointer when the corresponding
event occurs. (Please note that pointer support is optional in MIDP, so the application should not rely
on the presence of a pointer. Such devices are uncommon for devices such as mobile phones.) The
following sample program demonstrates the usage of the three methods:

import javax.microedition.lcdui.*;

76

class PointerDemoCanvas extends Canvas {

String eventType = "Press Pointer!";
int x;
int y;
public void pointerPressed (int x, int y) {
eventType = "Pointer Pressed";
this.x = X;
this.y = y;
repaint();
}
public void pointerReleased (int x, int y) {
eventType = "Pointer Released";
this.x = X;
this.y = y;
repaint();
}
public void pointerDragged (int x, int y) {
eventType = "Pointer Repeated";
this.x = x;
this.y = y;
repaint();
}

public void paint (Graphics g) {
g.-setGrayScale (255);
g-FillRect (0, 0, getwWidth(), getHeight());
g.-setGrayScale (0);
g-drawString (eventType + +Xx +"/"+y,
0, O, Graphics.TOP|Graphics.LEFT);
g-drawLine (xX-4, y, xX+4, y);
g-drawLine (X, y-4, X, y+4);

}

Foreground and Background Notifications

For several reasons, the Canvas may move into the background—for example, if the display is set to
another displayable object or if the device displays a system dialog. In these cases, the Canvas is
notified by the hideNoti fy () method. When the Canvas becomes visible (again), the
corresponding counterpart, showNotify (), iscalled.

Javagochi Example

Now that you are familiar with the Canvas object and the basic drawing methods of the Graphics
class, you are ready to develop a small interactive application, the Javagochi.

Asyou can see in the following code, the MIDlet implementation of Javagochi isalready finished,
but the Face classis missing:

import javax.microedition.midlet.*;
import javax.microedition.lcdui.*;

public class Javagochi extends MIDlet {

77

static final int IDEAL WEIGHT = 100;

Display display = Display.getDisplay (this);
Face face = new Face (this);

int weight = IDEAL_WEIGHT;

Timer consumption;

int score;

Before you begin development, let us first say afew words about the Javagochi itself. A
Javagochi hasaweight that isinitialized with its IDEAL_WEIGHT. It also owns an instance of
Display, Face, and Consumption, which will be explained later. Finally, it stores a score value
for the care the owner spends on the Javagochi.

The happiness of the Javagochi is determined by the deviation of its current weight from the ideal
weight, ranging from 10 to O:

public int getHappiness() {
return 20 - (weight > IDEAL_WEIGHT
? 10 * weight / IDEAL_WEIGHT
: 10 * IDEAL_WEIGHT / weight);
iT (happiness < 0) happiness = 0;
iT (happiness > 10) happiness = 10;
}

Thisformula also demonstrates how to circumvent problems with the absence of floating point
arithmetic. In order to avoid loss of significant fractions, the values are scaled up before division.

Like all other known life forms, the Javagochi can die. Javagochiesonly die from sadness when
their happiness level reaches zero:

public boolean isDead() {
return getHappiness <= 0;
}

The only other action a Javagochi can perform besides dying is to transform energy to matter and
back. Since aweight change may change the Javagochi'slook, arepaint is requested in the
transform() method:

public void transform (int amount) {
it (TisbDead()) {
weight += amount;
face.repaint();

}

When the Javagochi MIDlet is started, it displaysitself and starts a consumption Timer that keeps
track of the power the Javagochi needsfor living:

public void startApp() {
display.setCurrent (face);
consumption = new Consumption (this).start();

}

When the MIDlet is paused, the Javagochi goesto sleep by telling the consumption thread to
terminate itself. The destroyApp () method does nothing because the life cycle will enter sleep
anyway, and no further cleanup is needed:

public void pauseApp() {

78

consumption. leave = true;

}
public void destroyApp (boolean forced) {

}
}

The consumption Thread is a separate class that monitors the power the Javagochi needs for
living. Inthe run() method, every 0.5 seconds the score is updated depending on the Javagochi's
happiness and the small amount of body mass that is transformed back to life energy:

public class Consumption extends Thread {

Javagochi javagochi;
boolean leave = false;

public Consumption (Javagochi javagochi) {
this.javagochi = javagochi;
}

public void run() {
while (lleave) {

try {
sleep (500);

catch (InterruptedException e) {break;}

Javagochi.score += 10 - javagochi.deviation;
Javagochi .transform (-5);

}

Now that you know how a Javagochi works, it isyour job to give the Javagochi an appropriate
appearance by implementing the missing Face class.

Scaling and Fitting

In many cases, it isagood ideato scale displayed graphics depending on the actual screen size.
Otherwise, the display will ook nice on one particular device type, but won't fit the screen on devices
with a lower screen resolution or become unnecessarily small on devices with higher screen resolutions.

We will now show how scaling works for the Javagochi example. A picture of aJavagochi is
shown in Figure 3.19. You will start by drawing the shape of the face, asimple ellipse. In this case, the
ellipse will reflect the Javagochi's weight. If the Javagochi isat itsideal weight, the ellipse
becomes acircle.

Figure 3.19. A happy Javagochi at its ideal weight.

79

The Javagochi at IDEAL_WEIGHT

In order to leave some space for the Javagochi to grow, the diameter of theideal circle is half the
minimum of the screen width and height. Thus, the height of the Javagochi is calculated using the
following formula:

int height = Math.min (getHeight(), getWidth()) 7/ 2;

Based on the current weight, the ideal weight, and the calculated height, which is also the diameter of
the "ideal" Javagochi, you can now calculate the width of the Javagochi:

int width = height * javagochi.weight / javagochi.IDEAL_WEIGHT;

Other applications may of course have other dependencies from the actual screen size, but this example
should be sufficient to show the general idea.

The Javagochi'sskin color is dependent on its happiness. If the Javagochi feelswell, its skin has
abright yellow color. With decreasing happiness, the Javagochi becomes pale. Thisis reflected by
the following setColor () command:

setColor (255, 255, 28 * javagochi.happiness);

Using the given width and height, you can now implement your first version of the Javagochi's
Face class:

import javax.microedition.lcdui.*;

class Face extends Canvas implements CommandListener {
Javagochi javagochi;

Face (Javagochi javagochi) {
this.javagochi = javagochi;
}

public void paint (Graphics g) {
g.setColor (255, 255, 255);
g-fillRect (0, 0, getWidth(), getHeight());

int height = Math.min (getHeight(), getWidth()) 7/ 2;

int width = height * javagochi.weight /
javagochi . IDEAL_WEIGHT;

80

g-translate (getWidth() /7 2, getHeight() 7/ 2);

g-setColor (255, 255, 255 - javagochi.getHappiness() * 25);
g-FillArc (- width /7 2, - height / 2, width, height, 0, 360);

g.setColor (0, 0, 0);
g-drawArc (- width / 2, - height /7 2, width, height, 0, 360);

}

In order to simplify the centered display of the Javagochi, you set the origin of the coordinate
system to the center of the screen using the translate () method. The outline of the Javagochi's
face isthen drawn using the drawArc () method.

Unfortunately, the outline of the Javagochi looks abit boring, so you will add a simple face now. In
order to avoid duplicated code, you put the drawing of the eyesin a separate method. The drawEye ()
method takes the Graphics object, the coordinates of the eye, and a size parameter:

void drawkEye (Graphics g, int x, int y, int size) {
if (Javagochi.isbead()) {
graphics.drawLine (x - size/2, y, X + size/2, y);
graphics.drawLine (X, y - size/2, X, y + size/2);
}
else
graphics.drawArc (x-size/2, y-size/2, size, size, 0, 360);

}

Now you can insert the rest of the drawing code into the paint () method, just after drawArc().
Y ou will start with the eyes by calling the drawEye {) method defined previously. By using fractions
of the current width and height of the Javagochi, the eyes are positioned and sized correctly:

drawtye (g, - width / 6, - height / 5, height /7 15 + 1);
drawtye (g, width /7 6, - height / 5, height /7 15 + 1);

Now you draw the mouth, depending on the current happiness of the Javagochi. Again, you use
fractions of the Javagochi size for positioning and sizing:

switch (Javagochi .getHappiness() 7 3) {

case O:

case 1: g.drawArc (-width/6, height/7, width/3, height/6, 0, 180);
break;

case 2: g.drawLine (-width/6, height/7, width/6, height/7); break;
default: g.drawArc (-width/6, height/7, width/3, height/6, 0, -180);

}

Simple Interaction

When you run the first version of the Javagochi application, the Javagochi starts out happy, but
dies quickly from starvation. Obviously, you need away to transfer energy from the device's battery to
the Javagochi. One possibility would be to add a corresponding command.

However, in the "High-Level API" section you learned that commands may be del egated to a sub-menu.
When the Javagochi urgently needs feeding, you would like to be able to react quickly.

So you just use the key event corresponding to the game action F I RE for feeding the Javagochi:

20
=

public void keyPressed (int keyCode) {
it (getGameAction (keyCode) == FIRE)
Javagochi .transform (10);

}

Now you can save the Javagochi from starvation using the F I RE game key.
Canvas and Text Input

As mentioned in the introduction to interaction, it is not possible to receive composed key events using
the low-level API. But what can you do if you need thiskind of input, such as for atext input trainer?

Let'sjust assume simple feeding is not enough for your Javagochi. Depending on its current state, it
needs special vitamins, denoted by letters ranging from A to Z. On phones providing keys 0 through 9
only, thisis a problem. The only solution isto emulate the key input mechanism in software. On
cellular phones, there are also three to four letters printed on the number keys. In text input mode,
pressing a number makes the first letter appear. If the same number is pressed again in alimited period
of time, the second letter appears instead of the first one. Thisway you can cycle through all the letters
on anumber key. When no key is pressed for about three quarters of a second, or another key is pressed,
the letter currently displayed is confirmed as input key.

For emulation of this mechanism, you define the letters on the keys 2 through 9 ina String array
inside the Face class:

public static final String[] keys = {"abc'", "def", *"ghi", "jkI",
"mno", "‘pgrs', "tuv", "wxyz"} ;
Y ou also need atimer to measure the time until confirmation of the current key. The timer is stored in
keyTimer. Thevariables keyMajor and keyMinor contain the index in the keys array and the
index inside the corresponding string. The variable needed stores the vitamin currently needed by the
Javagochi:

Timer keyTimer;

int keyMajor = -1;
int keyMinor;
char needed =

“ar:
What do you do if anumeric key is pressed? If you aready have atimer running, you cancel it since a
key was pressed. Then, you subtract the code of the 2 key from the current key code in order to
calculate the index in your key array. If the given event does not represent a numeric key between 2
and 9, you set keyMajor to the special value—1, denoting that no valid character is being entered.
Otherwise, you check whether the key isidentical to the last key. If so, keyMinor isincremented in
order to cycle through the letters assigned to a single numeric key. If another key is pressed,
keyMajor ischanged accordingly and keyMinor isset back to 0. A new timer is scheduled for half
asecond later:

public synchronized void keyPressed (int keyCode) {
if (keyTimer = null) keyTimer.cancel();
int index = keyCode - KEY_NUM2;

if (index < 0 || index > keys.length)
keyMajor = -1;

else {
if (index = keyMajor) {
keyMinor = O;
keyMajor = index;

82

}

else {
keyMinor++;
if (keyMinor >= keys [keyMajor].length())
keyMinor = O;
}

keyTimer = new Timer();
keyTimer.schedule (new KeyConfirmer (this), 500);

}
repaint();

Now you need to implement a timer task that confirms the letter if no other key is pressed for half a
second. In that case, the KeyConfirmer classjust calls keyConfirmed() intheorigina Face
class:

import java.util._*;

public class KeyConfirmer extends TimerTask {
Face face;
public KeyConfirmer (Face face) {

this.face = face;
b

public void run(Q) {
face.keyConfirmed();
}

}

Back in the Face class, you can now implement the functionality performed when the letter is finally
confirmed. Y ou just compare the letter to the vitamin needed by the Javagochi. If the right vitamin
isfed, the weight of the Javagochi isincreased 10 units by calling transform():

synchronized void keyConfirmed() {
it (keyMajor 1= -1) {

if (keys [keyMajor].charAt (keyMinor) == needed) {
Javagochi .score += javagochi.getHappiness();

ifT (1javagochi.isDead())
needed = (char) ("a*
+ ((System.currentTimeMillis() /7 10) % 26));

Javagochi .transform (10);

}

keyMajor = -1;
repaint();

}

Finally, you add some status information about the current score and selected key to the
Face .paint() method. Just insert the following code at the end of the previous implementation of
paint():

String keySelect = ""';

83

if (keyMajor = -1) {

String all = keys [keyMajor];

keySelect = all_substring (0, keyMinor) + "[" + all.charAt
(keyMinor)

}

g-drawString (‘'Feed: "™ + needed + "™ " + keySelect, O,
getHeight()/2, Graphics.BOTTOM]|Graphics.HCENTER);
g.drawString ('Score: "+javagochi.score, O,
-getHeight()/2, Graphics.TOP|Graphics.HCENTER);

+ "]" + all_substring (keyMinor+1);

Figure 3.20 shows the Javagochi being fed with vitamins. The complete source code is contained in
Listing 3.2.

Figure 3.20. A Javagochi being fed with vitamins.

ITlll“ BN
Score: 10

Feed: v

Listing 3.2 Javagochi . java—The Complete Javagochi Sample Source Code

import java.util.*;

import javax.microedition.midlet.*;
import javax.microedition.lcdui.*;
class Consumption extends TimerTask {

Javagochi javagochi;

public Consumption (Javagochi javagochi) {
this.javagochi = javagochi;
}

public void run() {
Javagochi .transform (-1 - javagochi.score/100);
}

class KeyConfirmer extends TimerTask {
Face face;
public KeyConfirmer (Face face) {

this.face = face;
b

public void run(Q) {
face.keyConfirmed();
}

class Face extends Canvas {
public static final String[] keys = {'"abc™", "def", *"ghi', "jkI",
mno', "pgrs', tuv',
"wxyz"}

Javagochi javagochi;
Timer keyTimer;

int keyMajor = -1;
int keyMinor;
char needed =

a ;

Face (Javagochi javagochi) {
this.javagochi = javagochi;
}

public void paint (Graphics g) {
g.setColor (255, 255, 255);
g-FillRect (0, 0, getWidth(), getHeight());

int height = Math.min (getHeight(), getWidth()) 7/ 2;
int width = height * javagochi.weight
/ jJavagochi . IDEAL_WEIGHT;

g-translate (getWidth() 7/ 2, getHeight() 7/ 2);
g-setColor (255, 255, 255 - javagochi.getHappiness() * 25);
g-fillArc (- width / 2, - height /7 2, width, height, 0, 360);

g.setColor (0, 0, 0);
g.drawArc (- width /7 2, - height /7 2, width, height, 0, 360);

g-drawString (‘'Score: "'+javagochi.score, 0, -getHeight()/2,
Graphics.TOP|Graphics.HCENTER);

String keySelect = "'';
if (keyMajor 1= -1) {
String all = keys [keyMajor];
keySelect = all.substring
(0, keyMinor) + "[" + all.charAt

(keyMinor)
+ "]" + all.substring (keyMinor+1);
}
g.drawString (“'Feed: " + needed + " " + keySelect,

0, getHeight()/2,
Graphics.BOTTOM|Graphics.HCENTER);

drawEye (g, - width /7 6, - height / 5, height /7 15 + 1);
drawEye (g, width /7 6, - height / 5, height /7 15 + 1);

switch (Javagochi .getHappiness() 7 3) {

case 0O:
case 1:
g.drawArc (-width/6, height/7, width/3, height/6, O,
180);
break;
case 2:
g.drawLine (-width/6, height/7, width/6, height/7);
break;

85

default:
g.drawArc (-width/6, height/7, width/3, height/6, 0, -

180);

}

void drawkEye (Graphics graphics, int x0, int yO, int w) {
if (Javagochi.isDead()) {
graphics.drawLine (xO0 - w/2, y0, x0 + w/2, y0);
graphics.drawLine (x0, yO - w/2, x0, y0O + w/2);
}

else
graphics.fillArc (x0-w/2, yO-w/2, w, w, 0, 360);

}

public synchronized void keyPressed (int keyCode) {
int index = keyCode - KEY_NUMZ2;
if (keyTimer != null) keyTimer.cancel();

if (index < 0 || index > keys.length)
keyMajor = -1;

else {
if (index = keyMajor) {
keyMinor = O;
keyMajor = index;
else {
keyMinor++;
if (keyMinor >= keys [keyMajor].length(Q))
keyMinor = O;
}

keyTimer = new Timer();
keyTimer.schedule (new KeyConfirmer (this), 500);

}

repaint();
synchronized void keyConfirmed() {
if (keyMajor 1= -1) {

if (keys [keyMajor].charAt (keyMinor) == needed) {
Javagochi .score += javagochi.getHappiness();

if (!javagochi.isbDead())

needed = (char) ("a"
+ ((System.currentTimeMillis() /7 10) % 26));

Javagochi .transform (10);

}

keyMajor = -1;
repaint();

}

public class Javagochi extends MIDlet {

static final int IDEAL WEIGHT = 100;

86

Display display;

Face face = new Face (this);
int weight = IDEAL_WEIGHT;
Timer consumption;

int score;

public int getHappiness() {
int happiness = 20 - (weight > IDEAL_WEIGHT
? 10 * weight / IDEAL_WEIGHT
: 10 * IDEAL_WEIGHT / weight);
iT (happiness < 0) happiness = 0;
else if (happiness > 10) happiness = 10;
return happiness;

}

public boolean isbead() {
return getHappiness() == 0;
}

public void transform (int amount) {
if (lisbead()) {
weight += amount;
face.repaint();

}

public void startApp() {
display = Display.getDisplay (this);
display.setCurrent (face);
consumption = new Timer();
consumption.scheduleAtFixedRate (new Consumption (this), 500,
500);
}

public void pauseApp() {
consumption.cancel();

}
public void destroyApp (boolean forced) {
}

}

Animation

With animation, there are normally two main problems. Di sp lay flickering and synchronization of
painting with calculation of new frames. We will first address how to get the actual painting and
application logic in sync, and then solve possible flickering.

Synchronization of Frame Calculation and Drawing

When you perform animations, you can first calculate the display content and then call repaint() in
order to paint the new frame. But how do you know that the call to paint() hasfinished? One
possibility would beto call serviceRepaints(), which blocks until all pending display updates
are finished. The problem with serviceRepaints() isthat paint() may be called from another
thread. If the thread calling serviceRepaints() holds any locks that are required in paint(), a
deadlock may occur. Also, calling serviceRepaints() makes sense only from athread other than
the event handling thread. Otherwise, key events may be blocked until the animation is over. An
aternativeto serviceRepaints() iscdling cal ISerial ly() at the end of the paint()
method. The cal 1Serial ly() method lets you put Runnab I e objectsin the event queue. The

87

run() method of the Runnab I e object is then executed serialy like any other event handling
method. In the run () method, the next frame can be set up, and a new repaint can be regquested there.

To demonstrate this execution model, you will build a simple stopwatch that counts down a given
number of seconds by showing a corresponding pie slice using the ¥i I Arc() method, as shown in

Figure 3.21.

Figure 3.21. A very simple stopwatch.

Famil B

The Canvas implementation stores the current slice in degree, the start time, the total amount of
seconds and the MIDlet display in local variables. In order to make use of cal ISerially(), your
Canvas implements the Runnabl e interface:

class StopWatchCanvas extends Canvas implements Runnable {
int degree = 360;
long startTime;
int seconds;
Display display;

When the StopWatchCanvas is created, you store the given display and seconds. Then, the current
time is determined and stored, too:

StopWatchCanvas (Display display, int seconds) {
this.display = display;
this.seconds = seconds;
startTime = System.currentTimeMillis();

}

In the paint() method, you clear the display. If you need to draw more than 0 degrees, you fill a
corresponding arc with red color and request recalculation of the piediceusing cal ISerially().
Finally, you draw the outline of the stopwatch by setting the color to black and calling drawArc():

public void paint (Graphics g) {
g-setGrayScale (255);
g-fillRect (0, 0, getWidth(), getHeight());

it (degree > 0) {
g-setColor (255, 0, 0);
g.FillArc (0,0, getWidth(), getHeight(), 90, degree);
display.callSerially (this);

g-setGrayScale (0);
g-drawArc (0, 0, getWidth()-1, getHeight()-1, 0, 360);
}

This method is invoked by the event handling thread as a result of the previous
display.callSerially(this) statement. Inthiscase, it just calculates anew pie slice and
requestsa repaint():

88

public void run(Q) {
int permille = (int) ((System.currentTimeMillis(Q)
- startTime) / seconds);
degree = 360 - (permille * 360) / 1000;
repaint();

}

As always, you need a MIDlet to actualy display your StopWatchCanvas implementation. The
following code creates a stopwatch set to 10 seconds when the application is started:

import javax.microedition.midlet.*;
import javax.microedition.lcdui.*;

public class StopWatch extends MIDlet {
public void startApp() {
Display display = Display.getDisplay (this);
display.setCurrent (new StopWatchCanvas (display, 10));
}

public void pauseApp() {
}

public void destroyApp (boolean forced) {

}
}

Avoiding Flickering

On some devices, the stopwatch implementation will flicker. Thisis due to the fact that the display is
cleared completely before a new stopwatch is drawn. However, on some other devices, the stopwatch
will not flicker because those devices provide automated double buffering. Before the screen is updated,
all drawing methods are performed in a hidden buffer area. Then, when the paint() method is
finished, the complete display is updated from the offscreen buffer at once. The method
isDoubleBuffered() intheCanvas classis able to determine whether the device screen is
double buffered.

In order to avoid flickering of your animation in all cases, you can add your own offscreen image,
which isallocated only if the system does not provide double buffering:

Image offscreen = isDoubleBuffered() ? null
Image.createlmage (getWidth(), getHeight());

In the paint() method, you just check if the offscreen imageisnot nul I, and if so, you delegate all
drawing to your offscreen buffer. The offscreen buffer isthen drawn immediately at the end of the
paint() method, without first clearing the screen. Clearing the screen is not necessary in that case
since the offscreen buffer was cleared before drawing and it fills every pixel of the display:

public void paint (Graphics g) {
Graphics g2 = offscreen == null ? g : offscreen.getGraphics();

g2.setGrayScale (255);
g2.fillRect (0, 0, getWidth(), getHeight());

it (degree > 0) {
g2.setColor (255, 0, 0);
g2.FillArc (0,0, getWidth(), getHeight(), 90, degree);

display.callSerially (this);

89

}
g2.setGrayScale (0);

g2.drawArc (0, 0, getWidth()-1, getHeight()-1, 0, 360);

if (offscreen = null)

g.drawlmage (offscreen, 0, 0, Graphics.TOP | Graphics.RIGHT);
}

Listing 3.3 gives the complete source code for the buffered stopwatch.

Listing 3.3 BufferedStopWatch. java—The Complete Source Code of the Buffered
Stopwatch

import javax.microedition.midlet.*;
import javax.microedition.lcdui.*;

class BufferedStopWatchCanvas extends Canvas implements Runnable {
int degree = 360;
long startTime;
int seconds;
Display display;
Image offscreen;

BufferedStopWatchCanvas (Display display, int seconds) {
this.display = display;
this.seconds = seconds;

if (lisDoubleBuffered() && false)
offscreen = Image.createlmage (getWidth(), getHeight());

startTime = System.currentTimeMillis();

}
public void paint (Graphics g) {
Graphics g2 = offscreen == null
?
‘g

: offscreen.getGraphics();

g2.setGrayScale (255);
g2.fillRect (0, 0, getWidth(), getHeight());

if (degree > 0) {
g2.setColor (255, 0, 0);
g2.FillArc (0,0, getWidth(), getHeight(), 90, degree);

display.callSerially (this);

}
g2.setGrayScale (0);

g2.drawArc (0, 0, getwWidth()-1, getHeight()-1, 0, 360);

if (offscreen != null)
g-drawlmage (offscreen, 0, 0, Graphics.TOP |
Graphics.RIGHT);

}

public void run() {
int permille = (int) ((System.currentTimeMillis()
- startTime) / seconds);
degree = 360 - (permille * 360) / 1000;

90

repaint();

public class BufferedStopWatch extends MIDlet {

public void startApp() {
Display display = Display.getDisplay (this);
display.setCurrent (new BufferedStopWatchCanvas (display,
10));
}

public void pauseApp() {
}

public void destroyApp (boolean forced) {
¥

MIDP 2.0 Additions

Version 2.0 of MIDP improves the existing high-level user interface API significantly. Additionally,
there are three new packages packages, javax.microedition. icdui .game,
Javax.microedition.media, and javax.micrcedition.media.control, especialy
for game and multimedia programming.

LCDUI High-Level Improvements
For the high-level part of LCDUI, there are several significant additions and improvements:

e Thenew Class Custom! tem allows user drawn items
e Commandscan also be assigned to | tems
e All itemshave anew setLayout() method

The Customl tem class allows you to combine the flexibility of the low-level API directly with the
high-level API on the same screen. The ability to assign commands to items allows context-sensitive
menus, depending on the current focus position. For example, this could be used for nested option
dialogs or to build a hypertext browser based on the high-level API only. The setLayout() method
gives MIDP 2.0 applications better control over the actual layout of the items contained in aform.

The Game Package

The new game package contains graphical objects specially designed for games and animations. The
class Sprite isdesigned for adding active objects to games. Sprites can consist of asingleimage or a
sequence of images representing an animated sprite. In contrast to plain images, sprites have status
information such as the current position and animation frame. The Spr i te class aso contains
methods for detecting collisions with other sprites.

In addition to the Spr i te, the game package contains another graphical object, the Ti ledLayer
class. Tiled layers are large images constructed from equally sized cells and can be used for
implementing a scrolling screen background, for example. The cells are obtained from a single image
that is divided into a number of rows and columns, as defined by the Ti ledLayer constructor. Each
cell contains an index that points to atile obtained from the image given to the constructor. When the
TiledLayer isdisplayed on the screen, the cells are rendered from the tile corresponding to the

91

index. While positive indices are direct pointers to a portion of the source image, negative indices are
indirect pointers and can be remapped for animating a set of cells with the same virtual index at once.
Anindex of zero represents atransparent cell.

Both classes, Sprite and Ti ledLayer are derived from the abstract class Layer. While instances
of both classes can be drawn directly using their paint method, the game package also contains a
LayerManager that can manage a set of graphical objects including their Z-Order.

Finally, the game package contains the class GameCanvas, a subclass of Canvas. Each instance of
GameCanvas hasits own offscreen buffer. In contrast to the simple Canvas, it is safe to assume that
the GameCanvas offscreen buffer is not obscured. Moreover, the GameCanvas provides access to
the corresponding Graphi cs object outside of the paint method and a method to flush the offscreen
buffer to the screen.

The Media Packages

The javax.microedition._media package contains audio support and consists of three main
building blocks. The Manager class can be seen as the entry point to media access. It isableto list the
supported media types and create new P layer instances. A player can be used to actually play a
media object, such asamidi or mp3 file (depending on the supported media types).

The code snipped below shows an example of how to play amidi file from the Web using a player
object obtained from the Manager.

try {
Player p = Manager.createPlayer(""http://ringtones.org/song.mid™);

p.-start();
catch (MediaException pe) {

}
catch (10Exception ioe) {
¥

The javax.microedition.media.control package contains additional components for
controlling the properties of the played media objects such as volume and pitch.

Summary

In this chapter, you learned the general life cycle of MIDP applications. Y ou know how to build a
user interface using the high-level Icdui widgets, and how to interact using the listener
mechanism. Y ou have learned to perform custom graphics using the low-level API, including
device-independent flicker-free animation and coordination of graphics calculation and drawing.

The next chapter gives a corresponding overview of the PDAP life cycle and user interface. The
PDAP introduction focuses on the differences between the J2SE AWT classes and the subset
included in PDAP, but till gives abasic introduction to AWT programming.

92

Chapter 4. PDAP Programming

INTHISCHAPTER

e PDAP Application Life Cycle
e PDA User Interface

This chapter discusses the life cycle and user interface of PDA applications. First, well talk about
the general design of PDA applications. Then, welll explain the AWT subset that forms the PDAP
user interface API.

PDAP Application Life Cycle

PDAP is acomplete superset of MIDP. Asfor MIDP, PDAP applications are based on the MIDlet class
and share the MIDlet life cycle, asillustrated in Figure 3.1. However, PDAP contains several additional
packages. For example, the AWT classes allow much more sophisticated user interfaces than lcdui,
giving the programmer fine-grained control over component layout.

In this chapter, we will concentrate on the user interface enhancements of PDAP.

HelloPdap Revisited

The Hel loPdap example from Chapter 1, "Java 2 Micro Edition Overview," is aready a complete
PDAP application. Now that you have the necessary foundation, you can revisit He I loPdap from an
API point of view.

First, you import the necessary mid et and awt packages:

import java.awt.*;
import javax.microedition.midlet.*;

Like all PDAP applications, the Hel loPdap example isrequired to extend theMID I et class:
public class HelloPdap extends MIDlet {
In the constructor, you create a Frame titled *"Hel loPdap*":

Frame frame;

public HelloPdap() {
frame = new Frame ('HelloPdap™);
b

Y ou do not add content to the frame yet, so only the title will be displayed. (A description of the awt
classesis contained in the "PDA User Interface” section.)

When your MIDlet is started the first time or when the MIDl et resumes from a paused state, the
startApp() method is called by the program manager. Here, the show() method of the frameis
called, requesting that the frame be displayed. If the frame is already visible, it is brought to the
foreground:

93

public void startApp() {
frame.show();
}

When the application is paused, you do nothing because you do not have any allocated resources to free.
However, you need to provide an empty implementation, because implementation of pauseApp() is
mandatory:

public void pauseApp({
}

Like startApp() and pauseApp(), the implementation of destroyApp() is mandatory. Here,
we dispose of the frame, freeing the associated system resources:

public void destroyApp(boolean unconditional) {
frame.dispose();
}

PDA User Interface

The PDA user interface is based on the J2SE Abstract Window Toolkit (AWT). This section of the
chapter is structured as follows: First, we compare the PDA AWT subset with other AWT versions.
Then, a short general introduction to the AWT programming is given. The sections " Custom
Components" and " Custom L ayout Managers' cover some aspects with special importance for
programming limited devices. The section "Multiple Threads in the PDAP AWT Subset" shows how
you can build multithreaded AWT programs, although the PDAP AWT subset islimited to a SWING-
like single thread model. Finally, we'll implement an AWT application combining some of the
discussed concepts.

Comparison of the PDAP AWT Subset to Other AWT Versions

The java.awt classesincluded in PDAP are based on the (CDC-based) Personal Profile AWT
building block. The Personal Profile AWT isaclean subset of Java2.0 AWT. It covers the complete
Java 1.1 AWT, and contains several additions from Java 2, such as buffered images, support for thread-
safe access and several convenience methods. Thread-safe AWT programming is discussed in more
detail in the section "Multiple Threads in the PDAP AWT Subset." Additionally, some methods
helping to reduce creation of intermediate objects introduced with Java 2.0 were taken over into the
Personal Profile. Examples for thistype of methods are getWidth(), which replacesacall to
getSize()returning an intermediate dimension object.

Compared to the Personal Profile AWT, the PDAP AWT is slightly more restricted. The PDAP AWT
subset contains only the packages java.awt, java.awt.event, and java.awt. image.
Moreover, those packages are not complete; several classes and methods are missing. For example,
more Java 2 additions such as buffered images and Graphi cs2D support were left out. The
Cloneable, Serializable, and External izable interfaces are not supported in CLDC. Also,
the AWTPermission was left out because the implied security model is not part of CLDC. A
complete comparison of the PDAP AWT subset to the Java2 AWT API can be found in Appendix
B,"Comparison Charts." Figure 4.1 illustrates the relations between the different AWT versions.

Figure 4.1. Subset relations among the different AWT versions.

94

Java 2 Standard Edition AWT

Personal Profile AWT Subset

Including support for:

s complete JDK1.1 AWT

* some extensions from J2SE
such as Bufferedimage
and Graphics2D

PDA Profile AWT Subset

Excluding support for:
* Clonable

* Externalizable

» Serializable

= buffered images

= Graphics2D

* AWTPermission

The PDAP AWT subset supports an unlimited number of frames, but the device might show only the
top frame on the screen. The frames may be restricted to a fixed size. When using both LCDUI screens
and AWT frames, the LCDUI display behaves similar to an additional frame. Mixing LCDUI and
AWT isn't recommended, and it isn't possible to mix AWT and LCDUI componentsin asingle Frame
or Screen.

Note

PDA applications that don't rely on special microedition packages other than midlet can run on the
desktop without an emulation environment by implementing a dummy
Javax.microedition.midlet_MIDlet classlike that shown in the following code snippet:

package javax.microedition.midlet;
public class MIDlet {
protected abstract void startApp();
protected abstract void pauseApp();

protected abstract void destroyApp (boolean unconditional);

public void notifyDestroyed() {
System.exit (0);
}

}

In addition, you need to add a main method to the actual MIDIlet implementation that creates a
corresponding instance and calls the startApp() method.

The corresponding maiin() method for the He l loPdap exampleis

public static void main (String [] argv) {
new HelloPdap() -startApp();
}

95

A Short Introduction to AWT Programming

Although this book is targeted at programmers who have some basic Java experience, a short
introduction to AWT programming isincluded here. The motivation is that modern Java desktop
applications are mostly based on SWING, and servlets are based on an HTML interface, so alarge
fraction of Java programmers might not have much experience with AWT. Also, Rapid Application
Development tools contained in several J2SE IDEs might not yet be able to generate PDAP-compatible
code.

For a more detailed explanation of AWT, refer to ageneral Java book covering AWT or to the online
tutorials provided by Sun http://java.sun.com/docs/books/tutorial/. An overview about AWT is
available from Sun's AWT Web site at http://java.sun.com/products/jdk/awt/.

Basic Component Model

Graphical user interfaces usually consist of a number of components like buttons, text fields, or check
boxes. In the Abstract Window Toolkit, these elements are represented by Java classes such as
Button, TextField, and Checkbox. These classes handle the drawing of the corresponding
components, as well as basic handling of user interactions. Most elements of the user interface are
derived from the abstract base class Component. The Component class provides access methods for
the common properties of the user interface classes, such as the size and position.

A specia subclass of Component isContainer, which can contain a set of other components—
including containers. A special example of acontainer isaFrame. The Frame class represents a
regular screen window. Other containers are Panel's, which are used for grouping components, and
dialog windows.

Using aFrame and aLabel, you are aready able to build an AWT-based "Hello World" program
(see Listing 4.1). In the constructor, a Frame with thetitle "Hel 1o Word" iscreated and then a
Label showing ""Hello World" isadded to the Frame.

Listing 4.1 ComponentSample. java

import java.awt.*;
import javax.microedition.midlet.*;

public class ComponentSample extends MIDlet {
Frame frame;

public ComponentSample() {

frame = new Frame ('Hello World™);
frame.add(new Label (“'Hello World™));

public void startApp() {
frame.show();
}

public void pauseApp() {

public void destroyApp (boolean conditional) {
frame.dispose();
}

96

http://java.sun.com/docs/books/tutorial/
http://java.sun.com/products/jdk/awt/

User Interaction and Event Handling

The original ComponentSample MIDlet doesn't allow user interaction. However, some kind of exit
button would be useful. Buttons are represented by the component class Button. The only parameter
of the constructor is the button label text. The following lines add a button to the south area of the
frame (the layout areas will be described in more detail in the next section):

Button b = new Button ("Exit');
frame.add(b, BorderLayout.SOUTH);

When the program is started with the additional lines, a button will appear at the bottom of the Frame,
but nothing will happen when the button is clicked. The button still needs to be linked to the desired
action, in this case leaving the program. In AWT, all kinds of user interface interactions—like clicking
a button—are represented by event objects. In the case of aButton, the corresponding event object is
an instance of ActionEvent. If an application isinterested in some kind of event, it must implement
the corresponding listener interface, containing one or more callback methods. For ActionEvents,
the listener interfaceis

public interface ActionListener {
public void actionPerformed (ActionEvent e);
}

Both the event classes and listener interfaces are contained in the package java.awt.event.

In order to handle events, an object implementing the listener interface must be registered with the
component that is the source of the events. For registering an action listener, the button class provides
the method addActionListener(ActionListener 1I).

In order to keep your sample program simple, you can add the actionPerformed() method to the
MIDIet classdirectly and thuslet it implement the ActionListener interface (see Listing 4.2).

Listing 4.2 ComponentSample2. java—Enhanced Version of the ComponentSample
Handling User Interaction

import java.awt.™;
import java.awt.event.™;
import javax.microedition.midlet.*;

public class ComponentSample2 extends MIDlet implements
ActionListener {
Frame frame;
public ComponentSample2() {
frame = new Frame (“'Hello World™);
frame.add(new Label ('Hello World™));
Button b = new Button ("Exit');
b.addActionListener(this);
frame.add(b, BorderLayout.SOUTH);

}

public void actionPerformed(ActionEvent ae) {
frame.dispose();
notifyDestroyed();

}

public void startApp() {
frame.show();
}

97

public void pauseApp() {
}

public void destroyApp (boolean conditional) {
frame.dispose();
}

}

AWT contains lots of other active components and events. Introducing them all here would exceed the
scope of thisbook. Table 4.1 gives an overview of the AWT components. Please note that the
component events apply to all other (derived) components, although listed only once in the component
description. Table 4.2 gives an overview of all eventsthat are available in PDAP and the corresponding
listener interfaces that are needed for handling those events.

Table 4.1. AWT Components and Corresponding Events

Component Name |Events Description

Button ActionEvent The Button class is a component that is used to
create a labeled button in order to invoke an
action if it is pushed.

Canvas None The Canvas is a component for custom drawing
by overriding the paint method.
Checkbox ItemEvent A Checkbox is a component that can be in either

selected (true) or deselected (false) state. An
ItemEvent is fired, when the CheckBox is
(de)selected.

CheckboxMenultem|l temEvent A CheckboxMenu I tem represents one item of a
menu combining the functionality of a Menultem
and a Checkbox as well. It can be in either
selected (true) or deselected (false) state. An

I temEvent is fired, when the CheckBox is
(de)selected.

Choice ItemkEvent The Choice class presents a component for
selecting one of a set of possible choices. An An
ItemEvent is fired, when the CheckBox is
(de)selected.

Component FocusEvent The Component class is the abstract superclass
of all nonmenu-related AWT components.
KeyEvent Component can be derived directly to implement
lightweight components.
MouseEvent

Container ContainerEvent |A Container is a specialized component that is
used to hold other components. A
ContainerEvent is fired if a Component is
added or removed from a Container.

Label None A Label is a component for placing a single read-
only line of text in a container.

List ItemEvent A List represents a scrolling list of text items for
user selection. An I'temEvent is fired if the user
selects an item in the List.

MenuComponent None The class MenuComponent is the superclass of
all menu-related components.

Menultem ActionEvent The class Menul tem represents one item of a
menu. An ActionEvent is fired if the Menul tem
is selected.

98

Scrollbar

AdjustmentEvent

A Scrol Ibar provides a convenient option to
select a value from a given range. An
AdjustmentEvent is fired if the value of the
Scrol Ibar component is adjusted.

TextComponent

TextEvent

The TextComponent class is the superclass of
any component that allows text input. A
TextEvent is fired if text in a Component
derived from TextComponent is changed.

TextArea

None

The TextArea is a component capable of
displaying a multiline region of text. If the text
inside the TextArea changes, a TextEvent is
fired.

TextField

ActionEvent

The TextField is a component allowing the user
to edit a single line of text. If the text inside the
TextField changes, a TextEvent is fired. An
ActionEvent is fired if the text is confirmed by a
return keystroke.

Table 4.2. Available AWT Events and Corresponding Listeners

Event Name

Listener

|Descripti0n and Interface Methods

ActionEvent

ActionListener

Invoked by a specific component to indicate that a
component-specific action occurred. Classes
implementing an ActionListener inorder to
receive ActionEvents need to implement the
following method:

void actionPerformed(ActionEvent

e)

AdjustmentEvent

AdjustmentListener

Invoked by componentsindicating that their value
has been adjusted. Classes implementing an
AdjustmentListener inorder to receive
AdjustmentEvents need to implement the
following method:

void adjustmentValueChanged
(AdjustmentEvent e)

ComponentEvent

ComponentListener

Invoked by componentes in order to indicate
that a component has moved, changed its
size or changed its visibility.

ContainerEvent

ContainerListener

Invoked in order to indicate that a component
has beed added or removed.

FocusEvent

FocusListener

Invoked by componentsin order to indicate that
they have gained or lost the keyboard focus.
Classesimplementing a FocusL istener in
order to receive FocusEvents need to
implement the following methods:

void focusGained(FocusEvent e)
void focusLost(FocusEvent e)

ItemEvent

ItemListener

Invoked by I'temSelectable componentsin
order to indicate that an item is selected or
deselected. Classes implementing an
ItemListener inorder toreceive

I temEvents need to implement the following

99

method:

void 1temStateChanged(ltemEvent
e)

KeyEvent

KeyListener

Indicates that a keystroke has occurred in a
component that is capable of accepting
keystrokes. Classes implementing a
KeyListener in order to receive
KeyEvents need to implement the following
methods:

void keyPressed(KeyEvent e)

void keyReleased(KeyEvent e)

void keyTyped(KeyEvent e)

MouseEvent

MouselListener/
MouseMotionListener

Indicates that a mouse action occurred in a
component. The MouseEvent is used both for
mouse events (click, enter, exit) and mouse
motion events (moves and drags). The only
difference is where the events are indicated.

Clicks, presses, and releases are received by a
MouseL istener consisting of the the following
methods:

void mouseClicked(MouseEvent e)
void mouseEntered(MouseEvent e)
void mouseExited(MouseEvent e)

void mousePressed(MouseEvent e)
void mouseReleased(MouseEvent e)

Classes that are interested in receiving mouse
drags and moves need to implement the
MouseMotionListener and the following
methods:

void mouseDragged(MouseEvent e)
void mouseMoved(MouseEvent e)

PaintEvent

None

In contrast to the other events, the paint
event has no corresponding listener or
adapter. The PaintEvent is internally
handled by the event queue when a
component needs to be repainted.
Applications should override the paint/update
methods in order react to repaint events.

TextEvent

TextListener

Indicates that the text of a component has been
changed. Classesimplementing a
TextListener inorder to receive
TextEvents need to implement the following
method:

void textValueChanged(TextEvent
e)

WindowEvent

WindowListener

Indicates that a window has changed its status.
Classesimplementing aWindowL istener in
order to receive WindowEvents need to
implement the following methods:

100

void windowActivated(WindowEvent
e)

void windowClosed(WindowEvent e)
void windowClosing(WindowEvent e)
void
windowDeactivated(WindowEvent e)
void
windowDeiconified(WindowEvent e)
void windowlconified(WindowEvent
e)

void windowOpened(WindowEvent e)

Containers and Layout

As soon as the user interface consists of more than one or two components, the screen layout of the
components becomes an issue. For some devices, it would be possible to place the components at fixed
pixel positions. However, for portable Java applications, this approach isn't really suitable. In addition

to the different screen sizes and layouts, the components might also have different sizes on different
PDAs.

Fortunately, Java provides a powerful mechanism to cope with layout problems: Layout Managers.
Layout Managers can be assigned to subclasses of Container such asFrame, Dialog, or Panel
using the setLayoutManager () method. Layout Managers place the components contained in the
assigned Container with respect to special rules determined by the concrete subclass of
LayoutManager used. For example, GridLayout arranges all contained componentsin agrid
where each component has exactly the same size. BorderLayout dividesthe Container intofive
regions as shown in Figure 4.2. The desired region is given as a parameter to the add () method when
adding components to the container. The border region takes the minimum space that is required for
displaying the contained components, and the remainder goes to the center area. The BorderlLayout
is the default layout manager of Dialogsand Frames. The FlowLayout arranges all components
in ahorizontal line where the width of the componentsis minimized and the height is aligned to the
minimal height of the highest component. FlowLayout isthe default layout manager of Panel.

Figure 4.2, The five regions of the BorderLayout.

BorderLayout. NORTH

BorderLayout. CENTER

BorderLayout. WEST
BorderLayout. EAST

BorderLayout. SOUTH

Although the layout managers provide basic layout options, quite flexible layouts can be achieved by
nesting containers and thus combining layout managers. For example, in order to show alist of aligned
labels and input elements, two panels with a grid layout can be placed in the west and center areas of a
border layout. If the number of labelsin the west grid matches the number of input componentsin the
center grid, the labels and input components are vertically aligned automatically. Furthermore, the
space for the labelsis limited to the minimum, whereas the input components get all the remaining
space. Dialog buttons are usually placed in a panel with flow layout in the south area of the dialog.

As a sample application demonstrating nested Pane s (and BorderLayout and FlowLayout),
you will implement a PDA user interface for the British Museum Algorithm. Basically, the idea behind
the British Museum Algorithm is that, given a set of monkeys typing on typewriters, eventually all
existing literature in the world would be generated—you just need to wait long enough. We simulate a
monkey typing aline by randomly generating characters. The user interface should consist of a button
for generating a sentence, an exit button, and a list of sentences generated so far. How can we distribute
the screen space in away that the buttons are displayed and all the remaining space goes to the list of
sentences? The answer is quite simple: We put the list in the center of aBorderLayout, which gets
all remaining space not taken by the other regions. In the south area, we put aPanel with
FlowLayout, where we add the buttons. Fortunately, BorderLayout is the default layout of
frames and FlowLayout isthe default layout of Panel's, so we do not need to explicitly set alayout.
(We will do so in an extended example.)

Listing 4.3 shows the implementation of the application. The components are created with the
corresponding variables and arranged in the constructor of the MIDlet. The call of the pack () method
performs the layout of the components and adjustment of the frame size. (Some PDAs might have a
fixed frame size covering the whole screen.) The actionPerformed() method terminates the
application or generates a new sentence by calling generateSentence (), depending on the button
pressed. Figure 4.3 shows the actual layout of the application on a Palm Pilot.

Figure 4.3. The typing monkeys application.

The Mon

wu k kxoonnywlri e fnldizxcdzg 7dl t
rqouagr vwa lwz yjixplphsobofl moy
frgst mbequtfdxpivvezy ejrz al zwje
zro m wpsnstoxpsjrkezdb xg bhym ugt

Listing 4.3 GhostWriter . java—The Typing Monkeys Source Code

import java.awt.*;

import java.awt.event.*;

import java.util_Random;

import javax.microedition.midlet.*;

class GhostWriter extends MIDlIet implements ActionListener {

List list = new List();
Frame frame = new Frame ("'The Monkeys type....");

£

102

Button exitButton = new Button (“exit'");
Button generateButton = new Button (‘‘generate™);
Random random = new Random();

public GhostWriter() {
Panel buttonPanel = new Panel();

buttonPanel _.add(exitButton);
buttonPanel .add(generateButton);
exitButton.addActionListener(this);
generateButton.addActionListener(this);

frame.add(list, BorderLayout.CENTER);
frame.add(buttonPanel, BorderLayout.SOUTH);
frame.pack();

frame.addWindowListener(new WindowAdapter() {
public void windowClosing (WindowEvent ev) {
notifyDestroyed();
}

3

public void startApp() {
frame.show();
}

public void actionPerformed (ActionEvent ev) {

if (ev.getSource() == exitButton)
notifyDestroyed();

else if (ev.getSource() == generateButton)
generateNewSentence();

}

public void generateNewSentence() {
StringBuffer buf = new StringBuffer();

for (int i 0; 1 <60; i++) {
char c (char) (((int) "a") + (random.nextint() & 31));
if (c>"z") c="7";
buf.append (c);

}

list.add(buf.toString());
3

public void pauseApp() {
}

public void destroyApp (boolean forced) {

}
}

Another common layout is, as we mentioned earlier, alist of labels and corresponding fields, such as
the input mask of an address book. Suppose that we want to log only the good sentences typed by the
simulated monkeys because of the limited memory of a PDA. Additionally, we have two monkeys to
choose from. In order to display these options, we would like to show alabel "generated,” a

103

TextField with the generated sentence, alabel "monkey," and a choice containing the names of the
monkeys, as shown in Figure 4.4.

Figure 4.4. The nested layouts used in the improved version of the typing monkeys
application.

controlPanel

\

BorderLayout

of -]
/ [~ GrigLayout0.1)

7 - /

GridLayout(0,1) -

fisldPanel
labelPanel

BorderLayout
frame —= buttonPanel

\

| 1 FlowLayout

-

In order to achieve this layout, we create a new control panel having the layout set to BorderLayout.
In the east area of the new control panel we put a grid-layout label panel, and in the center area we put
agrid-layout field panel. Because both subpanels will contain the same number of components and
GridLayout distributes space equally between the components, the components will be aligned
verticaly as desired. The new control panel isthen inserted in the north area of the application Frame.

Listing 4.4 shows our enhanced typing monkeys application. The new layout code is marked bold in
order to highlight the interesting additions to the previous example. Figure 4.5 shows the compl ete user
interface of the extended application.

Figure 4.5. The improved version of the typing monkeys application.

104

Maonkey: v
Generated:qydzsmjafjof ahkwznzdih g

AEWILIT ZFHZLIJEW Y[TZMIKLI'Y[HEY
qydzsmjafjof ahkwznzdib g ik dve bl

generate

Listing 4.4 GhostWriter2. java—Enhanced Typing Monkeys Source Code

import java.awt.*;

import java.awt.event.*;

import java.util_Random;

import javax.microedition.midlet.*;

public class GhostWriter2 extends MIDlet implements ActionListener {

List logList = new List();

Frame frame = new Frame (‘'The Monkeys type....");
Button exitButton = new Button (“exit™);

Button generateButton = new Button (‘'generate™);
Button logButton = new Button (*'log™);

TextField generatedField = new TextField();
Choice monkeyChoice = new Choice();

Random random = new Random();

public GhostWriter2() {

monkeyChoice.add("'Dumbo™™) ;
monkeyChoice.add('Sally');

Panel labelPanel = new Panel (new GridLayout (0, 1));
labelPanel .add(new Label ('Monkey:'"));
labelPanel .add(new Label ('Generated:'));

Panel fieldPanel = new Panel (new GridLayout (0, 1));
fieldPanel .add(monkeyChoice);
fieldPanel _add(generatedField);

Panel controlPanel = new Panel (new BorderLayout());
controlPanel _.add(labelPanel, BorderLayout.WEST);
controlPanel _.add(fieldPanel, BorderLayout.CENTER);

Panel buttonPanel = new Panel (new FlowLayout());
buttonPanel .add(exitButton);

buttonPanel .add(generateButton);

buttonPanel .add(logButton);

exitButton.addActionListener(this);
generateButton.addActionListener(this);

105

logButton.addActionListener(this);

frame.add(controlPanel, BorderLayout_.NORTH);
frame.add(logList, BorderLayout.CENTER);
frame.add(buttonPanel, BorderLayout.SOUTH);
frame.pack();

frame.addWindowListener(new WindowAdapter() {

public void windowClosing (WindowEvent ev) {
notifyDestroyed();
}

3
}

public void startApp() {
frame.show();
}

public void actionPerformed (ActionEvent ev) {

if (ev.getSource() == exitButton)

notifyDestroyed();

else if (ev.getSource() == generateButton)
generateNewSentence();

else if (ev.getSource() == logButton)

logList.add(generatedField.getText());
}

public void generateNewSentence() {
StringBuffer buf = new StringBuffer();

int baseChar monkeyChoice.getSelectedltem() .equals (*'Dumbo'™)

o AT - ¢

Qo

for (int 1 = 0; 1 < 60; i++) {
char c (char) (baseChar + (random.nextlnt() & 31));
if (Character.toUpperCase (c) > (baseChar+26)) c = " *;
buf._append (c);

}
generatedField.setText (buf.toString());

}

public void pauseApp() {
}

public void destroyApp (boolean forced) {

}
}

When you're designing PDA applications, saving the limited screen space is especially important. For
cases in which the screen istoo small to hold all the required information, the Scroll IPane and
CardLayout classes are provided. The CardLayout classis alayout manager that allows
distribution of components over several cards. The cards are denoted by a String, and only one card
is shown at once. For example, using a Choice component, the user can be allowed to switch between
cards. The Scrol IPane can contain an areathat is larger than its space on the screen by using
scrollbars for navigation. Both classes are described in more detail in the section " Switching L ayouts
Depending on the Screen Resolution Available."

Dialogs and Menus

106

In larger applications, the user interface might become overloaded with buttons and other widgets for
invoking different program actions. In order to minimize the space that is occupied by those widgets,
pull-down menus can be used instead, especially for less important actions or configuration options.
This approach gives you the opportunity to add many menu items to a menu without wasting the scarce
screen space of a mobile device. An AWT menu consists of at |east three classes:

e OneMenuBar containing a set of Menus
e Some Menus consisting of multiple Menuitems
e Menultemssending ActionEventsto registered Listeners

This coherenceisillustrated in Figure 4.6.

Figure 4.6. A MenuBar consisting of two Menus where the File menu holds some
Menultems.

Menu MenuBar

/\ /
¥

NN

Menultem

Another opportunity to save screen space isto move widgetsto dialogs. Dialog isaclass similar to
Frame. Both classes are direct subclasses of the Window class. Like aframe, adialog represents a
rectangular area of the screen and can hold a set of widgets. In contrast to frames, dialogs can be modal
and are designed as atemporary display for obtaining user input or similar purposes. A dialog needsto
have a frame as a parent.

In order to show how menus and dialogs can be used in a PDAP application, we create a small
shopping chart application, showing alist consisting of Amount and Item columns (see Listing 4.5).

For displaying the list, we use aPanel with GridLayout. In order to get as much space as possible
for the user data, we create a separate dialog class for adding new rows, InsertltemDialog. The
dialog isinvoked by selecting the menu item Insert of the Item menu. As already illustrated in Figure
4.6, there is a 1-to-n relation between MenuBar, Menu, and Menu I tem. The following code snippet
creates aMenuBar, registers the Menu I 'tem insert with the ActionListener of the Frame, and
finally concatenates the MenuBar with the frame:

MenuBar menuBar = new MenuBar();

Menu menu = new Menu (*'ltems™);

Menultem insertltem = new Menultem (“insert');
insertltem.addActionListener(this);
menu.add(insertltem);

menuBar .add(menu) ;

frame.setMenuBar (menuBar);

107

If the user selects the menu item insert, the actionPerformed () method of the registered handler
is caled, where the generated ActionEvent ishandled. Inthe actionPerformed() method, a
dialog will be shown enabling the user to add text into two columns labeled Amount and Item. The
following code snippet is responsible for creating an instance of our InsertltemDialog, showing
the dialog and adding the results to the main panel:

public void actionPerformed(ActionEvent ae) {
InsertltemDialog dialog = new InsertltemDialog(frame);
dialog.show();
textPanel .add(new Label (dialog.getAmount()));
textPanel .add(new Label (dialog.getltem()));
frame.validate();

}

Because the dialog is modal, it will block the event handler of the frame until the dialog is dismissed
using the OK button. In this case, the event handler switches back to the frame. To make sure that the
new content of the grid layout is arranged properly, we call the inval idate() method of the frame.

Listing 4.5 ShoppingChart. java

import java.awt.*;
import java.awt.event.™;
import javax.microedition.midlet.*;

public class ShoppingChart extends MIDlet implements ActionListener {
class InsertltemDialog extends Dialog implements ActionListener {

TextField amount = new TextField();
TextField item = new TextField();

public InsertltemDialog (Frame owner) {
super (owner, "Insert ltem", true);

Panel panel = new Panel (nhew GridLayout (2, 0));
panel _.add(new Label ('Amount'));

panel .add(amount);

panel .add(new Label ('ltem'™));

panel _add(item);

add(panel, BorderLayout.CENTER);

Panel buttonPanel = new Panel (new FlowLayout());
Button b = new Button ('ok'™);
b.addActionListener(this);
buttonPanel _add(b);
add(buttonPanel, BorderlLayout.SOUTH);
pack(Q);

}

public String getAmount() {
return amount.getText();
}

public String getltem() {
return item.getText();
}

public void actionPerformed (ActionEvent ae) {
setVisible (false);

108

}

Panel textPanel;
Frame frame;

public ShoppingChart() {
frame = new Frame(*'Shopping Chart™);

MenuBar menuBar = new MenuBar();

Menu menu = new Menu (""ltems"™);

Menultem insertltem = new Menultem (“insert'™);
insertltem.addActionListener(this);
menu.add(insertltem);

menuBar .add(menu) ;

frame.setMenuBar (menuBar);

textPanel = new Panel(new GridLayout (0, 2));
frame.add(textPanel, BorderLayout_.NORTH);

frame.addWindowListener(new WindowAdapter() {
public void windowClosing (WindowEvent e) {
destroyApp(true);
}

3

frame.pack();
}

public void actionPerformed(ActionEvent ae) {
InsertltemDialog dialog = new InsertltemDialog(frame);
dialog.show();
textPanel .add(new Label (dialog.getAmount()));
textPanel .add(new Label (dialog.getltem()));
frame.validate();

}

public void startApp() {
frame.show();
}

public void pauseApp() {
}

public void destroyApp(boolean unconditional) {
notifyDestroyed();
}

}

Figure 4.7 shows a shopping chart that is displayed using the GridLayout of the java.awt
package

Figure 4.7. The ShoppingChart application showing a shopping list layout using the
GridLayout.

109

piecas of butter
bottles of milk

Note

Thisintroduction gives arough overview of the PDAP subset of AWT only. Appendix B contains a
general comparison of the 2SE AWT and the AWT subset contained in PDAP.

Custom Components

Compared to SWING, the component set of AWT is quite limited. Most additional third-party AWT
components probably won't fit to the constraints of the subset contained in the PDA Profile in most
cases. In order to close this gap, it is often necessary to create custom components.

In order to be prepared for this task, you need to recall the main functionality that is provided by a
component:

e Digplaying the component on the screen
e Handling user events

In this section, we will start with a passive component not handling user events. Implementing a
progress bar component, we describe all steps necessary to display a custom component on the screen.
After we have created the non-interactive progress bar component, we will implement an image button
capable of handling user events.

The Component classisthe abstract super class of all non-menu related AWT components. It can be
extended directly to create a customized component necessary for our progress bar and image button
component as well.

The ProgressBar should provide a graphical representation of integer valuesin abar graph style,
comparable with a non-interactive Gauge of the MIDP Icdui package.

Listing 4.6 contains the source code of our ProgressBar implementation. The current progress
value in the range from 0 to 100 is stored in the val ue variable. The method setValue() isused to
change the state of the ProgressBar during application runtime.

In order to create a component that is capable of displaying itself, we need to overwrite the paint

method. The paint method is responsible for drawing the component itself. In the progress bar paint()
method, we use the given graphic object to draw a progress bar depending on the value variable and the
current size of the component.

110

Most custom components need to overwrite two additional methods that are important for the
appropriate layout of the component. The methods getMinimumSize() and
getPreferredSize() are used by layout managersto query the size information of the component.
Overwriting these methods with custom implementations makes sure that the component is displayed

in an appropriate size.

Listing 4.6 ProgressBar . java

import java.awt.™;

public class ProgressBar extends Component {
int currentValue = 0O;
final int MAX VALUE = 100;

public ProgressBar() {
}

public void setValue (int currentValue) {
if (currentvalue >= 0
&& currentValue <= MAX_VALUE) {
this.currentValue = currentValue;

public Dimension getPreferredSize() {
return new Dimension (100, 20);
}

public Dimension getMinimumSize() {
return new Dimension (10, 10);
}

public void paint (Graphics g) {

Dimension dim = getSize();
int progressPosition = (dim.width-4) * currentValue /
MAX_VALUE;

g-setColor (Color.black);
g-drawRect (0, 0, dim.width-1, dim.height-1);

g.setColor (Color.white);
g-drawRect (1, 1, dim.width-3, dim.height-3);

g.-setColor (SystemColor.activeCaption);
g-FillRect (2, 2, progressPosition, dim.height-4);
g-setColor (Color.white);
g-fillRect (progressPosition + 2, 2,
dim.width - progressPosition - 4, dim.height-4);
}

For testing purposes, we provide a small application shown in Listing 4.7 to show how the
ProgressBar can be integrated into a MIDlet; the application is shown in Figure 4.8. The
application just providesaScrol I bar for setting the current progress value and the ProgressBar

Yba&lf@f

itself. Real applications using the progress bar will probably be multithreaded. Note that for thread-safe
accessto AWT, it is necessary to use the EventQueue . invokelLater () method, described in the
section "Multiple Threads in the PDAP AWT Subset."

Figure 4.8. The ProgressTest application for testing the ProgressBar component.

Listing 4.7 ProgressTest. java

import java.awt.*;
import java.awt.event.*;
import javax.microedition.midlet.*;

public class ProgressTest extends MIDlet implements
AdjustmentListener {

Frame frame;
ProgressBar pBar = new ProgressBar();
Scrollbar sBar = new Scrollbar();

public ProgressTest() {
frame = new Frame(*'ProgressBar Test');

sBar = new Scrollbar (Scrollbar_HORIZONTAL, 0, 10, 0, 100);
sBar .addAdjustmentListener(this);

frame.add(pBar, BorderLayout.NORTH);
frame.add(sBar, BorderlLayout.SOUTH);
frame.pack();

public void adjustmentValueChanged(AdjustmentEvent e) {
pBar.setValue (sBar.getValue());
pBar.repaint();

}

public void startApp() {
frame.show();
}

public void pauseApp() {
}

112

public void destroyApp(boolean unconditional) {
notifyDestroyed();
¥

}

After the implementation of the ProgressBar, we will now focus on an active component that is
capable of handling user events. In order to show how this can be achieved, we will implement a button
that displays an image instead of atext label. When the button is pressed by tapping the styluson it, it
will create an ActionEvent and send it to all registered listeners.

Asinthe ProgressBar implementation, we derive our ImageButton component from the
Component class. Listing 4.8 contains the source code of the ImageButton. Thepaint(),
getPreferredSize(), and getMinimumSize () methods correspond to their counterparts of
the ProgressBar implementation. The constructor takes an image object and a command string and
stores the parametersin object variables.

For handling user input, one possibility would be to register a mouse listener. However, for custom
components, it is more appropriate to overwrite the processMouseEvent () method, which
receives all mouse events when enabled. Enabling the events roughly corresponds to the registration
process of the listener interface. Thisis done by calling the enableEvents () method of the
Component class with the parameter AWNTEvent .MOUSE_EVENT_MASK. Without this call, our
implemented processMouseEvent () method would never be called by the event handler.

In addition to handling mouse events, it is necessary to enable users of the component to register action
listeners, just like for regular buttons. Thus, the methods addActionListener() and
removeActionListener () must be provided. The I isteners variable containsa Vector that
keeps track of the listeners registered with the ImageButton component.

In the processMouseEvent () method, a check for the event ID MOUSE_CL I CKED is performed.
If the mouse event passes the test, an ActionEvent object is created and sent to the
actionPerformed() methods of all registered listeners by iterating through the listeners.

Listing 4.8 ImageButton. java

import java.awt.*;
import java.awt.event.*;
import java.util_Vector;

public class ImageButton extends Component {
Image image;
String command;
Vector listeners = new Vector();
public ImageButton (Image image, String command) {
this.image = image;
this.command = command;

enableEvents(AWTEvent.MOUSE_EVENT_MASK);

public void addActionListener(ActionListener listener) {
listeners.addElement (listener);
}

113

public void removeActionListener(ActionListener listener) {
listeners.removeElement (listener);
}

public void paint (Graphics g) {

Dimension dim = getSize();

int w = image.getWidth (this);

int h = image.getHeight (this);

g.-drawlmage (image,
(dim.width - w) / 2,
(dim.height - h) /7 2,
this);

Color fg = g.getColor();

g.setColor (fg);

g.drawRoundRect (0, 0, dim.width-1, dim.height-1, 4, 4);

public Dimension getMinimumSize() {
return new Dimension (image.getWidth (null),
image.getHeight (null));

public Dimension getPreferredSize() {
return getMinimumSize();
}

public void processMouseEvent(MouseEvent e) {
if (e.getID() == MouseEvent_MOUSE_CLICKED) {

ActionEvent ae = new ActionEvent
(this, ActionEvent.ACTION_PERFORMED, command);

for (int i = 0; 1 < listeners.size(); i++)
((ActionListener) listeners.elementAt (i))
.actionPerformed (ae);

}

super.processMouseEvent(e);
}

For testing purposes, we provide a small application shown in Listing 4.9 to show how the
ImageButton can beintegrated into a MIDlet. The application usesan ImageButton that is
registered to an ActionListener of the Frame. When the ImageButton isclicked, we
increment aclickCount variable and display its value in the frame title.

Listing 4.9 ImageTest. java
import java.awt.*;

import java.awt.event.*;
import javax.microedition.midlet.*;

public class ImageTest extends MIDlet implements ActionListener {

114

Frame frame;
int clicks = 0;
ImageButton button;

public ImageTest() {
frame = new Frame(''ImageButton Test');

button = new ImageButton
(Toolkit.getDefaultToolkit().getlmage (“'logo.png™),
"logo™);
button.addActionListener(this);

frame.add(button, BorderLayout.CENTER);
frame.pack();

public void actionPerformed(ActionEvent ae) {
frame.setTitle (“'clicks: " + (++clicks));
}

public void startApp() {
frame.show();
}

public void pauseApp() {
}

public void destroyApp(boolean unconditional) {
notifyDestroyed();
}

}

Figure 4.9 showsthe ImageTest application containing the ImageButton component created in
this section.

Figure 4.9. The ImageTest application for testing the ImageButton component.

Switching Layouts Depending on the Screen Resolution Available

115

The screen sizes of PDAs differ significantly between different models. Figure 4.10 illustrates a set of
different PDAs from various vendors showing diverse screen formats and orientations. The Nokia 9210
has a horizontal display with a resolution of 640x240 pixels. Regular Palms have a screen resol ution of
160x160 pixels. The HandEra 330 has a vertical screen format with a resolution of 240x320 pixels
similar to the screen of most PocketPCs such as the Compagq | Pag.

Figure 4.10. PDAs with different screen sizes available on the market.

B] + 44101 1455
= g | +HADTEHATE
lwwedthe 7
s 1 Jhb

In some cases, to make optimal use of the screen space available, alayout that dynamically adopts to
the screen resol ution available might make the most sense. In order to demonstrate this concept,
assume that we would like to display two components with afixed size. Depending on the screen
format, there might be space enough for both components, or only one component might fit on the
screen. If both components fit, they might fit only if horizontally or vertically arranged. It might also be
possible that not even a single component will fit in the available space. Clearly, we want to make
optimal use of the screen space available, so if both components fit, both should be displayed. If one
component fits, we need a control to switch the displayed component, similar to aJTabbedPane in
Swing. Finaly, if not even one component fits, a scrollbar should allow the user to select aregion of
the component(s) to be displayed.

How can this goal be achieved? It isn't as difficult asit might seem. Fortunately, there is a special
method doLayout() that the AWT system calls whenever an arrangement of a component is
required. So it is possible to overwrite this method, look at the space available, and then arrange the
child components accordingly.

For the example code, assume that width and height are the actual dimensions of the components
to be displayed. The following subclass of Panel arranges the two components rectl and rect?2
with respect to thewidth and height variables as described in the previous paragraph.

We start the implementation of doLayout() by removing all contained components, disabling a
choice control for switching between the images, and storing the actual dimensionsin alocal variable d:

class DynPanel extends Panel {

public void doLayout() {
removeAll();
cardChoice.setEnabled (false);
Dimension d = getSize();

116

Now we can figure out if enough space is available for displaying at |east one of the images by
comparing the actual size with the image width and height. If one image fits, further tests are
performed to determine whether both images can fit in the space available. If so, theimages are
arranged accordingly by setting the layout manager to a corresponding grid layout, and both images,
rectl and rect?2, are added to the panel:

if (d-width >= width && d.height >= height) {

boolean dw d.width >= 2 * width;
boolean dh = d.height >= 2 * height;
if (dw | dh) {
if ((dw && 'dh) || (dw && dh && d.width > d.height))
setLayout (new GridLayout (1, 2));
else
setLayout (new GridLayout (2, 1));

add(rectl);
add(rect2);

}

If there is enough space for one image but not enough for both of them, only oneis displayed,
depending on the state of a choice in the main frame. Also, the choiceis enabled in order to let the user
select the component she would like to view:

else {
setLayout (new BorderLayout());
add(cardChoice.getSelectedindex() == 0 ?
rectl : rect2);
cardChoice.setEnabled (true);

}

Finally, if not even one image fitsin the space available, we create aScrol IPane that contains the
two child components in a subpanel with a grid layout:

else {
setLayout (new BorderLayout());
ScrollPane scroll = new ScrollPane();
Panel panel = new Panel (nhew GridLayout (2, 1));
panel .add(rectl);
panel .add(rect2);
scroll _add(panel);
add(scroll);

}

super.doLayout();
3

For the case in which the application is running on a system with flexible window sizes, we need to add
amethod returning the desired size of the dynamic panel. Here, the dimensions allowing a horizontal
arrangement of the child components are returned:

public Dimension getPreferredSize() {
return new Dimension (2 * width, height);
}

}

Listing 4.10 contains the code for the complete DynLayout example. Theinner class
RectComponent isacustom component that is inserted into the DynPanell, showing the effects. It

117

just draws an empty or filled rectangle, depending on the boo I ean value given to the constructor.
Besides the DynLayout with the two instances of RectComponent (rectl and rect?2), the
application frame contains text fields for setting the width and height variables. These are useful for
demonstrating the effects of the dynamic layout because the screen size itself is usually fixed. The
congtructor of the DynLayout arranges the control components and sets the listener. The

itemSelected() method isresponsible for changing the displayed RectComponent if the choice
control is switched.

Although this example islimited to a special case, it serves as a demonstration for some principles of
dynamic layout. Feel free to extend it as needed, for example by querying the actual sizes of child

components instead of using the width and height variables or by adding support for more than two
child components.

Listing 4.10 DynLayout. java

import java.awt.*;
import java.awt.event.™;

import javax.microedition.midlet.*;

public class DynLayout extends MIDlet implements ActionListener,
ItemListener {

int width = 100;
int height = 100;

Frame frame = new Frame (‘'DynLayout™);
TextField widthField = new TextField (*'100");
TextField heightField = new TextField (*'100");
Choice cardChoice = new Choice();

Button applyButton = new Button (""Apply');

DynPanel dynPanel = new DynPanel();
class RectComponent extends Component {

boolean fill;

public RectComponent (boolean fill) {
this_fill = fill;

}
public void paint (Graphics g) {
Dimension d = getSize();

g-setColor (Color.black);
it (fill)
g-FillRect ((d.width - (width - 5)) / 2,
(d.height - (height - 5)) 7/ 2,
width - 5, height - 5);
else
g-drawRect ((d.width - (width - 5)) 7/ 2,
(d.height - (height - 5)) 7/ 2,
width - 5, height - 5);
}

public Dimension getPreferredSize() {

return new Dimension (width, height);
}

public Dimension getMinimumSize() {

118

return new Dimension (width, height);

}

RectComponent rectl
RectComponent rect2

new RectComponent (false);
new RectComponent (true);

class DynPanel extends Panel {
public void doLayout() {
removeAll();
cardChoice.setEnabled (false);
Dimension d = getSize();

if (d.width >= width && d.height >= height) {

boolean dw
boolean dh

d.width >= 2 * width;
d.height >= 2 * height;

if (dw | dh) {
if ((dw & 'dh) || (dw && dh && d.width >

d.height))
setLayout (new GridLayout (1, 2));
else
setLayout (new GridLayout (2, 1));
add(rectl);
add(rect2);
else {
setLayout (new BorderLayout());
add(cardChoice.getSelectedlndex() == 0 ?
rectl - rect2);
cardChoice.setEnabled (true);
}
}
else {
setLayout (new BorderLayout());
ScrollPane scroll = new ScrollPane();
Panel panel = new Panel (nhew GridLayout (2, 1));
panel .add(rectl);
panel .add(rect?2);
scroll .add(panel);
add(scroll);
}

super.doLayout();
}

public Dimension getPreferredSize() {
return new Dimension (2 * width, height);
}

public DynLayout() {
Panel labelPanel new Panel (new GridLayout (0, 1));

Panel fieldPanel = new Panel (nhew GridLayout (0, 1));
Panel buttonPanel = new Panel (new GridLayout (0, 1));

119

labelPanel .add(new Label ('Width: "));
labelPanel _.add(new Label ('Height: "));

fieldPanel .add(widthField);
fieldPanel .add(heightField);

cardChoice.add('outline™);
cardChoice.add('filled™);
buttonPanel .add(cardChoice);
buttonPanel .add(applyButton);

applyButton.addActionListener(this);
cardChoice.addltemListener(this);

Panel controlPanel = new Panel (new BorderLayout());
controlPanel .add(labelPanel, BorderLayout.WEST);
controlPanel _.add(fieldPanel, BorderLayout.CENTER);
controlPanel _.add(buttonPanel, BorderlLayout_.EAST);

frame.add(controlPanel, BorderLayout.NORTH);
frame.add(dynPanel, BorderLayout.CENTER);

frame.addWindowListener(new WindowAdapter() {

public void windowClosing (WindowEvent ev) {
notifyDestroyed();
}

}):
frame.pack();

public void itemStateChanged (ltemEvent ev) {
if (ev.getStateChange() == ltemEvent.SELECTED) {
dynPanel _invalidate();

frame.validate();
dynPanel .repaint();

public void actionPerformed (ActionEvent ev) {

width = Integer.parselnt (widthField.getText());
height = Integer.parselnt (heightField.getText());

rectl.invalidate();
rect2.invalidate();
frame.validate();

b

public void startApp() {
frame.show();

b

public void pauseApp() {
}

public void destroyApp (boolean unconditional) {

120

frame.dispose();
¥

Custom Layout Managers

Although the PDAP AWT subset contains all AWT layout managers including the flexible
GridBaglLayout, there may still be cases that cannot be handled by the standard layout managers.
Although nesting panels with different layout managers helpsin many situations, this approach isn't
suitable for all scenarios and is also very resource consuming. Thus, the design of custom layout
managers, generating application dependent layoults, is of special importance for developing PDAP
applications.

If we look back to the DialogMenuDemo application created in the section "Dialogs and Menus," the
amounts and items are arranged using aGridLayout. Thus, the horizontal spaceisequally
distributed to both columns regardless of their actual size. Using aGridBaglLayout, it would be
possible to distribute the space in a more flexible way. However, here you will learn the creation of
custom layout managers by the example of alayout manager similar to GridLayout, but alowing
different column widths and row heights. Because the layout is similar to the layout policy of HTML
tables, this layout manager is called TableLayout.

Thefirst step of creating a custom layout manager is to implement the LayoutManager interface,
consisting of the methods listed in Table 4.3. Those methods are responsible for the interaction of the
layout and the container it is assigned to.

Table 4.3. Methods of the LayoutManager Interface

IMethod !Description

void addLayoutComponent (String Adds the specified component with the

constraint, Component comp) specified constraint to the layout.

void layoutContainer (Container parent) |Lays out the contents of the given
container.

Dimension minimumLayoutSize (Container |Calculates the minimum size

parent) dimensions for the specified container.

Dimension preferredLayoutSize Calculates the preferred size for the

(Container parent) specified container.

void removelLayoutComponent (Component |Removes the specified component from

comp) the layout.

In addition to the LayoutManager interface methods, the Tab leLayout needs a constructor. The
TablelLayout constructor takes the number of columns as parameter and storesit in the col's object
variable. The number of rowsisn't required because it can be calculated by dividing the total number of
components by the number of columns. The following code snippet showsthe TableLayout
constructor and a helper method for calculating the row count;

public TableLayout (int cols) {
this.cols = cols;

if (cols < 1)
throw new RuntimeException
("'cols must be > 0");

int getRowCount (Container container) {
return (container.getComponentCount() + cols - 1) / cols;

Before we can implement the methods for cal culating the minimal or preferred layout size or
performing the actual layout itself, it makes sense to think about a hel per method caring about the
common calculations of all those methods.

For both cal culating the minimum layout sizes and performing the actual layout task, it is necessary to
know the minimum sizes of the rows and columns. The height of arow is determined by the maximum
cell height of that row. The width of acolumn is determined by the maximum cell width of that column.
The helper method getMinimumSizes() fillsthe given int arrays with the corresponding
calculations and returns the sumsin aDimension object:

public Dimension getMinimumSizes (Container container,
int [] mecw, int [] mrh) {
int count = container.getComponentCount();

Dimension sum = new Dimension (0, 0);
int i = 0;

for (int y = 0; y < mrh_.length; y++) {
for (int x = 0; X < cols && 1 < count; x ++) {
Dimension ms = container.getComponent
(i++) .getMinimumSize();
mcw [x] = Math.max (mcw [x], ms.width);
mrh [y] = Math.max (mrh [y], ms.height);

}
sum.height += mrh [y];

for (int x = 0; X < cols; x++)
sum.width += mcw [X];

return sum;

}

Using thisgetMinimumSizes() method, theminimumLayoutSize() method of the
LayoutManager interface can be implemented easily by just adding the container insets to the
returned dimensions:

public Dimension minimumLayoutSize (Container container) {

Insets insets = container.getlnsets();
int rows = getRowCount (container);

Dimension result = getMinimumSizes
(container, new int [cols], new int [rows]);

result_width += cols - 1 + insets.left + insets.right;
result_height += rows - 1 + insets.top + insets.bottom;

return result;

}

For the limited screen sizes of PDAS, it seems appropriate to return theminimumLayoutSize aso
as apreferred layout size:

public Dimension preferredLayoutSize (Container container) {
return minimumLayoutSize (container);
}

122

Themainjob of the TableLayout isdoneinthe layoutContainer () method. The method
resizes each component that is added to the container according to its height and width and the
container size. If there is remaining space, all components are scaled with an equal factor, calculated by
dividing the space available by the minimum layout size:

public void layoutContainer (Container container) {

int count = container.getComponentCount();
int rows = getRowCount (container);

if (count == 0) return;

Insets insets = container.getlnsets();
Dimension size = container.getSize();

int X0 = insets.left;

int yO = insets.top;

int wO = size.width - x0 - insets.right;
int h0 = size.height - y0O - insets.bottom;

int [mcw
int [] mrh

new int [cols];
new int [rows];

Dimension min = getMinimumSizes (container, mcw, mrh);
// calculate a scale factor

int scx
int scy

= ((WO-cols+1) << 8) / min.width;
int i =0;

((hO-rows+1) << 8) / min.height;

for (inty = 0; y < rows; y++) {
int x1 Xx03;
int h = (mrh [y] * scy) >> 8;
for (int x = 0; X < cols && 1 < count; x++) {
int w = (mcw [x] * scx) >> 8;
container.getComponent (i++).setBounds (x1, yO, w, h);
X1 += w + 1;

}
y0 += h + 1;

}

Because we don't need additional layout constraints such as NORTH or CENTER for the
BorderLayout, we don't need to keep track of adding and removing components. Thus, the
implementations of addLayoutComponent() and removelLayoutComponent() areleft
empty:

public void addLayoutComponent (String where, Component component) {

}

public void removelLayoutComponent (Component component) {

}

Note that if layout constraints are important, in most casesit is more appropriate to implement the
improved LayoutManager2 class, which can handle arbitrary objects as layout constraints instead of
Strings.

123

Listing 4.11 contains the full source code of the TableLayout. You can try the TableLayout by
replacing the GridLayout inthe ShoppingChart application. Figure 4.11 shows a corresponding
screenshot. As you can see in the picture, in contrast to the original application, more spaceis
distributed to the items and less to the amounts, resulting in a more adequate layout.

Figure 4.11. The ShoppingChart2 application using the TableLayout

3 pieces of butter
2 bottles of milk

Listing 4.11 TableLayout. java

public class TableLayout implements LayoutManager {

int cols;

public void addLayoutComponent (String where, Component component)

}

public void removelLayoutComponent (Component component) {

}

public TableLayout (int cols) {
this.cols = cols;

if (cols < 1)
throw new RuntimeException
("'cols must be > 0");

}

public Dimension getMinimumSizes (Container container,
int [] mcw, int [] mrh) {

int count = container.getComponentCount();

- J

imension sum = new Dimension (0, 0);
int i = 0;
for (inty = 0; y < mrh.length; y++) {
for (int x = 0; X < cols && i1 < count; x ++) {
Dimension ms = container.getComponent
(i++) .getMinimumSize();
mcw [x] = Math.max (mcw [x], ms.width);

124

mrh [y] = Math.max (mrh [y], ms.height);

sum.height += mrh [y];
}

for (int x = 0; X < cols; x++)
sum.width += mcw [x];

return sumj;

}

int getRowCount (Container container) {

return (container.getComponentCount() + cols - 1) / cols;
}
public Dimension minimumLayoutSize (Container container) {

Insets insets = container.getlnsets();
int rows = getRowCount (container);

Dimension result = getMinimumSizes
(container, new int [cols], new int [rows]);

result_width += cols - 1 + insets.left + insets.right;
result._height += rows - 1 + insets.top + insets.bottom;

return result;

public Dimension preferredLayoutSize (Container container) {
return minimumLayoutSize (container);
}

public void layoutContainer (Container container) {

int count = container.getComponentCount();
int rows = getRowCount (container);

if (count == 0) return;

Insets insets = container.getlnsets();
Dimension size = container.getSize();

int X0 = insets.left;

int yO = insets.top;

int wO = size.width - x0 - insets.right;
int h0O = size.height - y0 - insets.bottom;

int [] mcw
int [] mrh

new int [cols];
new int [rows];

Dimension min = getMinimumSizes (container, mcw, mrh);

// calculate a scale factor

int scx = ((WO-cols+1) << 8) / min.width;
int scy = ((hO-rows+1) << 8) / min.height;
int i = 0;

for (int'y = 0; y < rows; y++) {

125

int x1 = x0;

int h = (mrh [y] * scy) >> 8;

for (int x = 0; X < cols && 1 < count; x++) {
int w = (mew [x] * scx) >> 8;
container.getComponent (i++).setBounds (x1, yO, w, h);
X1 += w + 1;

¥
y0O += h + 1;

}

Multiple Threads in the PDAP AWT Subset

As mentioned in the beginning of this chapter, one of the main restrictions of the PDAP AWT subset is
that AWT methods might be called from the event dispatching thread only. Thisrestriction is necessary
because the implementation of athread-safe AWT subset is more complex and slower than an AWT
subset based on the single thread model. Actually, the modern 2ME SWING user interface doesn't
allow calls from multiple threads for the same reasons. However, this does not mean that the PDAP
AWT cannot work with threads at all. It isjust necessary to take some extra steps when making callsto
AWT methods from separate threads.

For calls from separate threads, the AWT class EventQueue provides two static methods,
invokelLater () and invokeAndWait(). Both methods take an object implementing the
Runnable interface as parameter. Calls to these methods can be performed from threads other than

the event handling thread. AWT automatically ensures that the run() method of the given

Runnable classisthen called from the AWT event thread. The difference between invokelLater ()
and invokeAndWait() isthat invokeLater () returnsimmediately, whereas
invokeAndWait() does not return until the run() method of the given object has been executed.

An example using multiple threads is a simulation running in a separate thread, which needs to update
some components showing the simulation state from time to time.

The PdalLander applicationisasimplified ssmulation of alunar landing. It displays the landing
parameters such as atitude, velocity, and fuel remaining and allows the user to set the thrust of the
engine to a value between 0 and 100%.

The core of the application, the simulation thread can be implemented as an inner class of the
PdaLander application, accessing the simulation state variablesvelocity, height, fuel, and
thrust. The constants GRAVITY and ACCELERAT ION reflect the gravity of the moon and the
acceleration available at 100% thrust. Note that all values are measured in fine-grained unitsin order to
avoid slow floating-point operations. All values are measured in metric unitsin order to simplify the
calculations and to save our lunar lander from the fate of the Mars Polar lander.

The simulation is performed by measuring the elapsed time since the last simulation step and then
updating all variables accordingly. The current velocity is recal culated based on the acceleration and
time, the height is calculated based on the velocity and time, and finally the remaining fuel is adjusted.
Then the invokeAndWait() method is called in order to update the user interface, ensuring
synchronization with the AWT event thread:.

import java.awt.*;

import java.awt.event.™;

import javax.microedition.midlet.*;
public class PdalLander extends MIDlet {

static final long GRAVITY = 1620; // mm/s2
static final long ACCELERATION = 2*GRAVITY;

126

long velocity = 0; // 0 mm/s (= 0 m/s)

long height = 1000000; // 1000000 mm 1000 m = 1 km
long fuel = 100000; // ms = 120 s 2 min

long thrust = 0;

class Simulation extends Thread {
long time = System.currentTimeMillis();

public void run() {
do {
long dt = System.currentTimeMillis() - time;

velocity += ((GRAVITY - (ACCELERATION * thrust)
/ 100) * dt) / 1000;

height -= (velocity * dt) / 1000;

time += dt;

fuel -= (thrust * dt) / 100;

try {
EventQueue. invokeAndWait (screenManager);

}
catch (Exception e) {

throw new RuntimeException (e.toString());
}

}
while (height > 0);
3
}

The screenManager, which contains the run method indirectly called fromthe Simulation
object, is responsible for updating the user interface according to the simulation state. It also reads the
new thrust setting and determines if the lander has landed safely or crashed into the ground. The helper
method mi I liToStr () just converts the fine grained units to the usual units by dividing them by
1000. The maximum allowable landing speed is one meter per second:

static final long MAX_VELOCITY = 1099;

Label velocityDisplay = new Label();
Label heightDisplay = new Label();
Label fuelDisplay = new Label();
Scrollbar thrustSlider =
new Scrollbar (Scrollbar_HORIZONTAL, O, O, O, 100);

ScreenManager screenManager = new ScreenManager();
class ScreenManager implements Runnable {
public String milliToStr (long milli) {
return (milli /7 1000) + "." + Math.abs ((milli % 1000) / 100);
}
public void run() {
if (height <= 0)
heightDisplay.setText
(velocity <= MAX_VELOCITY ? "Landed"™ : "Crashed!');

else
heightDisplay.setText (milliToStr (height));

127

velocityDisplay.setText (milliToStr (velocity));
fuelDisplay.setText (milliToStr (fuel < 0 ? 0 : fuel));

thrust = fuel <= 0 ? 0 : thrustSlider.getvalue();

}

The constructor just sets up the user interface by adding the controls and |abels to the application frame:

public PdaLander() {

Panel intermediate
Panel controlPanel

controlPanel
controlPanel
controlPanel
controlPanel
controlPanel
controlPanel
controlPanel
controlPanel

intermediate.

new Panel (new BorderLayout());
new Panel (new GridLayout (0, 2));

.add(new Label ('Height:'"), Label .LEFT);
.add(heightDisplay);

-add(new Label (Velocity:"));
-add(velocityDisplay);

.add(new Label ('Fuel:"));
-.add(fuelDisplay);

.add(new Label ('Thrust:'));
-add(thrustSlider);

add(controlPanel, BorderLayout.NORTH);

frame.add(intermediate, BorderLayout.CENTER);
frame.addWindowListener(new WindowAdapter() {
public void windowClosing (WindowEvent ev) {

}
3

frame.pack();

}

notifyDestroyed();

When the application is brought on the screen and not yet running, the simulation thread is started:

public void startApp() {

frame.show();

if (simulation ==
simulation =

nul) {

new Simulation();

simulation.start();

}

When the application is paused by the Application Management System (AMS), we do nothing. This
behavior could be improved by suspending the ScreenManager thread.

public void pauseApp() {

}

When the application is terminated, the height is set to a negative value in order to make sure that the
simulation thread terminates immediately. Then the frame is disposed:

public void destroyApp (boolean unconditional) {
height = -100000000;
frame.dispose();

128

A simple approach to master the landing isto let the lander fall to 550 meters and then go to full thrust.
When the speed is reduced to 1 m/s, go to 50% thrust.

A full listing of an improved lunar lander example without inserted text is contained in the next section.
Combined Application Example: A Lunar Lander with Graphical Display

As an example of combining some of the techniques demonstrated in this chapter, we will enhance the
lunar lander example from the previous section by adding a graphical display and slightly modifying
the screen layout depending on the ratio between height and width.

For the external camera view component of the lander, we create anew inner classExternalView
derived from Canvas. In the paint method, we draw atriangle representing the lander and three lines
representing the engine exhaust, depending on the thrust level. The screen position of the lander is
calculated in the getScrY() method by multiplying the real height with the screen height and then
dividing by the maximum height. The old thrust level and display position are saved in order to be able
to determine if the values have changed in the check method. The check method is called from the
ScreenManager. It forces arepaint only if the thrust level or screen height has changed in order to
avoid unnecessary flickering.

The animation could be improved further by repainting only the area of the ExternalView
component that was actually affected by the move of the lander. Even smoother animation would be
possible by using an offscreen buffer asin the MIDP stopwatch example. However, for games MIDP is
probably the more appropriate profile anyway, so we do not repeat the corresponding code here:

class ExternalView extends Canvas {

int oldyY;
long oldThrust;

public void paint (Graphics g) {

int x = getSize().width / 2;

int y = getScrY(Q);

g-drawLine (x-5, y-1, x+5, y-1);

g-drawLine (x-5, y-1, x, y - 10);
1, x, y - 10);

y
y
g.drawLine (x+5, y-
{

if (thrust > 10)
g.drawLine (x-3, y+1, x-3, (int) (y + 1 + thrust /

20));
g.drawLine (x+3, y+1, x+3, (int) (y + 1 + thrust /
20));
g-drawLine (x, y+1, x, (int) (y + 1 + thrust / 15));
}
oldy = y;

oldThrust = thrust;
b

public Dimension getPreferredSize() {
return new Dimension (50, 100);
}

public Dimension getMinimumSize() {
return new Dimension (20, 50);
}

129

int getScrY() {

int scrH = getSize().height;

return scrH - (int) (height * scrH / START_HEIGHT);
}

public void check() {
if (thrust != oldThrust || oldY != getScrY())
repaint();

}

The second improvement of our new PdaLander version is an automatic adoption to the screen size
ratio. Because the graphical display takes some additional space to the right of the controls, the labels
are automatically displayed above the controlsinstead of to the left if the height of the screen is greater
than the width:

public PdaLander2() {

Dimension d = Toolkit.getDefaultToolkit().getScreenSize();
boolean vertical = d.height > d.width;

Panel intermediate
Panel controlPanel

1:2));

int align = vertical ? Label . LEFT : Label .RIGHT;

new Panel (new BorderLayout());
new Panel (new GridLayout (O, vertical ?

controlPanel _.add(new Label (“'Height:*, align));
controlPanel _.add(heightDisplay);

controlPanel _.add(new Label ('Velocity:", align));
controlPanel .add(velocityDisplay);

controlPanel _.add(new Label ('Fuel:", align));
controlPanel .add(fuelDisplay);

controlPanel _.add(new Label ('Thrust:", align));

controlPanel _.add(thrustSlider);
intermediate.add(controlPanel, BorderLayout.NORTH);
frame.add(intermediate, BorderLayout.WEST);
frame.add(externalView, BorderlLayout.CENTER);
frame.addWindowListener(new WindowAdapter() {

public void windowClosing (WindowEvent ev) {
notifyDestroyed();
}

} ;s

frame.pack();
}

Listing 4.12 shows the compl ete source code of the enhanced PdaLander example and Figure 4.12
shows a screenshot of the PdaLander running on a Palm Pilot.

Figure 4.12. The PdaLander?2 application running on a Palm Pilot.

130

Height:332.5
Velocity:42.3
Fuel:

Similar to the other examples, there is much room for your own improvements. For example, the
display of acrashed lander could be designed differently from a successful landing. A more
sophisticated extension would be to alow vertical movements and to add some kind of terrain structure.
Another possible improvement would be to add a double buffered display, eliminating any screen
flickering.

Listing 4.12 PdalLander2. java

import java.awt.*;
import java.awt.event.*;
import javax.microedition.midlet.*;

public class PdalLander2 extends MiDiet {

Frame frame = new Frame ('PDAlander™);
Simulation simulation;
ScreenManager screenManager = new ScreenManager();

Label velocityDisplay = new Label();
Label heightDisplay = new Label();
Label fuelDisplay = new Label();
Scrollbar thrustSlider =
new Scrollbar (Scrollbar.HORIZONTAL, O, 0, O, 100);

ExternalView externalView = new ExternalView();

static final long START_HEIGHT = 1000000;
static final long GRAVITY = 1620; // mm/s2
static final long ACCELERATION 2*GRAVITY;
static final long MAX VELOCITY 1000;

long velocity = 0; // mm/s
long height = START _HEIGHT; // mm
long fuel = 100000; // ms
long thrust = 0;

class ExternalView extends Canvas {

int oldy;
long oldThrust;

public void paint (Graphics g) {

Yka&BIﬁ[”

20));
20));

}

// .drawRect (0, 0, d.width, d.height);

«Q

int x
int y

getSize() .width / 2;
getScrY();

g.drawLine (x-5, y
g-drawLine (x-5, y
g-drawLine (x+5, y-

{

if (thrust > 10)
g.drawLine (x-3, y+1, x-3, (int) (y + 1 + thrust /

g-drawLine (x+3, y+1, x+3, (int) (y + 1 + thrust /

g.drawLine (x, y+1, x, (int) (y + 1 + thrust / 15));
}

oldy = y;
oldThrust = thrust;

public Dimension getPreferredSize() {

}

return new Dimension (50, 100);

public Dimension getMinimumSize() {

}

return new Dimension (20, 50);

int getScrY() {

}

int scrH = getSize().-height;
return scrH - (int) (height * scrH / START_HEIGHT);

public void check() {

if (thrust !'= oldThrust || oldY != getScrY())
repaint();

class ScreenManager implements Runnable {

100);

public String milliToStr (long milli) {

}

return (milli /7 1000) + "." + Math.abs ((milli % 1000) /

public void run(Q) {

it (height <= 0)
heightDisplay.setText
(velocity <= MAX VELOCITY
? "Landed"
: "Crashed!');
else
heightDisplay.setText (milliToStr (height));

132

velocityDisplay.setText (milliToStr (velocity));
fuelDisplay.setText (milliToStr (fuel < 0 ? 0 : fuel));

thrust = fuel <= 0 ? 0 : thrustSlider.getvValue();

externalView.check();

class Simulation extends Thread {
long time = System.currentTimeMillis();
public void run() { // 0..100

do {
long dt = System.currentTimeMillis() - time;
velocity += ((GRAVITY - (ACCELERATION * thrust)
/ 100) * dt) / 1000;
height -= (velocity * dt) / 1000;
time += dt;
fuel -= (thrust * dt) / 100;

try {
EventQueue. invokeAndWait (screenManager);
}

catch (Exception e) {
throw new RuntimeException (e.toString());
}

}
while (height > 0);

public PdaLander2() {

Dimension d = Toolkit.getDefaultToolkit().getScreenSize();
boolean vertical = d.height > d.width;

Panel intermediate = new Panel (new BorderLayout());
Panel controlPanel = new Panel (new GridLayout (O, vertical ?

1:2));
int align = vertical ? Label . LEFT : Label .RIGHT;

controlPanel _.add(new Label ('Height:", align));
controlPanel _.add(heightDisplay);

controlPanel .add(new Label (*'Velocity:", align));
controlPanel .add(velocityDisplay);

controlPanel .add(new Label (“'Fuel:", align));
controlPanel _.add(fuelDisplay);

controlPanel _.add(new Label ("'Thrust:", align));
controlPanel .add(thrustSlider);

intermediate.add(controlPanel, BorderLayout.NORTH);
frame.add(intermediate, BorderLayout_WEST);
frame.add(externalView, BorderlLayout.CENTER);

frame.addWindowListener(new WindowAdapter() {

133

public void windowClosing (WindowEvent ev) {
notifyDestroyed();
}

} s
frame.pack();

public void startApp() {
frame.show();
iT (simulation == null) {
simulation = new Simulation();
simulation.start();

}
}
public void pauseApp() {
}

public void destroyApp (boolean unconditional) {
height = -100000000;
frame.dispose();

Summary

After the short introduction in which we introduced the use of AWT components, you should now
be familiar with handling those that are contained in the AWT. Moreover, you have learned to use
layout managers to place AWT components in a container such as panels and frames and even
know how to handle events that might be invoked by user interactions.

134

Chapter 5. Data Persistency
INTHISCHAPTER

RMS Basics

Basic Functionality of the Class RecordStore

A Simple Diary Application Using RMS

Record Listeners

Storing Custom Objects

Ordered Traversal: Comparators and Record Enumerations
The Search Problem

Mobile devices such as cellular phones or PDAs normally don't have afile system available like
that found on desktop computers. However, these devices till provide a mechanism to store data
persistently. This mechanism is based on memory techniques such as flash memory. These
techniques provide an advantage in that the head-positioning times associated with disk-based
media are avoided. Thus, amore appropriate system based on random record access instead of
sequential file reading is provided for these devices. For access to this record system, PDAP and
MIDP contain the Record Management System (RMS).

RMS Basics

The RMS API is contained in the package javax.microedition.rms. A MIDlet can create
and access a number of record stores. Each record store has a name that is unique in the MIDlet
suite. It consists of a number of variable-length records. The records themselves are simple byte
arrays without any further predefined structure.

The RMS API does not include routines for integrity maintenance. All maintenance is performed
by the platform automatically.

MIDlets can access record stores of other MIDlets only if they are in the same MIDlet suite. For
instance, it ispossible to includeaMIDlet A inside MIDlet suite 1 and includeaMIDlet B in
MIDlet suite 2. Although both MIDlet suites are on the same device, MIDlet A is not alowed to
manipulate the log or diary information of MIDlet B because it'sin a different suite. Figure 5.1
shows how the RM S maintains multiple records stores of different MIDlets.

Figure 5.1. The record store's visibility and structure.

135

MIDlet Suite 1 Record Management System

MIDiet A —»@ 7 record stores

MIDlet Suite 2 Length in b-,rles
Record 1D 1
MiDiet B Record ID 2 |
Record ID 3 |

MiDlet C

!

H

Record 1D getNumRecords() I

Within aMIDlet suite, MIDlets can create record stores with case-sensitive names up to 32
Unicode characters long. Inside a MIDlet suite, the names must be unique. However, MIDlets are
allowed to create record stores with the same name in different MIDlet suites. In that case, the
platform is responsible for handling them as separate record stores. Additionally, the platformis
responsible for deleting the record stores that are created by a MIDIlet on the device when the
MIDlet is deleted.

All operations on the record store are atomic. That meansthat if two threads write the same record
in paralel, these calls are seridlized by the system automatically. This process avoids corruption of
the internal structure of the record store, but does not prevent the application data structure from
becoming invalid: Serializing two write operations to the same record means that the second write
operation overwrites the result of the previous operation, possibly causing application problems.

The RMS API does not provide any predefined mechanisms for locking transactions.

The record store maintains a date/time stamp indicating the last modification of the record store
and a version number. The date/time stamp consists of along integer representing the time in the
format of the System.currentTimeMillis() method. Each time the record store is modified,
the date/time stamp is updated. The version number is represented by an integer value. It is
incremented for each modifying operation on the record store.

The primary key to recordsin arecord storeis an integer value called the record ID. The ID of the
first record created is 1. The IDs of subsequent records are incremented by 1.

Basic Functionality of the Class RecordStore

Record stores are represented in the RMS API by the classRecordStore. TheRecordStore class
provides methods to open, close, read, and manipulate the record store. It also provides access to meta-
information such as the number of records and the memory space still available and currently
consumed.

Global Record Store Methods and Exceptions

136

Aninstance of the RecordStore class, representing a single record store, can be obtained viathe
static method openRecordStore (). The method call requires two parameters: the name of the
RecordStore and aflag specifying whether the RecordStore should be created if it does not
exist yet. The name of the record store should be a String consisting of no more than 32 Unicode
characters. The names are case sensitive, so Foo, foo, and FOO would denote different record stores.
The following line opens the record store named myRecords and createsit if it does not exist yet:

RecordStore myRecords = RecordStore.openRecordStore(*'myRecords"',
true);

Other general static methods are provided for listing all record stores of aMIDlet suite and deleting a
record store. Because these methods are static, it is possible to use them without obtaining an instance
of RecordStore first. These general methods are listed in Table 5.1. To use all other
RecordStore access methods, you must create aRecordStore instance by caling
openRecordStore().

Note
MIDP 2.0 introduces two additional openRecordStore () methodsto share

RecordStores across multiple MIDlet suites. An additional setMode () method allows you to change
the access mode of a RecordStore later.

Thefirst new openRecordStore () method requires four parameters. The first two parameters are
identical to the existing openRecordStore () method and define the name of the record store and
whether the store should be created as if it does not yet exist. The third parameter defines the access
mode. The constant RecordStore . AUTHMODE_PRIVATE indicates that only MIDletsin the same
MIDlet suite can access the RecordStore. RecordStore . AUTHMODE_ANY enables any MIDlet to
access the RecordStore. The fourth parameter is a boolean specifying whether the RecordStoreis
writable by other MIDlet suitesin the AUTHMODE_ANY case.

The second new openRecordStore () method takes only three String parameters. Again, the first
parameter defines the name of the RecordStore. The second and third parameter define a vendor and a
MIDlet suite name required to get accessto the RecordStore.

The authentication mode of a record store can be changed after creation using the setMode () method.
This method takes the previously described authentication mode and the write flag as parameters.

All three methods can throw a SecurityException if the desired operation is not permitted.

For closing arecord store, the API provides the method closeRecordStore(). At the latest, any
open record store owned by an application should be closed when the application is terminated. Please
note that the number of callsto close a certain record store must match the callsto
openRecordStore(). Caling closeRecordStore() alowsthe system to free resources
associated with arecord store.

Table 5.1. Static RecordStore Methods

Method Name Purpose

String[] listRecordStores() Returns all record stores in a String
array that are available in the current
MIDlet suite.

RecordStore openRecordStore (String Opens a record store.

recordStoreName, boolean

137

createlfNecessary) |

void deleteRecordStore (String Deletes a complete record store from
recordStoreName) the MIDlet suite.

The RecordStore methods can throw different types of Exceptionsin case of afailure. The
exceptions are listed in Table 5.2. For example, aRecordStoreNotFoundException isthrown
if the desired record store does not exist in the MIDlet suite and the openRecordStore () method
is called without setting the create option. In case of success, the method returns an instance of the
RecordStore class.

Table 5.2. Possible RecordStore Exceptions

Exception Name Reason

Inval idRecordIDException Thrown if the index that is passed to an operation like
deleteRecord(), getRecord(),
getRecordSize(), or setRecord() is not a valid

index.
RecordStoreException Thrown when a general record store failure occurs.
RecordStoreFul IException Thrown to indicate that the operation cannot be

completed because the complete storage space
available for the record store is consumed already.
RecordStoreNotFoundException|Thrown by the methods openRecordStore() and
deleteRecordStore() to indicate that the record
store with the specified name does not exist.

RecordStoreNotOpenException |[Thrown when a method to access a record is called
after the record store was closed.

Manipulating Single Records

When the record store is successfully opened, you can add new records using the addRecord ()
method. This method takes three parameters. The first is the byte array containing the data that should
be written to the record store. The second specifies the offset from which to start writing data of the
byte array. The third specifies how many bytes of the given array should be written. The method
returns the index of the newly created record. Like all RecordStore methods, addRecord() may
throw different types of RecordStoreExceptionsin case of afailure. If you want to write the
complete byte array, set the second parameter to 0 and the third to the length of the byte array:

myRecords.addRecord (myBytes, 0, myBytes.length);

For replacing arecord at a given index, RecordStore provides the method setRecord(). The
usage of the setRecord () method issimilar to addRecord (), except that the index of the record
to be replaced must be given as the first parameter. In contrast to addRecord (), noindex valueis
returned. Please note that the first record in arecord store has the index number 1, and not 0 asin most
other Java APIs dealing with indexed structures. Specifying arecord ID of 0 or any other invalid record
ID will resultinan Inval idRecordIDException. Thefollowing call replacesthe first record of a
record store with the complete byte array given as the second parameter:

myRecords.setRecord (1, myBytes, 0, myBytes.length);

For reading records, RMS provides two different getRecord() methods. The simple version of
getRecord() takesarecord ID as a parameter and returns a byte array containing the corresponding
record data. Using the following line of code, you can read the data of the first record in the
myRecords record store:

byte[] recordData = myRecords.getRecord (1);

138

The second variant of getRecord() avoids allocating a new byte array by writing datato a byte
array given by the application. It isinvoked with more parameters and provides a different return value.
Aswith the simple version, the first parameter isthe record ID. The second parameter is a byte array
that is used for storing the data read. The third parameter is the offset at which to start writing the
record datain the given byte array. As aresult, the method returns the number of bytes transferred to
the specified buffer. The application is required to provide a buffer that is large enough to store the
record with the given ID. If the buffer sizeis not sufficient, an

Array IndexOutOfBoundException isthrown. The following lines allocate a byte array as a
buffer and read the first record from the myRecords record store into the newly allocated buffer:

byte[] myBuffer = new byte [BIG_ENOUGH];
int numberOfBytesRead = myRecords.getRecord (1, myBuffer, 0);

Records that are no longer needed can be deleted using the delleteRecord () method. The only
parameter of delleteRecord() istheID of the record to be deleted. After deletion, therecord is
removed from the RecordStore irrevocably. Please note that the record ID of the removed record is
not reused and cannot be reset with anew record using the setRecord () method. In case of
resetting a previously deleted record, an Inval idRecordStorelDException isthrown. All
further records keep their record 1Ds.

Meta Information

In addition to methods manipulating whol e record stores or single records, the RMS API also provides
a set of methods for obtaining information about a record store or single records.

All methods to get record store metainformation are listed in Table 5.3. One important method needed,
for example, to iterate all recordsin arecord storeis getNumRecords (). This method isinvoked on
arecord store instance and returns the number of records stored in the record store as an integer value.
The following line shows how the method is called to get the number of recordsin the myRecords
record store:

int numberOfRecords = myRecords.getNumRecords();
Table 5.3. Methods for Accessing RecordStore Meta Information

IMethod Name |Purpose

long getLastModified() |Returns the last modification of the record store in the format
returned by System.currentTimeMillis().

String getName() Returns the name of the current record store.

int getNextRecordID() |Returns the record ID of the next record that will be added to
the record store.

int getRecordSize(int |Returns the byte size of the record at the given ID.
recordlID)

int getSize() Returns the byte size of the complete record store.

int getSizeAvailable() |Returns the storage space that is currently available for
storing records.

int getVersion() Returns the integer value that represents the number of
modifications of the record store.

A Simple Diary Application Using RMS

Using the methods described in the previous section, you can now build a simple diary application. The
application will demonstrate how to store simple objects (Strings) in arecord store.

139

The purpose of the application isto store one String per day. The user interface consists of a widget
and buttons for browsing the diary creating new diary entries.

Because RMSisavailablein MIDP and PDAP, we will start with the RM S-related functions for
loading and saving Stringsthat can be used in both versions of the diary application. The complete
sources of both diary versions, differing in the user interface parts, are givenin Listing 5.1 for MIDP
and in Listing 5.2 for PDAP. Here, we will focus on the RM S specific calls like opening the record
store, loading and saving Strings, and closing the record store.

Because the RM S only provides a mechanism for handling byte array records, you need to convert the
diary entries represented as Str ings before adding them to the record store. Also, before you can
display adiary record in atext widget, you need to convert the byte array back into aString.
Fortunately, the functionality for these conversionsis availablein the String class. In order to
convert a String instance to a byte array, you can just call the getBytes() method of the String
class. The following line shows how to convert a String to abyte array using the getBytes()
method:

byte[] byteArray = new String (""Hello World!").getBytes();

The resulting byte array contains the String Hello World!. This byte array can be stored in arecord
store using the addRecord () or setRecord() method. In order to convert abyte array read from
arecord store back into a String object, you can use the corresponding String constructor taking a
byte array as parameter.

Before you begin implementing the diary functionality, you need two variables containing the diary
record store and an index that points to the record currently displayed. In both versions of the
application, these variables are declared as follows:

RecordStore diary;
int currentld = 1;

Now you can start with the loadEntry () method that loads adiary entry from the record store and
convertsitintoaString. The loadEntry() method getsthe ID of the desired record as input, sets
the current 1D to the given value, and returns the corresponding String. If the ID is not valid, a new
record is created automatically, and the ID returned from addRecord() is set asthe current ID. The
following code snippet shows the implementation of loadEntry () for both the MIDP and PDAP
versions:

public String loadEntry (int newld) throws RecordStoreException {
it (newld < 1 || newld > diary.getNumRecords()) {
byte [] data = " .getBytes();
currentld = diary.addRecord (data, 0, data.length);
}

else
currentld = newld;
return new String (diary.getRecord (currentld));

}

Now you can load records and also append new records, but you still need a method to update diary
entries when the user enters additional information or changes the entry. The saveEntry () method
stores the given string with the ID stored in the currentld variable:

public void saveEntry (String entry) throws RecordStoreException {
byte [] data = (entry).getBytes();
diary.setRecord (currentld, data, O, data.length);

140

Using the two methods loadEntry () and saveEntry (), you have implemented two basic
methods that are responsible for loading and storing records to a record store in both the MIDP and
PDAP versions of the diary application. The next step to implement the diary application is to open the
diary record store in the constructor of the application.

As described in the previous section, the method openRecordStore () can throw
RecordStoreExceptionswhenitis not able to open the record store for some reason. In order to
handl e these exceptions, it is necessary to put the call in a corresponding try-catch block. In the
following snippet, you throw a RuntimeException, terminating the whole application in case of a
failure. In real applications, more elaborate error handling may be necessary:

try {
diary = RecordStore.openRecordStore (“'diary", true);

// load and display the last entry here.

catch (RecordStoreException e) {
throw new RuntimeException (“"Cannot open diary; reason: "+e);
}

After the record store is opened, you jump to the last record of the Diary record store and pass the
stored String to the text widget of the Diary implementation. Because the Ul widgetsin MIDP and
PDAP are different, we included a comment as placeholder for the actual code. The complete code of
the constructorsis contained in both full listings.

Note

If you compare the listings to the code snippets for loadEntry() and saveEntry (), you will
notice that you save an additional empty space to each record, and use String.trim() when
loading it from the RecordStore. You need this workaround because the 2ME WTK 1.0 throws an
exception if empty records are stored in arecord store.

In order to make sure that the current record is written back and to avoid orphan resources, you need to
save the current entry and close the record store when the application is terminated. Y ou do so by
implementing a corresponding destroyApp () method. Again, we've included a comment instead of
profile-dependent code where the current entry is obtained from the user interface widget:

public void destroyApp (boolean unconditional) {

try {
String text;

// Fill text with content of the Ul widget here
saveEntry (text);
diary.closeRecordStore();

}
catch (RecordStoreException e) {

throw new RuntimeException (*'Cannot close Diary; reason: "+e);
}

}

When the code is completed with a corresponding user interface, you have a full diary application as
shown in Listings 5.1 and 5.2. Figures 5.2 and 5.3 show the running application.

Figure 5.2. The running RmsDemoMidp application.

14%

F amill AEC Y
Diiary - Day 4

RHED Of THE
Fh= CHAPTER TH
E WWHOLE DYy,

Presy MenLl

Figure 5.3. The running RmsDemoPdap application.

Listing 5.1 RmsDemoMidp . java—The Diary Application for MIDP

import javax.microedition.midlet.*;
import javax.microedition.lcdui.*;
import javax.microedition.rms.*;

public class RmsDemoMidp extends MIDlet implements CommandListener {

TextBox textBox = new TextBox (‘'Diary", """, 150, TextField.ANY);
int currentld = 1;
RecordStore diary;

Display display;

static final Command prevCommand = new Command ("'Prev",
Command.SCREEN, 1);

static final Command nextCommand = new Command (“'Next",
Command .SCREEN, 2);

static final Command newCommand = new Command (‘New',
Command.SCREEN, 3);

public RmsDemoMidp() {
try {
diary = RecordStore.openRecordStore (‘“'diary", true);
String text = loadEntry (diary.getNumRecords());
textBox.setString (text);
textBox.setTitle (‘'Diary - Day

+ currentld);

}

catch (RecordStoreException e) {
throw new RuntimeException (‘‘Cannot open diary; reason:
"+e);

142

}
public void saveEntry (String entry) throws RecordStoreException
{
byte [] data = (entry + " ") _.getBytes();
diary.setRecord (currentld, data, 0, data.length);
}
public void startApp() {
display = Display.getDisplay (this);
display.setCurrent (textBox);
}
public void destroyApp (boolean unconditional) {
try {
String text;
text = textBox.getString();
saveEntry (text);
diary.closeRecordStore();
catch (RecordStoreException e) {
throw new RuntimeException ('Cannot close Diary; reason:
Il+e);
}
}
public void pauseApp() {
}
public void commandAction (Command c, Displayable d) {
try {
saveEntry (textBox.getString());
if (c == nextCommand && currentld < diary.getNumRecords())
{
textBox.setString (loadeEntry (currentld+1));
}
else if (c == prevCommand && currentld > 1) {
textBox.setString (loadEntry (currentld-1));
}
else if (c == newCommand) {
textBox.setString (loadEntry (diary.getNumRecords() +
1);
}

textBox.addCommand (prevCommand) ;
textBox.addCommand (nextCommand) ;
textBox.addCommand (newCommand) ;

textBox.setCommandListener(this);

}

public String loadEntry (int newld) throws RecordStoreException {
if (newld < 1 |] newld > diary.getNumRecords()) {
byte [] data = " ".getBytes();
currentld = diary.addRecord (data, 0, data.length);
}

else
currentld = newld;
return new String (diary.getRecord (currentld)).trim(Q);

143

}

textBox.setTitle ("'Diary - Day " + currentid);

catch (RecordStoreException e) {
throw new RuntimeException (“'Cannot perform; reason: '"+e);
}

Listing 5.2 RmsDemoPdap . java—The Diary Application for PDAP

import java.awt.*;

import java.awt.event.*;

import javax.microedition.rms.*;
import javax.microedition.midlet.*;

public class RmsDemoPdap extends MIDlet implements ActionListener {
Frame frame = new Frame();

TextArea textArea = new TextArea();

int currentld;

RecordStore diary;

“re)

Button buttonPrev
Button buttonNext

new Button ("'Prev');
new Button (“'Next');

Button buttonNew = new Button (“'New™);

public RmsDemoPdap() {

try {
diary = RecordStore.openRecordStore (‘'diary’, true);

String text = loadEntry (diary.getNumRecords());
textArea.setText (text);
frame.setTitle ("'Diary - Day " + currentld);

catch (RecordStoreException e) {
throw new RuntimeException (*'Cannot open diary; reason:

frame.add(*'Center', textArea);
Panel buttons = new Panel();

buttons.add(buttonPrev);
buttons.add(buttonNext) ;
buttons.add(buttonNew) ;

buttonPrev.addActionListener(this);
buttonNext.addActionListener(this);
buttonNew.addActionListener(this);

frame.add(*'South", buttons);
frame.pack();

frame.addWindowListener(new WindowAdapter() {
public void windowClosing (WindowEvent ev) {

destroyApp (true);
notifyDestroyed();

DE

144

public String loadEntry (int newld) throws RecordStoreException {
if (newld < 1 |] newld > diary.getNumRecords()) {
byte [] data = " "_getBytes();
currentld = diary.addRecord (data, 0, data.length);
}
else
currentld = newld;

return new String (diary.getRecord (currentld));

}
public void saveEntry (String entry) throws RecordStoreException
{
byte [] data = entry.getBytes();
diary.setRecord (currentld, data, 0, data.length);
}
public void startApp() {
frame.show();
}
public void destroyApp (boolean unconditional) {
try {
saveEntry (textArea.getText());
diary.closeRecordStore();
catch (RecordStoreException e) {
throw new RuntimeException (""Cannot close Diary; reason:
"+e);
}
}
public void pauseApp(){
}
public void actionPerformed (ActionEvent ev) {
try {
saveEntry (textArea.getText());
if (ev.getSource() == buttonNext
&& currentld < diary.getNumRecords())
textArea.setText (loadEntry (currentld+1));
else if (ev.getSource() == buttonPrev && currentld > 1)
textArea.setText (loadEntry (currentld-1));
else if (ev.getSource() == buttonNew)
textArea.setText (loadEntry (diary.getNumRecords() +
1));
frame.setTitle ("'Diary - Day " + currentld);
}
catch (RecordStoreException e) {
throw new RuntimeException (“'Cannot perform; reason: '"+e);
}
}
}

145

Record Listeners

In contrast to the desktop file system, it is possible to register listeners to record stores. A listener is
informed whenever arecord is changed in the record store it is registered to. This mechanism may be
useful if different threads or different MIDlets of the same MIDlet suite are operating on one record
storein parallel. A possible application could be some kind of automated |ogging service, writing
records in the background. A MIDIet providing a GUI for the service could register itself aslistener to
the log record store when it is running in the foreground. Thus, it would be able to update its display of
the log entries whenever a new record is added.

The corresponding RecordL i stener interface consists of the following three methods:

void recordAdded (RecordStore recordStore, int id)

is called when a new record with the given ID is added to the given record store.

void recordChanged (RecordStore recordStore, int id)

is called when the given record is changed.

void recordDeleted (RecordStore recordStore, int id)

is called when the given record is deleted.

A listener implementing these methods can be registered using the addRecordL i stener () method
of the corresponding record store, where the only parameter isthe RecordListener. You can

unregister the listener by calling the removeRecordListener () method of the record store with
the same listener as a parameter.

Storing Custom Objects

Up to this point, you have only stored byte arrays or strings in arecord store. As explained in the diary
example, Strings have a method with which you can convert them to byte arrays, and a constructor
that takes a byte array asinput. But if you want to store your own objects, you need to provide away to
convert them to byte arrays and back yourselves.

The simplest solution would be to add the same constructor and getBytes() method to your custom
objectsthat String aready provides. Y ou can implement the mapping two different ways. One
possibility isto convert the byte array to different fields in your object. The other possibility isto keep
the byte array as storage, and to implement field access methods as wrappers to portions of the byte
array. The second possibility makes sense especially when your structure consists of elements having a
fixed size. Here, we will focus on the first method, which is simpler to handle, especially for dynamic
structures.

Data Streams

Assume you are going to implement a travel list management tool, where the entries consist of the
journey destination, the date of the journey and the distance actually traveled.

Such an object could be implemented as follows:

class Journey {

146

int distance;
long date;
String destination;

}

The simplest mechanism to serialize this kind of object is provided by a combination of a
DataOutputStream and aByteArrayOutputStream. The DataOutputStream alowsyou
to write simple data types such as integers or byte arraysto an OutputStream, and the
ByteArrayOutputStreamisaspecia OutputStream that creates abyte array. To get a byte
array representation of the whole object, you plug them together in the getBytes() method of your
class Journey. There, you write the fields to the stream and finally obtain the byte array from the
ByteArrayOutputStream:

byte [] getBytes() throws I10Exception {
ByteArrayOutputStream baos = new ByteArrayOutputStream();
DataOutputStream dos = new DataOutputStream (baos);
dos.writelnt (distance);
dos.writeLong (date);
dos.writeUTF (destination);
dos.close();
baos.close();
return baos.toByteArray();

}

In the constructor, you can use aByteArray InputStream and aDatalnputStream to perform
the inverse operation:

Journey (byte [] data) throws 10Exception {
ByteArraylnputStream bais = new ByteArraylnputStream (data);
DatalnputStream dis = new DatalnputStream (bais);
distance = dis.readlnt();
date = dis.readLong();
destination = dis.readUTF(Q);
dis.close();
bais.close();

}

Direct Encoding

An alternative to using a set of streams—which may be faster but which also generates more
implementation effort—is to decode the information in the byte array manually. For example, if the
integer storing the distance is contained in the first four bytes of the byte array, it can be decoded using
the following line:

distance = ((data [0] & OxffF) << 24) | ((data [1] & OxFF) << 16)
| ((data [2] & OxFF) << 8) | (data [3] & OxffF);

The corresponding inverse operation is

data [0] = (byte) (Oxff & (distance >> 24));
data [1] = (byte) (Oxff & (distance >> 16));
data [2] = (byte) (Oxff & (distance >> 8));
data [3] = (byte) (Oxff & distance);

Because of the additional implementation effort, this method makes sense only in time-critical
applications where the overhead of creating two additional streamsistoo expensive.

147

Ordered Traversal: Comparators and Record
Enumerations

So far, you've accessed records by their primary index only. But what if you want to sort the journeys
in the previous example's travel list by the length of the trip or the date, without requiring that they all
be entered in the correct order? For this purpose, RM S provides record enumerations.

Record enumerations let you visit all the recordsin arecord store in a custom order. Thefirst step isto
define the custom order. Y ou do so by implementing the compare () method of the
RecordComparator interface, which defines an order for the records. The compare () method
takes two byte arrays as parameters. It returns one of the constants EQU I VALENT, FOLLOWS, or
PRECEDES, depending on the relative order of both records. If in the desired search order the record
given asthe first parameter follows the second, FOLLOWS must be returned. The other cases are
analogous.

For the Journey class, you can implement aRecordComparator that sorts all entries by date as
follows:

public class JourneyDateComparator implements RecordComparator {
public int compare (byte[] recl, byte[] rec2) {
Journey journeyl = new Journey (recl);
Journey journey2 = new Journey (rec2);
if (Journeyl.date > journey2.date) return FOLLOWS;
ifT (Journeyl_date == journey2._date) return EQUIVALENT;
else return PRECEDES;

}

Here, direct access to the portion of the byte array where the date is encoded may result in improved
performance. However, the readability of the example would also suffer.

By giving the RecordComparator to the method enumerateRecords() inthe class
RecordStore, you can obtain aRecordEnumeration. TheRecordEnumeration provides
methods to move forward and backwards in the RecordStore with respect to the order defined by
the Comparator implementation.

The enumerateRecords() method takes three parameters: aRecordFi I ter, the
RecordComparator, and aboolean value determining if the RecordEnumeration should be
kept updated, reflecting changes of the record store performed during traversal. There may be a
significant tradeoff in speed when setting the "keep updated” parameter, but the parameter can be
useful when the record store is changed during traversal. The RecordFi I ter parameter allows
enumeration of a subset of the records. (It's explained in the next section.) Both the RecordFi I ter
and RecordComparator parameters can be set to null I, resulting in an unfiltered, unordered
enumeration.

The RecordEnumeration returned from enumerateRecords() can be traversed using the
hasNextElement() and nextRecord() methods. When the record enumeration is no longer
needed, the application should call destroy () in order to notify the system that system resources
allocated for the record enumeration can be released.

The following code snippet shows how your JourneyDateComparator and the
RecordEnumeration can be used to traverse atravel record store, ordered by journey date:

148

RecordStore travelList = RecordStore.open (“travellList", true);
RecordEnumeration enumeration = travellList.enumerateRecords
(null, new JourneyDateComparator(), false);

while (enumeration.hasNext()) {
Journey journey = new Journey (enumeration.next())
// place real operations here

}

enumeration.destroy()

travelList.closeRecordStore();

Y ou can aso add methods for comparing the destination (or distance), allowing you to iterate the
records ordered correspondingly. Table 5.4 shows a general overview of the methods of the
RecordEnumeration class.

Table 5.4. Methods of RecordEnumeration

Name Purpose

void destroy() Releases system resources associated with this
enumeration.

boolean Indicates whether records are left in the enumeration.

hasNextElement()

boolean Analogous to hasNextElement(), but in the inverse

hasPreviousElement() direction.

]boolean isKeptUpdated() |Indicates whether the enumeration is kept updated.

void keepUpdated Sets or resets the automatic update mode.

(boolean keepUpd)

byte[] nextRecord() Returns the next record.

int nextRecordld() Returns the ID of the next record.

int numRecords() Returns the number of records in this enumeration. Differs

from RecordStore.getNumRecords() for filtered or
outdated enumerations only.

]byte [1 previousRecord() |Returns the previous record.

int previousRecordld() |Returns the ID of the previous record.

void rebuild() Rebuilds the enumeration to reflect all changes. Performed
automatically in the updated mode.
]vo id reset() |Resets the enumeration to the first record.

Filtered Record Enumerations

Y ou have already seen that the enumerateRecords() method has afilter parameter, but we have
not explained how to useit. The corresponding RecordFi I ter interface works similarly to the
RecordComparator interface. It provides asingle method, matches(), which takes arecord byte
array asinput and returns aboo lean value, determining whether the given record passes the filter.

For example, if you need an enumeration of the journeys where the distance was greater than x
kilometers, you can implement it as follows:

Class MinDistanceFilter {
int min;
DistanceFilter (int min) {
this.min = min;
}

boolean matches (byte[] record) {
return new Journey (record).getDistance() >= min;
}

149

The Search Problem

In the previous sections, you learned to sort and filter records in arecord store. Obvioudly, you can
search arecord by iterating al records until the desired record is found, or just set afilter that
filters out all other records.

Unfortunately, this approach requires looking at al records in the worst case and looking at half of
the recordsin the average case. A search on a sorted set of records can be performed much faster
by an algorithm called a binary search. The algorithm goes to the middle of the set and determines
whether the element searched is greater or smaller than the record in the middle. Thus, the
algorithm can decide in which half of the records the searched element is located. For this half, the
procedure is applied again. Step by step, the number of records in question is reduced by half. So,
compared to alinear search, the overall number of comparisonsis reduced to alogarithmic
function. For 100 records, alinear search requires 100 comparisons in the worst case and 50 in the
average case; a binary search requires only 7 comparisons. This factor increases with larger
number of records.

The record enumeration does not provide any means to jump over half of the records and go to the
middle. If fast searching in ordered sets of records isimportant for your application, consider
sorting the whole record store and performing a binary search instead of iterating record
enumerations. In Chapter 9, "Advanced Application: Blood Sugar Log," we will present the
corresponding algorithms.

Summary

In this chapter you learned about persistent storage of application data. Y ou now know how to use
the methods of the class RecordStore for basic access to the RMS. Y ou know how to convert
custom classes to byte arrays and back and how to iterate, filter, and order record stores using
enumerators.

The next chapter explains how to make connections to other devices or the Internet using the
generic connection framework.

150

Chapter 6. Networking: The Generic Connection
Framework

INTHISCHAPTER
e Creating a Connection—The Connector Class

e Connection Types
e GCF Examples

For the Java 2 Standard Edition, the classes for handling network connections are located in the
Java.net package. This package contains alot of different classes. It includes at |east one class for
each type of connection, such as socket connections, HTTP connections, datagram connections, and
server sockets. It also contains many support classes, for instance classes for handling URLs or
decoding Internet addresses. In sum, the java . net package includes more than 20 classes, interfaces,
and exception classes.

The huge amount of classes and interfaces that is needed to support network capabilities would be too
much to be adopted for the Java 2 Micro Edition. Thus, the Connected Limited Device Configuration
(CLDC) takes a different approach: Instead of providing one class for each protocol like J2SE, CLDC
offers a uniform approach for handling connections, the so-called Generic Connection Framework
(GCF). GCF contains only one generic Connector class. The Connector classtakesaURI as
input and returns a corresponding connection object, depending on the protocol parameter of the URI
string. The protocol parameter of a URI is the part from the beginning of the string to the first colon.
For example, for an HT TP connection, the protocol parameter isthe leading http of an address such
ashttp://java.sun.com. The general form of UR! strings that are passed to the Connector
classisasfollows:

<protocol>://<address>;<parameters>

The syntax of the strings that are passed to the Connector .open() method needs to follow the
Uniform Resource Indicator (URI) syntax that is defined in the IETF standard RFC2396. The complete
RFC can be found under the following URI: http://www.ietf.org/rfc/rfc2396.txt.

Note

The CLDC itself specifiesinterfaces, classes, and exceptions of the GCF only. No implementations of
any concrete connection type are provided at the configuration level.

Table 6.1 gives an illustrative overview of connection types that can be implemented by a particular
J2ME profile such as the MID or PDA Profile. 2ME profiles might also include additional protocols
that are not listed in Table 6.1.

Table 6.1. Example URLs for the Connector .open() Method of the Generic
Connection Framework

Sample String Parameter for
Protocol Connector.open() Connection Type
HTTP http://java.sun.com HttpConnection
'Sockets lsocket://time-a.nist.gov:13 |StreamConnection
ServerSockets [serversocket://:4444 StreamConnectionNotifier
Serial comm:0;baudrate=2400; CommConnection
IDatagrams |datagram://127-0-0-1 |DatagramConnection

http://www.ietf.org/rfc/rfc2396.txt

File file://addesses.dat FileConnection

Bluetooth "bluetooth://psm=1001" StreamConnection

The only connection type that is guaranteed to be available in MIDP 1.0 isthe HTTP protocol. PDAP
adds specialized interfaces for access to serial ports and file systems. Whether a certain protocol is
actually available depends on the device. For example, it does not make sense to support the comm
protocol on devices without a seria port.

Creating a Connection—The Connector Class

In the GCF, connections are established using the class Connector. By passing a URL describing the
protocol to the open method of the Connector class, aconnection is established. For example, the
following line opens a Hypertext Transfer Protocol (HTTP) connection to the address
http://java.sun.com:

try {
Connection connection = Connector.open (“http://java.sun.com™);

catch (10Exception e) {
// an error occurred while opening the connection.
}

In the case of an error, an 10Exception isthrown. Most of the GCF methods can throw an
10Exception in order to report I/O errors to the application.

If the connection is established successfully, an instance of a classimplementing the Connection
interfaces is returned. Other special interfaces derived from Connection are available for different
connection types like datagram or stream connections. Figure 6.1 gives an overview of the
corresponding GCF interfaces.

Figure 6.1. The connection interfaces of the GCF.

Connection

A

InputConnection OutputConnection DatagramConnection

StreamConnectionNotifier

StreamConnection

7

ContentConnection FileConnection CommConnection

T

HttpConnection

The general Connection interface itself does not implement much functionality. It only defines the
close() method that is needed to terminate a connection that was opened using the open() method
of the Connector class. The functionality for reading and writing datais added in
InputConnection and OutputConnection. The InputConnection definestwo methods

152

for reading data from the connection: openInputStream() returnsan InputStream, and
openDatalnputStream() returnsaDatalnputStream. Anaogoudy, the
OutputConnection providestwo methods, openOutputStream() and
openDataOutputStream(), returning the corresponding streams for writing data.

Probably the most important connection interface isthe StreamConnection, combining the
InputConnection and OutputConnection inoneinterface. It isused directly or as base
interface for most connection types. It is the base interface for the ContentConnection, which
adds functionality for accessing the meta-information available for HTTP connections. For datagram
connections, the GCF provides the DatagramConnection interface, representing an endpoint for
datagrams. Finally, the GCF supports the interface StreamConnectionNotifier that
corresponds to J2SE ServerSockets. Thisinterface consists of only one acceptAndOpen()
method. This method returns a StreamConnection when aclient has successfully established a
connection.

For filesystem and serial port connectivity, the PDAP providesthe Fi leConnection and
CommConnection interfaces. These connections are optional to a PDAP implementation depending
on the underlying hardware and operating system.

We have aready shown the ssmple open() method of the Connector class, taking a URI string as
input and returning an instance of a classimplementing the Connection interface. However, thisis
not the only open() method available; the Connector class provides two additional open()
methods. The second variant of open () takes an additional mode integer constant that determines
whether the connection is read-only, write-only, or aread-write connection. The corresponding
congtants are listed in Table 6.2. The last variant of the open () method takes a third parameter,
indicating that the protocol may throw an InterruptedlOException inthe case of adevice-
specific timeout. Without using additional parameters, the behavior of the open () method isto open a
connection in READ_WR 1 TE mode, without throwing timeout exceptions.

The optional parameters depend on the protocol to which they are passed. For instance, the connection
mode WRITE might resultinan 1 I legalArgumentException if it isused to open a protocol for
accessing a bar code scanner allowing read-only access.

Table 6.2. Possible Access Modes for Opening a Connection Using the GCF
IMode |Description

READ Read-only connections
READ_WRITE Connections using read and write access
]WR ITE |Write-0n|y connections

We already mentioned that a concrete instance of a classimplementing the Connection interfaceis
returned when a connection is established successfully. In order to access the functionality of the
concrete type of connection, the returned Connection needsto be typecast to the corresponding sub-
interface. For example, when opening an HTTP connection, it usually makes sense to cast the returned
object to the more specific HttpConnection interface:

HttpConnection httpConnection =
(HttpConnection) Connector.open (“http://java.sun.com™);

In the following section, we will take a closer look at the different connection typesthat are listed in the
CLDC specification.

Connection Types

153

Before describing the mandatory HT TP protocol and other connections, we will cover the optional
socket connections because they form the basis for higher-level protocols such asHTTP or FTP.
Actually, it might be possible to create a CLDC-based device without display, implementing a Web
server as a user interface. Examples might be configurable network routers or production control
hardware.

Note

We cannot cover all the underlying protocolsin full detail here, so we will mainly focus on the Java
API. For complete coverage, refer to the corresponding standard specifications or other protocol
specific literature.

General Socket Connections

Socket and datagram connections are simple basic | P connection types. Although sockets and
datagrams are usually available on machines connected to the Internet, for wireless connections the
situation is different. Carriers often use a proprietary protocol over the air, and allow only special
connection types such as HT TP connections. Thus, although sockets are usually required for HTTP
connections, CLDC devices might provide HTTP but no socket connections. The main difference
between sockets and datagrams is that sockets are a reliable and end-to-end connection established for
aperiod of time, whereas datagrams are simple data packets with alimited length that might never
reach their destination without notifying the sender.

TCP socket connections are usually not symmetric, but a client connects to a server. The server listens
to a specific port, usually depending on the protocol that is used. For example, the default port used by
HTTP serversis 80, and the default port for FTPis 21. A simple method to test the socket functionality
in general isto connect to an existing server and to display what the server sends. Here, a good
candidate is the clock server, usualy listening on port 13. For each incoming connection, it sendsits
current date and time back to the client. If a certain server supports the time, service can easily be
tested by connecting to that port with a simple terminal program (telnet). Y ou can find alist of time
servers at http://www.boul der.nist.gov/timefreqg/service/time-servers.html.

Here, we will first describe the client side of TCP/IP sockets and then sketch how to set up a server
socket. (For general coverage of TCP/IP, refer to TCP/IP Unleashed by Karanjit Rom Siyan and Tim
Parker, ISBN 0672323516.)

Client-Socket Connections

The parameter given to the open () method in order to establish a socket connection at the client side
consists of the protocol identifier (such assocket://), the IP address of the server that will be
connected (such astime-a.nist.gov), and aport number that is separated from the host address
using acolon (- 13). For example,

StreamConnection streamConnection =
(StreamConnection) connector.open (‘'socket://time-a.nist.gov:13");

When a socket connection is opened, the returned instance always implements the
StreamConnection'sinterface, providing access to corresponding input and output streams.

In the following code snippet, a socket connection to atime server is established, and then the time is
read from the corresponding input stream:

try {
Connection connection = Connector.open (‘'socket://time-
a.nist.gov:13");

154

http://www.boulder.nist.gov/timefreq/service/time-servers.html

// converting the Connection to a StreamConnection
StreamConnection streamConnection = (StreamConnection)connection;

// getting Input
InputStream in = streamConnection.getlnputStream();

// reading and writing of data
StringBuffer buf = new StringBuffer();
while (true) {

int i=in.read();

ifT (i==-1) break;

buf._append ((char) i);
}
System.out.println (“'server time: "+buf);
// closing the streams and the connection
in.close();
streamConnection.close();

}
catch (10Exception e) {

// Handle the exception occurred while opening a socket
connection

}

Note

For reading character data, a reader isusually adequate. For obtaining areader from an input stream,
usethe class InputStreamReader. The same holds for output streams, writers, and the class
OutputStreamWriter.

For a more elaborate example including a user interface, refer to the sample application presented in
the section "GCF Terminal Program."”

Server Sockets

The counterpart to client sockets are server sockets. Server sockets listen to afixed TCP/IP port
number. When a client requests a connection to the port that the server socket is listening to, the server
can accept the request and establish a connection. In GCF, a server socket is established by giving
serversocket://:, followed by the desired port number, to the open() method of the
Connector class. Thereturned Connection object needs to be cast to the interface
StreamConnectionNotifier, which providesthe method acceptAndOpen(). This method
blocks the application until a client socket connects to the port the server islistening to. When a client
establishes a connection, a StreamConnection to the client is returned.

In order to demonstrate the use of the server sockets, we have implemented a rudimentary HTTP based
server. Thus, a standard Web browser can be used to connect to the server by entering a URL that
points to the machine where the HTTP server is running and on which port the server islistening to. An
example URL might look as follows:

http://<ip-number>:<portnumber>

TheHTTPServer isextended from the Thread class, making it rather simple to integrate the
HTTPServer inaMIDP or PDAP application of your own. Using the following code snippet, you
will be able to start the HTTPServer on port 8080:

new HTTPServer(8080).start();

155

If thereiscurrently aHTTPServer listening to the specified port, an I0Exception will be thrown
as described in the section "Creating a Connection." To track the status of the HTTPServer that is
printed to the console using the System. out.printIn() method, you can just write the results
into atext widget of MIDP or PDAP.

The HTTP server application can aso be run on a desktop machine without a MIDP or PDAP
environment emulated. In order to do so, you need either to compile the SUN GCF for the desktop, or
to access the ME4ASE CLDC emulation available from http://www.me4se.org.

A short description of the strings that are transferred between client and server is given in the next
section, "HTTP Connections.”

Listing 6.1 shows the complete source code of the HTTP server. Figure 6.2 showsthe HTML sample
page that is sent to a Web browser by the HTTP thread if it isincluded in a server application.

Figure 6.2. The output of the HTTP server implementation shown in Listing 6.1 when
connected with a Netscape 4.7 Web browser.

T Netscape
Fie Edt Wiew Go Commuracator Hel

< ¥ A B - = ..ja:@s:;;m

Back | 4 Reload Hare Search MNetscape Print Secuily Shep

Bfﬂ'WaHeﬂ&d
This is a GCF based HTTP Server.

Mlon Apr 16 2223150 GMTH2:00 2001

| =T Document: Dane - -t &5 g9 B A | 2

Listing 6.1 HttpServer.java—A Simple HTTP Server Thread Sending a Headline and the
Actual Time to the Connecting Web Browser as an Identification String

import java.io.*;
import java.util.*;
import javax.microedition.io.™;

public class HttpServer extends Thread {

StreamConnectionNotifier serverConnection;
int port;

public HttpServer (int port) throws I10Exception {
this.port = port;
serverConnection =
(StreamConnectionNotifier) Connector.open
("'serversocket://:"+port);

}
public void run(Q) {
try {
while (true) {
System.out.println ("Waiting for connection on port
“+port);

StreamConnection clientConnection =

156

http://www.me4se.org/

serverConnection.acceptAndOpen();
System.out.println (""Connection to established.™);
sendAnswer (clientConnection);

}
} catch (10Exception e) {
System.out.println (e.toString());
}

}

public void sendAnswer (StreamConnection s) throws I0Exception {

OutputStream o = s.openOutputStream();

Date date = new Date (System.currentTimeMillis(Q));

o.write (("HTTP/1.1 200 OK\r\n\r\n"
+"<HTML><H1>This is a GCF based HTTP Server.</H1>"
+ date.toString() + "\r\n\r\n").getBytes());

o.close();

s.close();

System.out._println (*'Connection closed.™);

}
}

Note
Please note, that the procedure described previoudly is based on the CLDC 1.0 spec. MIDP 2.0

introduces anew PushRegistry classthat can to be used with the PushListener interfacein
order to establish inbound socket connections.

HTTP Connections

HTTP isthe only communication protocol that must be supported by all MIDP and PDAP devices. The
HTTP support must include the HTTP protocol version 1.1 and the HEAD, GET, and POST requests as
described in RFC2616, which can be found at http://www.ietf.org/rfc/.

HTTP isthe default protocol for transmitting HTML Web pages. The HTTP protocol is based on a
request/response paradigm where a client establishes a connection to a server that is listening on the
TCP port number 80 by default. Both the HTTP request and response consist of three parts. the request
or response line, header entries, and the actual payload data. The payload is separated from the header
by a single empty line. Line breaks are indicated by a sequence consisting of a carriage return and a
line feed control character (\r\n).

The client initiates the HT TP connection by sending arequest line. The request line consists of a
method (for example, GET), the URL identifying the requested page, and the protocol version, all
separated by space characters. The following lines contain header lines and the actual payload. The
server processes the request and sends back a response to the client containing the status of the server,
its own header information, and the requested information.

The following sample lines, taken from an actual HTTP transfer, illustrate the protocol. Note that the
request payload is empty in this simple case. Actually, the request payload is empty in most HTTP
requests for HTML pages except from POST requests transmitting, for example, form data to the server.

A client sends areguest for the root page (/) with an additional header indicating the device profile and
configuration:

GET / HTTP/1.1
User-Agent: Profile/MIDP-1.0 Configuration/CLDC-1.0

157

http://www.ietf.org/rfc/

The server response of the server is

HTTP/1.1 200 OK

Date: Sat, 31 Mar 2001 21:09:48 GMT

Server: Apache/1.3.14 (Unix)

Last-Modified: Tue, 09 Jan 2001 09:29:10 GMT
ETag: ""cd610-1fbc-3a5ad9e6"

Accept-Ranges: bytes

Content-Length: 8124

Connection: close

Content-Type: text/html

<html>

</html>

The request that is sent back from the server to the client can be split into three sections:

The response line indicating the protocol version and status code:
HTTP/1.1 200 OK

The header containing meta-information provided by the server:

° Date: Sat, 31 Mar 2001 21:09:48 GMT

° Server: Apache/1.3.14 (Unix)

° Last-Modified: Tue, 09 Jan 2001 09:29:10 GMT

° ETag: ""cd610-1fbc-3a5ad9e6""

° Accept-Ranges: bytes

° Content-Length: 8124

o Connection: close

° Content-Type: text/html

e Theactual content (entity or resource):

° <html>

° </html>
The HTTPConnection Interface

The GCF provides a specia interface for HTTP connections, the HTTPConnection.
HTTPConnection isaspecialization of the ContentConnection interface, whichisa
speciadization of Connection.

The advantage of specialized HTTP connection isthat it provides comfortabl e access methods to the
header fields of the connection. Only the actual content istransferred using streams. If the socket
protocol is supported for adevice, it is also possible to connect to HT TP servers using the socket
protocol. However, in that case, you would need to enter the additional protocol lines manually along
with the actual content of the transfer, as shown in our server socket example in the previous section.

In addition to the access methods derived from the StreamConnection, aContentConnection
provides the following methods for getting meta-information:

o getType()— Returnsa String denoting the MIME type of the content, or null I if there
is no such information available. In the preceding example, the content type is text/html.

e getEncoding()— ReturnsaString denoting that character encoding is used for the
content, for example UTF-8. If thisinformation is not available, nul I isreturned. The
encoding information may be used in the InputStreamReader constructor for reading
character-based data.

158

e getLength()— Returnsa long value returning the actual length of the content in bytes. If
thisinformation is not available, the method returns - 1.

TheHTTPConnection specializes the ContentConnection interface further, adding support for
HTTP methods and header fields. Before we look into the additional methods in more detail, we need
to describe the three possible states of this type of connection:

e Setup—The connection to the server has not yet been established.

e Connected—All request parameters have been set and sent to the server, and the client expects
aresponse from the server.

e Closed—The connection is closed, and all methods invoked on the HTTPConnection will
throw an 10Exception. Note that the connection and all streams obtained should be closed.

Depending on the state, only a subset of the methods provided by HTTPConnection may be called
without causing a state transition or even an exception.

Note

A specia feature of HTTP 1.1 that most HTTP 1.0 servers do not understand is chunked encoding.
Basically, chunked encoding means that parts of arequest are sent separately with additional length
information. The additional length information isinterpreted by HTTP 1.0 servers as content, letting
the server fail in interpreting the content. Some MIDP implementations such as the SUN wireless
toolkit switch to chunked encoding when the amount of data sent exceeds a fixed limit, or when the
Flush() method is called on the output stream. In many cases, the problems with HTTP 1.0 servers
can be avoided by not calling Flush().

Request Properties

The setRequestMethod() can be used to set the connection to GET, POST, or HEAD only in the
Setup state. The same holds for setRequestProperty (), which sets the request headers that need
to be initialized before a connection is established. The following line contains an example for setting
the User-Agent header:

setRequestProperty (“'User-Agent", "Profile/MIDP-1.0
Configuration/CLDC-1.0");

This call causes the following header line to be sent with the request when the connection is established:

User-Agent: Profile/MIDP-1.0 Configuration/CLDC-1.0

The HTTPConnection will change to the Connected state when one of the methods for sending and
receiving data, like openInputStream() or openOutputStream(), iscalled. Thetransition to
the Connected state is also performed when the header fields of the server response are accessed. For
that purpose, the getHeaderField() method can be used. The following line of code would return
theString "Apache/1.3.14 (Unix)" for our example request:

String serverType = getHeaderField('Server™);
The complete source code for creating the example request is as follows:

try {
HttpConnection httpConnection =

(HttpConnection) Connector.open (“http://www.leo.org/™);
httpConnection.setRequestProperty

159

("'User-Agent", Profile/MIDP-1.0 Configuration/CLDC-1.0);
InputStream is = httpConnection.openlnputStream();

// read data from server here

is.close();
httpConnection.close();

}
catch (10Exception e) {

// put exception handling here...
}

The most important request property is the Request method. The default Request method isGET. The
GET regquest method is used by Web browsers for requesting HTML pages from Web servers. HTTP
does not allow GET requests to have side effects on the server. Thus, if datawill be submitted to the
server, the POST method must be used. For example, Web browsers use POST requests for sending the
content of HTML formsto the server. HTML editors can use POST requests to update HTML pages
stored at the server. The openOutputStream() method can be used to open a stream for writing
datato the server.

A complete application example for running a chat system over HTTP using the GET and POST
methodsis givenin the section "A Simple HTTP Based Client-Server Chat Application." For full
coverage of the HTTP protocol refer to RFC2616, which can be found at http://www.ietf.org/rfc.

Datagram Connections

Datagram connections provide a mechanism for transferring simple data packets between two
applications. In contrast to TCP socket connections, UDP datagram connections are not reliable. Thus,
DatagramConnectionscan only be used for connections where packet losses are acceptable.
Typical applications of datagram connections are streaming or real-time applications. The advantage of
datagrams is that their transport produces less protocol overhead. Thus, the performance for datagrams
can be higher than TCP performance.

Datagram connections can be used as server and client connections as well. The protocol hame for both
client and server datagram connectionsis datagram://. For client connections, the protocol name is
followed by the host address and the port, separated by a colon. For server connections, the host is
omitted and just the colon and the port are given. For example, a client datagram connection to port
1234 of the server myserver .some . com is set up by the following line of code:

DatagramConnection datagramConn =
(DatagramConnection)Connector .open
(“'datagram://myserver .some.com:1234");

Each datagram that is sent over a datagram connection is a small data packet consisting of the
destination address and a buffer containing the payload data. In 2ME, datagrams are encapsulated in
the Datagram class. Datagram objects are created using the newDatagram() method of a
datagram connection. The newDatagram() method takes the buffer containing the data and the size
of the buffer to be transferred. It then returns a new Datagram object. A datagram that is created in
this way automatically contains the receiver address of the connection.

The following snippet creates aDatagram object containing a**Hello World" string:

String helloWorldString = new String (“'Hello World™);
byte[] buffer = helloWorldString.getBytes();
Datagram myDatagram = datagramConn.newDatagram(buffer, buffer.length);

Datagrams are sent using the method send () of the DatagramConnection:

160

http://www.ietf.org/rfc

datagramConn.send(myDatagram) ;

To receive datagrams, you need to create a datagram server connection. For that purpose, you again use
the Connector .open() method, but this time without specifying the hostname of the machine.
Instead, you just give the local port number your server will listen to:

DatagramConnection serverDatagramConn =
(DatagramConnection)Connector.open (‘‘datagram://:1234");

In order to receive a datagram, you need to call the receive () method, which blocks until a
datagram is received. Before you call the receive () method, you need to create a datagram object
that is passed to this method. The receive () method fills the given object from the datagram
received. Now let's assume that you expect the client to send a datagram containing a“*hell 1o

wor 1d™ string consisting of 11 bytes. To create a datagram that is able to hold the compl ete buffer,
you need to create an empty datagram with a buffer size of at least 11 bytes using the following line of
code:

Datagram receivedDatagram = serverDatagramConn.newDatagramConn (11);

Finally, you need to call the receive () method of the DatagramConnection to receive the
datagram sent from the client and convert the contained buffer back to aString:

serverDatagramConn.receive(receivedDatagram) ;
String helloWorldString = new String(receivedDatagram.getData());

ThehelloWor 1dString variable should now contain the "*Hel lo World™ String that was
sent from the client.

Asarea-world example, we will again use the server time-a.nist.gov. It supports not only
socket connections, but also the datagram time protocol specified in RFC868. This protocol returns a
32-bit binary number that represents the time in seconds since January 1, 1900.

If you want to compare the server time to the iocal time, you need to convert the server timeto the
usual Java format, which is measured in milliseconds since January 1, 1970. Thus, you must subtract
the 2,208,988,800 seconds between 1.1.1900 and 1.1.1970 from the server time, and then multiply the
result by 1,000 in order to convert the seconds to milliseconds.

The following code example establishes a corresponding DatagramConnection to the time server
datagram://time-a.nist.gov:37:

try {
Connection connection = Connector.open (‘'datagram://time-

a.nist.gov:37");

// converting the Connection to a DatagramConnection
DatagramConnection datagramConnection =
(DatagramConnection)connection;

// creating a new datagram in order to request the time from the
server
Datagram datagram = datagramConnection.newDatagram
(datagramConnection.getNominalLength());

// sends the datagram to the server
datagramConnection.send (datagram);

// Tor the response that is sent from the server

161

// we need to create a new datagram that can hold 4 bytes
Datagram respDatagram = datagramConnection.newDatagram (4);

// receives the datagram containing the actual time
datagramConnection.receive (respDatagram);

// in order to convert the 4 bytes that are
// received to a long we need the following lines
byte[] received = respDatagram.getData();
long time = (((((long) received [0]) & OxOff) << 24)
+ ((((long) received [1]) & OxOffF) << 16)
+ ((((long) received [2]) & OxOFF) << 8)
+ ((((long) received [3]) & Ox0fF)));

// Convert seconds since 1.1.2000 to Milliseconds since 1.1.1970
time = (time - 22089888001) * 1000;

// calculate deviation
long difference = time — System.currentTimeMillis(Q);

// closes the datagram connection
datagramConnection.close();

}

catch (10Exception e) {

// Handle the exception that occurred while opening a datagram
connection

}

Serial Connections

Some devices running a CLDC KVM might be equipped with a serial port and support the protocol for
seria connections. In order to transfer data over the seria port, the device needs to be connected to a
desktop computer or to another device that supports serial communication—for example, a GPS
receiver. In order to test serial communication, a simple terminal can be used.

PDAP specifies that a PDAP implementation can support the CommConnection if supported by the
underlying operating system and hardware. Such a CommConnection can be established as shown in
the following code snippet that opens a 9600 baud communication connection on comm port 0 with 8
bits per character and no parity

For example,

CommConnection connection =
(CommConnection) Connector.open
("'comm:0;baudrate=9600;bitsperchar=8;parity=none);

The actual serial port properties depend on the device's hardware. A comma-separated list of all
available comm ports can be obtained from the system property " microedition.commports' using the
System.getProperty() method. These comm ports might not only include physical RS-232
ports, but also IR or Bluetooth ports that are mapped to seria ports. Commonly supported parameters
are

Number of the comport: comm=0..n or IR=0..n
baudrate=57600, 38400, 19200, 9600, 2400, 1200
bitsperchar=8, 7

parity=even, odd, none

162

They need to match the connection properties of the connected device. For debugging purposes, the
mobile device can easily be connected to the desktop PC using a serial RS232 connection, as shown in
Figure 6.3. Using aterminal program such as Hyperterm (included in MS Windows), the transferred
data can be visualized on the host computer system.

Figure 6.3. The mobile device connected to a desktop PC for sending and receiving
data using a terminal application such as Hyperterm.

Hyperterm RS-232 Mobile
(or other terminal application) (g — 9 Device

0000

Note

The CommConnection that is used in PDAP isalso availablein MIDP 2.0.

File Connections

A new kind of connection that is added to the Generic Connection Framework by PDAP is the
capability to access file-based memory cards or the internal file system of a device. Currently, most of
the new handheld devices are equipped with some kind of card reader supporting one or even two
different brands of removable media cards such as

CompactFlash cards
MultiMedia cards
Secure Digital cards
SmartMedia cards
and MemorySticks

Those cards support a hierarchical file system similar to the file system known from desktop computers.
PDAs may aso provide an internal file system.

For accessto file systems, the three interfaces Fi leConnection, Fi leSystemEvent and
FileSystemListener areincluded in PDAP. Those interfaces and the additional
FileSystemRegistry class are described in detail in the following sections.

The FileConnection Interface

The FileConnection interface defines methods for handling files on removable media, similar to
the functionality provided by the java. 1o.File class of the Java 2 Standard Edition. For opening a
file connection using the Connector class, aURL consisting of the following parts needs to be
passed:

file://<host>/<path>

163

The possible root strings can be queried using the PushRegistry. listRoots() method. In order
to simplify path concatenation they have atrailing "/".

The following list shows examples of possible root strings:

e CFCard/

e SDCard/

e MemoryStick/
e C:/

e usr/

e sdal/

When compared with other GCF connections, the connection behavior of the file connection differsto
some extent. The Connector .open() method can successfully return aFi leConnection object
although the referenced file or directory does not yet existent. This behavior is necessary for creating
files and directories. The following code snipped shows how the Fi leConnection interface can be
used to create a directory, given the device provides a"SDCard" file system root:

try {
FileConnection fileConn =

(FileConnection)Connector.open(*file:///SDCard/MyDir/');
it (IfileConn.exists())

fconn_mkdir(Q);
fconn.close();

}
catch (10Exception ioe) {

// handle the error that occurred during directory creation
}

If a platform does not support file connections, it will throw a
Javax.microedition.io.ConnectionNotFoundException when an application triesto
open aparticular connection using Connector .open() method.

The FileConnection isderived from the StreamConnection interface and supports its
methods for opening input and output streams. Furthermore, the interface defines methods such as
create() and delete() for creating and deleting files, and methods to check the capability of
reading and writing of afile such as canRead () and canWrite (). Also methods to query
information about the memory space available and currently occupied are provided.

FileSystem Security

The security model supported for Fi leConnections isdevice and implementation dependent.
Accessing afile connection is restricted to prevent unauthorized access and manipulation of data.

I mplementations must prohibit access to RM S databases, private data, and internal files of the
operating system. The security model may be applied already at the invocation of the

Connector .open() method. When the URL passed to the Connector .open() method points
to afile or directory that is not allowed to be accessed, a java. lang . SecurityException may
be thrown. The security model may also be applied later, when an application actually tries to open a
stream.

Registering FileSystemListeners Using the FileSystemRegistry
Since the functionality of the Fi leConnection isdefined in an interface and not in an abstract class
that could hold static methods as well, the functionality to add and remove Fi leSystemListeners

iscontained in a separate class. The Fi leRegistry class contains three static methods. The
addFileSystemListener () method isused to register anew Fi leSystemListener, and the

164

removeFi leSystemListener () method is used to deregister such alistener. Notifications from
the Fi leRegistry class are important for applications like when file browsers that may want to
notify the user or update the display when e.g. a memory card was inserted or removed. Whenever a
file system is added or removed, the corresponding rootAdded () or rootRemoved() callback
method is called. Both methods provide aFi leSystemEvent parameter. The Fi leSystemEvent
is used to identify the particular file system change that occurred. The type of the event can be retrieved
using the get ID() method returning one of the constants Fi leSystemEvent _ROOT_ADDED or
FileSystemEvent. ROOT_REMOVED. The getRootName () method allows you to query the
file system root the event is referring to.

IRDA Connections

Unfortunately, infrared connections corresponding to the IRDA standard are covered neither by the
CLDC specification nor by the MIDP or PDAP profile, except from the seria port emulation. However,
it might be possible that some devices allow mapping a serial connection to the infrared port. Also,

even if IRDA communication is currently not specified in CLDC, it might be provided by device
manufacturers, third parties or future versions of the J2ME standards.

Bluetooth Connections

A very new connection type for mobile devicesis the upcoming Bluetooth technology. The Bluetooth
standard defines data exchange up to 100 meters over the air at a maximum bandwidth of 723.2kB/s.
However, in order to save battery power in mobile devices, usually the pico version of the standard is
implemented, which reduces the nominal range of the Bluetooth Communication to 10 meters.
Bluetooth might replace the IRDA communication that is often used between mobile phones, PDAS,
and notebooks because it does not need to have a direct optical connection between sender and receiver.
Thus, it would be possible to use a cell phonethat is placed in the user's vest pocket to connect a PDA
to the Internet.

JSR-82 covering Bluetooth connectivity for J2SE and J2M E includes a Bluetooth integration into the
GCF. To get more information about JSR-82, it is available for public review under the following URL:
http://www.jcp.org/jsr/detail/82.jsp.

GCF Examples

Now that you know about the connection types provided by CLDC, MIDP 1.0, and 2.0, you are ready
to implement two example applications: aterminal program and a chat application. These example
applications will be CLDC-based.

GCF Terminal Program

Prior to the PC era, it was quite common to have a single centralized computer and a set of ssimple
hardware terminals providing text-based interfaces to the main computer. A terminal programis an
application that simulates this kind of interface by providing alocal text interface to a remote process.
Before the World Wide Web became popular, terminal programs were widely used to access so-called
mailboxes or bulletin board systems (BBS) over a serial modem connection. Today, terminal programs
implementing the telnet protocol are still used for command line access; for example, for server
configuration.

For the sample terminal application, we will take advantage of the fact that the GCF isindeed very
generic. You will enter aURI, and your terminal program will connect to the given address and display
what the other end of the connection sends. For example, if you connect to an HTTP address, the
program will display the HTML code of the requested page. Y ou may also use the example to view the

165

http://www.jcp.org/jsr/detail/82.jsp

raw positioning data read from a GPS receiver using a serial connection. Aninput line allows you to
send data over the connection.

Here, we will only describe the network related parts of the application. The complete sources of the
MIDP and PDAP versions are shown in Listings 6.2 and 6.3, respectively. TheMidpTerminal and
PdapTerminal application user interfaces consist of awidget in which you can enter a URL that is
used to open a particular connection. The connection is established by activating the Connect
command or by pressing the Connect button, depending on the platform in which the application is
running.

The core of the Terminal implementation is contained in an inner class of the main application called
Handler. Thisclass "handles" establishing the connection and receiving new data in the background.
For that purpose, the Hand I er stores the connection, as well as the corresponding input and output
streamsin member variables. It also contains avariable 1eave that determines whether the handler
should leave the receive loop and terminate itself:

class Handler extends Thread {

StreamConnection connection;
InputStream in;

OutputStream out;

boolean leave;

The constructor of the Hand I er takes a URL asinput and establishes a corresponding stream
connection. It is called from the main application when the user enters an address and reguests a
corresponding connection. The Hand ler is not able to handle datagram or serversocket protocols.
Trying to do so would cause a class cast exception.

When the connection is established, the out and in variables are set. Then, the establishment of the
connection is reported using the show () method of the main class:

public Handler (String url) throws I0Exception {

connection = (StreamConnection) Connector.open
(url, Connector.READ WRITE, true);

out = connection.openOutputStream();
in = connection.openlnputStream();

show (“'opened: "+ url + "\r'");

}

The main work is performed in the run () method of the Hand I er thread. The run() method is
invoked automatically when the main application calls the start() method, which runs the handler
as a separate thread in the background. In the run() method, incoming datais collected in a string
buffer until the leave flag is set, no more datais available, or the buffered data reaches alimit of 1024
bytes. In that case, the collected datais shown to the user by handing it over to the show() method.
Then, the buffer is cleared and a new iteration of the read loop is entered. If read encountersa -1, that
means that the stream is closed remotely. In that case, disconnect() iscalled in order to terminate
the Hand ler and to release the connection:

public void run() {

StringBuffer buf = new StringBuffer();

try {
while (lleave) {

166

do {
int i = read();
if (i == -1) disconnect();
// ignore control characters except from cr
else if (i == "\r" || 1 >="7)
buf.append ((char) i);

}
while (lleave && in.available() > 0 && buf.length() <

1024);
show (buf.toString());
buf.setLength (0); // clear buffer
¥
catch (Exception e) {
it (leave) show (e.toString() + "\r");
disconnect();
}
¥
}

Y ou might have noticed that the method Handler . read () is called for reading data from the stream
instead of just calling in.read(). Theonly differenceisthat Handler . read () implementstelnet
parameter negotiation, which allows you to use the Terminal sample application as atelnet client by
connecting to port 23 of a corresponding host. The Telnet protocol is widely used to connect computer
systems remotely with a command-line interface. For details of the Telnet protocol please refer
RFC854.

The main application classes, MidpTermial and PdapTerminal, mainly handle the user interface.
The only method that is independent from the user interface isdisconnect(), which closes the
connection if a connection exists and notifies the corresponding Hand I er to terminate.

An important difference of the PDAP implementation when compared to the MIDP implementation is
that the show () method does not manipulate the user interface directly. Because the PDAP AWT is
not thread safe, it is necessary to manipulate the user interface indirectly by calling
invokeAndWait() with an instance implementing the Runnab l e interface. Here, you use the class
Appender for that purpose. The Appender instance encapsul ates the string to be appended to the
list of incoming data. When the AWT callsthe run() method of the Appender, AWT has made sure
that it is currently safe to manipulate the user interface. Now, the Appender addsits payload to the
list showing the data sent from the remote end of the connection.

Figure 6.4 shows an example session of the terminal program. Note that the terminal is only a minimal
implementation for demonstration purposes. It does not handle any control sequences such as cursor
control, except from carriage return characters (\r). Feel free to extend the sample as you like for your
purposes. For example, for applications relying on binary data transfer, it might be better to use a hex
format for sending and receiving data. Listing 6.2 contains the MIDP version of the terminal program,
and Listing 6.3 shows the PDAP version.

Figure 6.4. An example PdapTerminal connection to an HTTP server using the socket
protocol after sending "GET /HTTP 1.0" and an empty MidpTerminal and line.

167

PdapTerming

zocket: Swwwleo.org:E0 I:-:-:-nne-:t:]

opened: socket:dwww leoorg: 80
HTTP/1.1 200 Ck

Date: Tue, 17 Apr 2001 21:30:05 GAT
Server: Apaches 1.3, 14 {Unix}
Lazt-Madified: Tue, 09 Jan 2001 0%:2
ETaqg: "cdé10-1fbe-3a5ad9es"
Accept-Ranges: bytes
Content-Length: §124

Oonnactinne cloca

Listing 6.2 MidpTerminal.java—The MIDP Terminal Application for Using Different
Protocols in the Same Application

import java.io.*;
import javax.microedition.midlet.*;

import javax.microedition.io.™;
import javax.microedition.lcdui.*;

/** The MIDP version of a simple Terminal client */
public class MidpTerminal extends MIDlIet implements CommandListener {

/** The Handler class cares about establishing the connection and
receiving and displaying data in the background. */

class Handler extends Thread {

StreamConnection connection;
InputStream in;

OutputStream out;

boolean leave;

/** Establishes a connection to the given URI */
public Handler (String uri) throws I0Exception {

connection = (StreamConnection) Connector.open
(uri, Connector.READ WRITE, true);

out = connection.openOutputStream();
in = connection.openlnputStream();

show (“'opened: "+uri + \r");

}

/* Like in.read(), but additional performs telnet parameter
negotiations */

public int read() throws I0Exception {
while (true) {
int i = in.read();
if (i = OxOff) return i;

168

}
/**

int cmd = in.read();

if (cmd == Ox0ffF)
return OxOff;

int opt = in.read();

if (cmd == Oxfd || cmd == Ox0fb) {
out.write (OxOffF);
out.write (cmd == Oxfd ? 252 : 254);
out.write (opt);
out_flush(Q);

Main receive loop running in the background */

public void run() {

}

StringBuffer buf = new StringBuffer();

try {
while (Tleave) {

do {
int 1 = in.read();

if (i == -1) disconnect();
else if (i == "\r" |] 1 >="7)
buf.append ((char) i);

while (lleave && in.available() > 0
&& buf.length() < 1024);

show (buf.toString());

buf.setLength (0);

}

}

catch (Exception e) {
it (leave) show (e.toString() + "\r");
disconnect();

List incoming = new List ('MidpTerminal™, Choice.IMPLICIT);

TextBox

uriField = new TextBox

("'Connect to:", "http://www._kawt.de/", 100, TextField.ANY);

TextBox

Command
Command
Command
Command

Handler
Display

sendField = new TextBox ("'Send:", ', 100, TextField.ANY);

connectCmd = new Command (*‘Connect', Command.SCREEN, 1);
sendCmd = new Command (*'Send', Command.SCREEN, 1);

okCmd = new Command (*'Ok'", Command.OK, 1);

abortCmd = new Command (*'Abort", Command.CANCEL, 1);

handler = null;
display;

169

/** Set up user interface */

public MidpTerminal() {
uriField.addCommand (okCmd);
uriField.addCommand (abortCmd);
uriField.setCommandListener(this);
sendField.addCommand (okCmd);
sendField.addCommand (abortCmd);
sendField.setCommandListener(this);

incoming.addCommand (connectCmd);
incoming.addCommand (sendCmd);
incoming.setCommandListener(this);

incoming.append ("', null);

}

/** Set display to the URI dialog */

public void startApp() {
display = Display.getDisplay (this);
display.setCurrent (uriField);

/** Shows the given string by appending it to the
list with respect to contained line breaks. */

public void show (String data) {
int 10 = data.indexOf ("\r");

if (i0 == -1) 10 = data.length(Q);

incoming.set
(incoming.size()-1,
incoming.getString (incoming.size() - 1)
+ data.substring (0, i0), null);

10++;
while (i0 <= data.length(Q)) {
int 1 = data.indexOf ((char) 13, i10);
if (i == -1) i = data.length(Q);
incoming.append (data.substring (i0O, i), null);
i0 = i+1;
}

/** Performs the action associated with the given command
like showing dialogs, opening the connection or sending
a string */

public void commandAction (Command c, Displayable d) {

try {

if (c == connectCmd)
display.setCurrent (uriField);

else if (c == sendCmd && handler != null)
display.setCurrent (sendField);

else if (c == abortCmd)
display.setCurrent (incoming);

else if (c == okCmd) {
display.setCurrent (incoming);

170

if (d == sendField && handler = null) {
handler.out.write
(sendField.getString() -getBytes());
handler.out.write ("\r");
handler.out.write ("\n");
handler.out.flush(Q);
sendField.setString ("''");

}
else if (d == uriField) {

disconnect();

handler = new Handler (uriField.getString());
handler.start();

}

catch (Exception e) {
show (e.toString());
disconnect();

public void pauseApp() {

public void disconnect() {
if (handler = null) {
handler.leave = true;
show (‘'disconnected!\r');

try {
handler.connection.cliose();
handler.in.close();
handler.out.close();

catch (10Exception e) {
}

handler = null;

public void destroyApp (boolean unconditional) {
disconnect();
}

}

Listing 6.3 PdapTerminal.java—The PDAP Terminal Application for Using Different
Protocols in the Same Application

import java.io.*;
import javax.microedition.io.™;
import javax.microedition.midlet.*;

import java.awt.*;
import java.awt.event.*;

public class PdapTerminal extends MIDlet implements ActionListener {

/** The Handler class cares about establishing the connection and

TYaEVIﬁfw

receiving and displaying data in the background. */
class Handler extends Thread {

StreamConnection connection;

InputStream in;

OutputStream out;

boolean leave;

/** Establishes a connection to the given URI */

public Handler (String uri) throws I0Exception {

connection = (StreamConnection) Connector.open
(uri, Connector.READ WRITE, true);

out = connection.openOutputStream();
in = connection.openlnputStream();

show (“'opened: "+uri + \r");

/** Like in.read(), but additional performs telnet
parameter negotiations. */

public int read() throws I0Exception {
while (true) {
int 1 = in.read();
if (i = OxOff) return i;

int cmd = in.read(Q);

if (cmd == Ox0ffF)
return OxOff;

int opt = in.read();

if (cmd == Oxfd || cmd == Ox0fb) {
out_.write (OxOffF);
out.write (cmd == Oxfd ? 252 : 254);
out.write (opt);
out.flush(Q;

/** Collects incoming data in the background and
shows it if the buffer size reaches 1 k or
no more data is available at the moment. */

public void run() {

StringBuffer buf = new StringBuffer();
try {
while (Tleave) {

do {
int 1 = in.read();

if (i == -1) disconnect();

172

else if (i == "\r" |] i >= " ")
buf.append ((char) i);

while (lleave && in.available() > 0
&& buf.length() < 1024);

show (buf.toString());

buf.setLength (0);
s

catch (Exception e) {
if (Mleave) show (e.toString() + "\r');
disconnect();

/** Class for thread safe appending of information to
the list of incoming data */

class Appender implements Runnable {
String data;
Appender (String data) {
this.data = data;
}

public void run() {
int 10 = data.indexOf ("\r");

//System.out.println (""Adder: cr index is: "+i0);
if (i0 == -1) 10 = data.length(Q);

incoming.replaceltem
(incoming.getltem (incoming.getltemCount() - 1)
+ data.substring (0, i0), incoming.getltemCount()-1);

10++;
while (10 <= data.length(Q)) {
int 1 = data.indexOf (°\r", 10);

if (i == -1) i = data.length(Q);
incoming.add(data.substring (iO, 1));
i0 = i+1;

Frame frame = new Frame();

TextField urlField = new TextField ("'");

List incoming = new List();

TextField sendField = new TextField();

Button connectButton = new Button (‘‘connect');
Button sendButton = new Button (“'send™);

Handler handler;

/** Initializes GUlI */

173

public PdapTerminal() {
frame = new Frame ('GcfTerminal™);

frame.addWindowListener(new WindowAdapter() {
public void windowClosing (WindowEvent e) {
destroyApp (true);
notifyDestroyed();
}
s

connectButton.addActionListener(this);

Panel topPanel = new Panel (new BorderLayout());
//topPanel .add("'West", protocolChoice);

topPanel .add(*'Center', urlField);

topPanel .add("'East', connectButton);

sendButton.addActionListener(this);

Panel bottomPanel = new Panel (new BorderLayout());
bottomPanel .add(*'Center™, sendField);

bottomPanel .add(*'East', sendButton);
frame.add(*'"North", topPanel);

frame.add(*'Center', incoming);

frame.add(*'South™, bottomPanel);

frame.pack();

/** Shows the given string thread safe by handing a new Appender
to invokelLater */

public void show (String s) {

try {
Toolkit.getDefaultToolkit() .getSystemEventQueue()

-invokeAndWait (new Appender (s)):;

catch (Exception e) {
throw new RuntimeException (e.toString());
}

/** Shows the main frame on the device screen */

public void startApp() {
frame.show();
}

/** Handles the buttons by opening a connection or sending text

public void actionPerformed (ActionEvent event) {

try {
if (event.getSource() == sendButton && handler !'= null) {

handler.out.write (sendField.getText().getBytes());

174

handler.out.write (°\r")
handler.out.write ("\n")
handler.out.flush();
sendField.setText (''");

else if (event.getSource() == connectButton) {
disconnect();
handler = new Handler (urlField.getText());
handler.start();

}

catch (Exception e) {
incoming.add(e.toString());
incoming.add('"");
disconnect();

/** Closes the connection if any */

public void disconnect() {
it (handler = null) {
handler.leave = true;
show (‘'disconnected!\r");
try {
handler.connection.close();
handler.in.close();
handler.out.close();

}
catch (10Exception e) {
}

handler = null;

public void pauseApp() {

¥

public void destroyApp (boolean unconditional) {
disconnect();
frame.setVisible (false);

}

A Simple HTTP-Based Client-Server Chat Application

In addition to the telnet client, we would like to show you how to build a"rea" client-server
application, where the server runs on a desktop computer, and the CLDC device takes over the role of
the client. To keep things ssmple, we have chosen a chat application as an example. Theideais that you
can connect to a server, see the messages from other people connected to the same server, and write
your own messages that become visible to the other users. Because HTTP is the only protocol available
for all devices, we will use HTTP as the communication protocol for our application. However, using
HTTP includes a significant drawback: HT TP does not provide server initiated transmissions, so the
clients need to connect to the server and to "poll" for new data from time to time. It might be possible
to work around this limitation by keeping an HT TP connection open for each client and to forward data
to al connected clients automatically. However, it might be possible that the gateway used by the
device for HTTP access does not support this, so we will stick to polling here.

In order to allow the clients to receive only their new messages, all messages have an unique number,
which is managed by a simple server-sided counter. Thus, the client can submit the number of the

175

newest message it has already received, and the server will send only newer messages that have higher
numbers assigned. If no number is given, the server will just send the 10 most recent messages.

Thus, we can define the following behaviors for reading:

e Client—Sends arequest of type GET.

e Server—First it sends aline containing the number that will be assigned to the next message.
Then, if the URL is of the form /?start=N, alist of all messages, starting with message
number N, istransmitted. For all other URLS, the last 10 messages are submitted. All items are
separated by a pair of carriage return and linefeed control characters (\r\n).

For submitting text, you will usethe HTTP POST command with an identical URL, but you will aso
send the nickname and the text in the body of the request. In return, the server sends the same content
asfor the GET command:

e Client—Sends arequest of type POST.
e Server—Sendsthe same reply asfor the GET command. The text just sent by the client is
included in the list of messages. Thus, at least one message is sent.

J2SE Chat Server

Now that we have defined the communication protocol, we can start with implementing a
corresponding server.

The server dependson the java. 10 and java.net packages. It stores the number of the current
message, a buffer for text, and a J2SE server socket in member variables:

import java.io.*;
import java.net.™;

public class ChatServer {

int current = O;

String [] lines = new String [256];
ServerSocket serverSocket;

The constructor of the server gets a port number asinput and creates a corresponding server socket:

public ChatServer (int port) throws I0Exception {
serverSocket = new ServerSocket (port);
System.out.println ('Serving port: "+port);

}

The run() method of the server contains aloop that waits for incoming connections. When a request
is accepted, a buffered reader and a writer corresponding to input and output streams associated with
the connection are handed over to the handleRequest () method. Usualy, the actual handling of
the request would be performed in a separate thread, enabling the server to handle new requests
immediately. However, in order to keep the server as simple as possible, you handle the request in the
current thread, blocking new requests for the corresponding amount of time:

public void run() {
while (true) {
try {
Socket socket = serverSocket.accept();
handleRequest (new BufferedReader
(new InputStreamReader (socket.getlnputStream())),
new OutputStreamWriter
(socket._getOutputStream()));

176

socket.close();

}
catch (Exception e) {

e.printStackTrace (System.err);
}

}

The main functionality of the chat server is performed in the handleRequest() method. It getsthe
socket reader and writer asinput from the run() method. At first, it reads the HTTP request line from
the client and printsit to system.out:

public void handleRequest (BufferedReader reader,
Writer writer) throws I10Exception {

String request = reader.readLine();
System.out.println (“"handling: "+request);

The next step isto analyze the request line. For that purpose, it is divided into the method, the
requested address, and the version part, which are separated by space characters:

int sO
int sl

= request.indexOf (* ");

= request.indexOf (* *, s0+1);
String method = request.substring (0, s0O);
String url = request.substring (sO+1, sl);

Now, thefirst line to be submitted is determined by analyzing the request URL.:

int start = -1; // default;
int cut = url.indexOf (""?start="");

if (cut 1= -1)
start = Integer.parselnt (url.substring (cut+7));
if (start < 0) start = count — 10;

Additional header lines are skipped by reading from the stream until an empty line or the end of the
stream is reached. An empty line marks the end of the HT TP headers and the beginning of the content
of the request:

while (true) {
String s = reader.readLine();
System.out.println (“"header: "+s);
iT (s == null || s.length() == 0) break;
}

Now, if the HTTP-Request method is POST, the nickname and the sender are read fromthe HTTP
content. A corresponding string is appended to the message ring buffer of the server:

if (method.equalslgnoreCase ('post™)) {

String nick
String text

reader.readLine() .substring (5);
reader.readLine() .substring (5);

System.out.println ('nick="+nick);
System.out.println ('text="+text);

lines [(current++) % lines.length] = nick + ": "+ text;

177

// skip possible additional crIf from bad http implementations
if (reader.ready()) reader.readLine();

}

Finally, an HTTP OK status report is sent back to the client, together with the number that will be
assigned to the next incoming messages, and the list of messages that was requested by the client:

writer.write ("HTTP/1.0 200 OK\r\n');
writer.write ('Content-Type: text/plain\r\n);

writer.write (“"Connection: close\r\n");

// Header is separated from content by a blank line.
writer.write ('\r\n");

writer.write ("'+current+"\r\n");

if (start < current - lines.length) start = current -
lines.length;
if (start < 0) start = 0;

for (int i = start; 1 < current; i++) {
writer.write (lines [i1 % lines.length]);
writer.write ("\r\n");

writer.close();

}

The main method of the chat server sets up the server listening to the port given as the command-line
parameter. If no port number was given, it defaultsto port 8080:

public static void main (String [] argv) throws 10Exception {

if (argv.length == 0)

new ChatServer (8080).run();
else if (argv.length == 1)

new ChatServer (Integer.parselnt (argv[0]))-run();
else

System.out.println (“'Usage: java ChatServer [port]™);

}

Note

The Java Servlet API provides better support for implementing HT TP-based server applications than
using raw sockets. However, we did not want to introduce an additional dependency for this example
application

MIDP and PDAP Chat Clients

Now, you have developed asimple HTTP based chat server. Y ou can test it using asimple Web
browser. By starting the server on the local machine and pointing a Web browser to the address
http://1ocalhost:8080, you can get alist of the 10 most recent messages. This list will
probably be empty, but you can use avery simple HTML page to send messages to the server:

178

<html><head><title>Chat Server Test</title></head>

<body>

<form target="main' method="post"
action="http://localhost:8080/"
enctype=""text/plain'>

<table>
<tr><td>Nickname:</td><td><input name="nick" /></td></tr>
<tr><td>Text:</td><td><input size="80" name=""text" /></td></tr>
</table>
<input value="Submit Text" type="submit" />
</form>
</body>
</html>

However, the main ideaisto use J2ME devices as clients for the chat server. Listings 6.4 and 6.5
contain the MIDP and PDAP versions of the chat client. Again, the main task is performed in the
transmit method in both cases, which sends a new string to the server and updates the display of the
client with the messages received from the server.

The transfer method is called from two points in the program:

e From the event handler when the user requests to send some text. In that case, the string to be
submitted to the server is given as a parameter.

e Periodically from arefresh task every four seconds with null | as a parameter, in order to keep
the message display of the client updated.

The transfer method takes the string to be sent to the server as parameter, or null I if thelocal list of
messages should only be updated from the server without sending a new message. Depending on this
parameter, aHTTP connection is opened in READ or READ_WRITE mode. The URI is constructed
from the hostname that was queried by the user interface and stored in the host variable and the start
parameter, denoting from which message number the server should start sending. The count variable
isinitialized with the value -1, so for the first request, the server will send back the 10 most recent
messages. The count variable is updated later in this method from the response of the server. Because
IO exceptions might be thrown during the connection, you include the whole method in a try-catch
block. The Boolean return val ue indicates whether the transfer was performed successfully:

boolean transfer (String submit) { /7 if null, just read
try {
HttpConnection connection = (HttpConnection) Connector.open
(host + "'/?start="+count,
submit != null ? Connector.READ WRITE : Connector.READ);

If submitisnot null, acorresponding writer is obtained from the HT TP connection, and the method
isset to POST. Then, the message stored in the submi t variable is submitted as content of the request:

Writer writer = null;

if (submit = null) {
connection.setRequestMethod (HttpConnection.POST);
writer = new OutputStreamWriter
(((StreamConnection) connection).openOutputStream());
writer.write ('nick="+nick + "\r\n");
writer.write (text="+submit+'"\r\n");
writer.close();

}

Now you open areader in order to read the new messages submitted with the reply from the server:

179

Reader reader = new InputStreamReader
(((StreamConnection) connection).openlnputStream());

First, you read the new count value, denoting the number that will be assigned to the next message
arriving at the server. Thisvalue isimportant in order to know where to start the next request.
readLine() isastatic method of this class that reads a line from the given reader:

count = Integer.parselnt (readLine (reader));
Now you read the messages submitted by the server until you reach the end of the stream:

while (true) {
String s = readLine (reader);
iT (s == null || s.length() == 0) break;
addLine (s);

¥

Next, you close the readers and the corresponding connection. Also, you return true in order to
indicate that the transfer was performed successfully:

reader.close();
connection.close();
return true;

}

Finally, if an exception occurred in the connection, you add the corresponding error string to the
display, and then call the disconnect() method which stops the timer that ensures the display is
updated periodically. A false vaueisreturned in order to indicate that an exception has occurred:

catch (Exception e) {
addLine (e.toString(Q));
disconnect();
return false;

}
The only other part of the application relevant for communicationsisRefreshTask:

class RefreshTask extends TimerTask {
public void run() {
transfer (null);
}

}

When a connection is established, it is launched with parameters to request an update of the messages
from the server every four seconds:

timer = new Timer();
timer.schedule (new RefreshTask(), 0, 4000);

Figure 6.5 shows emulated MIDP and PDAP clients connected to alocal chat server. Note that the
resulting chat application is minimalistic. For example, it does not check if two different users are using
the same nickname. The application isintended to show the basic HTTP functionality only. Feel freeto
extend or change the application as you like for your own purposes.

Figure 6.5. Emulated MIDP and PDAP clients connected to a local chat server.

180

FHOME: HELLS PDA
PLA: Hello Phone.

Subrnit]|[Config

Wiite

Listing 6.4 MidpChat.java—A MIDP Chat Client Using the HTTP Protocol to
Communicate with the Server

import javax.microedition.midlet.*;
import javax.microedition.lcdui.*;
import javax.microedition.io.*;

import java.util.*;
import java.io.*;

public class MidpChat extends MIDlet implements CommandListener {

List list = new List (“"MidpChat', Choice.IMPLICIT);
TextBox text = new TextBox (*'Chat Text', "', 100, TextField.ANY);

int count = -1;
Timer timer;

String host
String nick

"http://1ocalhost:8080";
"‘guest'’;

Display display;

Command write = new Command ("Write', Command.OK, 1);
Command submit new Command (*'Submit’, Command.OK, 1);
Command cancel new Command (*'Cancel’™, Command.BACK, 1);

class RefreshTask extends TimerTask {

public void run() {
if (display.getCurrent() == list)
transfer (null);

}

class ConfigForm extends Form implements CommandListener {

TextField hostField =
new TextField ('Host:', host, 50, TextField.ANY);
TextField nickField =
new TextField ('Nickname:", nick, 50, TextField.ANY);
Command connectCommand = new Command (*'Connect', Command.OK,
1);

Command abortCommand = new Command (‘Abort', Command.BACK, 1);

Tba&BIﬁ/”

ConfigForm() {
super (“'Configuration™);
append (hostField);
append (nickField);
addCommand (connectCommand) ;
addCommand (abortCommand) ;
setCommandListener(this);

}
public void commandAction(Command c, Displayable d) {
if (c == connectCommand) {
host = hostField.getString();
nick = nickField.getString();
connect();
}
display.setCurrent (list);
}

}

static String readLine (Reader reader) throws I0Exception {
StringBuffer buf = new StringBuffer();
while (true) {
int ¢ = reader.read();

if (c == -1) {
if (buf.length() == 0) return null;
break;

}

if (c == 10) break;

if (c '= 13) buf.append ((char) c¢);
}
return buf.toString();

}

public MidpChat() {
list.addCommand (write);
list.setCommandListener(this);
text.addCommand (submit);
text.addCommand (cancel);
text.setCommandListener(this);

}

public void startApp() {
display = Display.getDisplay (this);
if (timer == null)
configure();
else
display.setCurrent (list);

}
void configure() {
disconnect();
display.setCurrent (new ConfigForm());

}

void connect() {
disconnect();
if (transfer (null)) {
timer = new Timer();
timer.schedule (new RefreshTask(), 0, 4000);

182

void addLine (String line) {
list.append (line, null);
}

void disconnect() {
if (timer = null) {
timer.cancel();
timer = null;

}

}

boolean transfer (String submit) { // if null, just read
try {

HttpConnection connection = (HttpConnection)
Connector .open
(host + "'/?start=""+count,
submit '= null ? Connector.READ WRITE :
Connector .READ) ;

Writer writer = null;

if (submit !'= null) {
connection.setRequestMethod (HttpConnection.POST);
writer = new OutputStreamWriter
(((StreamConnection)

connection) .openOutputStream());
writer.write ('nick="+nick + "\r\n")
writer.write (text="+submit+"\r\n")
writer.close();

}

Reader reader = new InputStreamReader
(((StreamConnection) connection).openlnputStream());
count = Integer.parselnt (readLine (reader));
while (true) {
String s = readLine (reader);
if (s == null |] s.length() == 0) break;
addLine (s);
}

reader.close();
connection.close();
return true;

catch (Exception e) {
addLine (e.toString(Q));
disconnect();
return false;

}

public void commandAction(Command c, Displayable d) {
if (c == write) {
display.setCurrent (text);

else {
if (c == submit) {
transfer (text.getString());
text.setString ('"");

183

display.setCurrent (list);

}
}
public void pauseApp() {
}

public void destroyApp (boolean unconditional) {
disconnect();
}

}

Listing 6.5 PdapChat.java—A PDAP Chat Client Using the HTTP Protocol to
Communicate with the Server

import java.io.*;

import java.awt.*;

import java.util.*;

import java.awt.event.*;

import javax.microedition.io.*;

import javax.microedition.midlet.™;

public class PdapChat extends MIDlet implements ActionListener,
Runnable {

Frame frame = new Frame (‘'PdapChat');
Java.awt.List list = new java.awt.List();
TextField text = new TextField();

Button configButton = new Button ('Config"™);
Button submitButton = new Button ('Submit');

int count = -1;
Timer timer;
String host
String nick

"http://1ocalhost:8080";
""guest'’;

class ConfigDialog extends Dialog implements ActionListener {
TextField hostField = new TextField (host);
TextField nickField new TextField (nick);
Button connectButton = new Button (“'Connect');
Button abortButton = new Button (“'Abort');

ConfigDialog() {
super (frame, "‘Configuration', true);
Panel labels new Panel (new GridLayout (0, 1));
Panel fields new Panel (new GridLayout (0, 1));
Panel buttons = new Panel();

add('West", labels);
add("'Center', fields);
add('South', buttons);

labels.add(new Label (“"host:'"));
labels.add(new Label (“nick:"));
fields.add(hostField);
fields.add(nickField);

connectButton.addActionListener(this);

184

buttons.add(connectButton);
abortButton.addActionListener(this);
buttons.add(abortButton);

pack(Q);

public void actionPerformed (ActionEvent ev) {
if (ev.getSource() == connectButton) {
host = hostField.getText();
nick = nickField.getText();
connect();

3
setVisible (false);

}

class RefreshTask extends TimerTask {
public void run() {
try {
Toolkit.getDefaultToolkit()
.getSystemEventQueue()
-invokeAndWait (new Runnable() {
public void run(Q) {
transfer (null);

}
}
):
}
catch (Exception e) {
}

}

static String readLine (Reader reader) throws I10Exception {
StringBuffer buf = new StringBuffer();
while (true) {
int ¢ = reader.read();

if (c == -1) {
if (buf.length() == 0) return null;
break;

}

if (c == "\n") break;

if (c '= "\r") buf.append ((char) c);
}
return buf._toString(Q);

}

public PdapChat() {
frame.add(*"Center', list);
Panel input = new Panel (new BorderLayout());
frame.add(*'South™, input);
input.add('Center", text);
Panel buttons = new Panel();
input.add('South', buttons);
buttons.add(submitButton);
buttons.add(configButton);
submitButton.addActionListener(this);
configButton.addActionListener(this);

frame.addWindowListener(new WindowAdapter() {

public void windowClosing (WindowEvent e) {
destroyApp (true);

185

notifyDestroyed();

}
P:
frame.pack();

}

void configure() {
disconnect();
new ConfigDialog()-show();

}

void connect() {
disconnect();
if (transfer (null)) {
timer = new Timer();
timer.schedule (new RefreshTask(), 0, 4000);

}

void disconnect() {
if (timer = null) {
timer.cancel();
timer = null;

}

/** implementation of runnable */

public void run(Q) {
transfer (null);
}

boolean transfer (String submit) { // if null, just read
try {

HttpConnection connection = (HttpConnection)
Connector.open(host + "'/?start="+count, submit !=
null? Connector.READ WRITE : Connector.READ);

Writer writer = null;

if (submit !'= null) {

connection.setRequestMethod (HttpConnection.POST);
writer = new OutputStreamWriter
(((StreamConnection)connection) .openOutputStream());
writer.write ('nick="+nick + "\r\n");
writer.write (text="+submit+'"\r\n");
writer.close();

}

Reader reader = new InputStreamReader
(((StreamConnection) connection).openlnputStream());
count = Integer.parselnt (readLine (reader));
while (true) {
String s = readLine (reader);
if (s == null |] s.length() == 0) break;
addLine (s);
}

connection.close();
return true;

reader.close();

}
catch (Exception e) {

addLine (e.toString());
disconnect();

186

return false;

}

public void addLine (String I) {
list.add(l);
}

public void actionPerformed (ActionEvent event) {
it (event.getSource() == configButton)

configure();

else {
transfer (text.getText());
text.setText (""'");

}

public void startApp() {
frame.show();
it (timer == null) configure();
}

public void destroyApp (boolean unconditional) {
frame.setVisible (false);
disconnect();

}

public void pauseApp() {
}

MIDP 2.0 Additions to the javax.microedition.io Package
The Generic Connection Framework is extended by MIDP 2.0 with the following interfaces and classes:

e theHTTPSConnection interface supporting secure HT TP connections.

o thePushListener interface that needsto be used together with the new PushRegistry
class.

e theSecureConnection inorder to establish SSL or TLS connections.

e theSecuritylnfo interface.

e theServerSocketConnection interface, which has already been described in this
chapter, is mandatory for MIDP 2.0.

o theUDPDatagramConnection interfacethat is derived from DatagramConnection.

The UDPDatagramConnection interfaceisderived from DatagramConnection and adds
two new methods to retrieve information about the local machine such as String
getLocalAddress() and int getLocalPort().

Handling Inbound Connections

An application that needs to respond to inbound connections can be registered with the Application
Management Systems (AMS) in two ways. Although it is possible to call the
registerConnection() method of the PushRegistry dynamically, listeners for inbound
connections can also be statically registered using anew entry in the JAD file:

187

MIDlet-Push-<n>: <ConnectionUrl>, <MIDlIetClassName>, <AllowedSender>

Thefirst entry MIDlet-Push-<n>isused for numbering the push MIDletsin a given suite. The
ConnectionUr| definesthe protocol and parameters of inbound connections the AMS should listen
for. TheMIDletClassName parameter contains the class name of the MIDlet that should be started
if aninbound connection on the given URL was detected. The Al lowedSender parameter may be
used to restrict connections to the MIDIet. In case of 1P connections the allowed senders may be
specified by an IP number including wildcards. A single * allows access from any client.

If the client is allowed to connect to the MIDlet, the AMS starts the MIDlet by calling the startApp()
method. After the MIDlet is started, it needs to handle the connection itself. For instance, in order to
register aMIDlet called MIDPHttpServer, the corresponding jad entry allowing al clientsto

connect would look as follows:

MIDlet-Push-1: socket://:80, MIDPHttpServer, *

Another approach to register a MIDlet to inbound connection isto call the registerConnection()
method from the PushRegistry class dynamically. The previously mentioned descriptor file entries
are passed as String parameters to the method. In both cases the startApp () method is called if

an inbound connection is detected by the AMS.

Since the startApp() method has no parameter for passing the inbound connection, the MIDlet
needs to query the inbound connection. For querying the inbound connections currently waiting to be
handled, the PushRegistry. listConnctions() method is provided. This method takes one
boolean parameter as flag. True indicates that the String array returned by the method should
contain connections with input data that requires handling only. If false is passed to the method, all
connections registered to the given MIDIetSui te are returned.

The following sample code snippet shows how to handle a previously registered inbound socket
connection:

public void startApp() {

String availableConnections[];
availableConnections = PushRegistry.listConnections(true);

it (availableConnections.size() > 0) {

}

try {
// since the socket connection is the only connection

// we want to listen to we can simply pass the result String
// containing the Connector.open() method.

StreamConnection sconn = (StreamConnection)Connector,open();
InputStream is = sconn.opelnputStream();

// read input data here

is.close();

sconn.close();

catch (10EXception ioe) {
// handle a possible error during establishing the connection
¥

Note

188

Please note, that not all generic connections will be appropriate for use as push application transport.
Even if a GCF protocoal is supported on a particular device it is not required to be enabled asavalid
push mechanism.

The PushRegistry supports alistener model as well, which can be used by implementing the
PushListenerInterface inasubclassof MIDlet. In order to register a class implementing the
PushListener, the PushRegistry.setPushListener () method needsto be caled, taking
the connection as first parameter, and the class implementing the PushL i stener interface as second
parameter. When the registered connection is established, the notifyConnection() method of the
PushListener interfaceis caled. The parameter passed to notifyConnection() isaString
describing the incoming connection parameters.

Security

The new SecureConnection and HttpsConnection interfaces support the
getSecuritylnfo() method returning a class implementing the Secur ity Info interface.

The Secur ity Info interface provides the following methods in order to get information about a
Ssecure connection:

e String getChipherSuite()

e String getProtocolName()

e String getProtocolVersion()

e Certificate getServerCertificate()

Summary

In this chapter you have learned how to integrate network capabilities into your MIDlets. Y ou
know the possible network protocols that might be supported in the CLDC profiles, especialy the
HTTP protocol. Y ou have also seen how to integrate these protocols using the generic connection
framework into applications such as the terminal and the chat client-server application.

189

Chapter 7. PIM: Accessing the Personal Information
Manager

INTHISCHAPTER

Genera PIM API Design
Addresshook API

Calendar API

ToDo API

Contact Sample Application

The traditional main purpose of PDAs isto serve as Personal Digital Assistants, providing access
to adigital address book and calendar, as shown in Figure 7.1. The Personal Digital Assistant
Profile (PDAP) contains a corresponding API, allowing you to access the device-specific address
book, calendar database, and to-do lists from Java applications. This chapter discusses the
Personal Information Manager (PIM) API that is availablein PDAP.

Figure 7.1. The SONY CLIE Emulator showing the built-in address book containing
two sample contacts.

~i

Ackerman, Carol bbBbE-123-4321W
Stephens, Michael 555-123-5432W

Look Up: New

For J2SE and PersonalJava the so called JavaPhone API is available (see
http://java.sun.com/products/javaphone/). Because the PDAP implementation intends to have a
very small footprint, which is necessary to fit in the small RAM of CLDC devices, adopting the
JavaPhone API completely or just providing a JavaPhone subset would be inappropriate. In order
to accomplish the request to minimize the PIM footprint, PDAP defines an optional PIM API in
the package javax.microedition.pim.

In the following section, we will begin with the description of the general structure of the PIM
API, and then go into the details of accessing the address book, calendar, and to-do lists. Finally,
well show you how to create a demonstration MIDlet that is capable of accessing the address
book of the device.

190

http://java.sun.com/products/javaphone/

General PIM API Design

The basic idea of the API isto store entries such as contacts, events, and to-do e ementsin an
appropriate database. In order to achieve this, the PIM API contains an interface PIMList
providing methods to add, delete, and enumerate all the entries contained in the list. The concrete
implementations of PIML i st contained in the PIM API are ContactListsto store contacts,
EventListsto store events, and ToDoL i ststo store to-do items. The PIM class provides static
methods such as openContactList() to access the different list types.

P IML i sts contain objects implementing the P IMElement interface. P IME lement encapsulates
the common properties of the different PIM elements such as Contacts, Events, and ToDos.
The interface provides methods for common functionality such as category access and viFormat
import and export, as well as access to the fields of an entry. Access to some speciaized fieldsis
provided by the derived interfaces Contact, Event, and ToDo. For illegal PIM operations, a
PIMException will bethrown. In the next sections, you will learn the details of the specialized
address book, event, and to-do functionality.

In contrast to vCard, vCalendar, and the JavaPhone API, the PDAP PIM API does not support
multiple fields with the same name and type combination. Although this restriction causes a sight
loss of flexihility, it makes the APl much less complex than the JavaPhone API. Fieldswith a
single ID and multiple types are described in more detail in the following section.

Addressbook API

The functionality of the address book is achieved using the ContactList and Contact classes
only. Contactsin the PIM API support a subset of the fields of the vCard format version 3.0 specified
in IETF RFC 2426. The following example shows avCard for John Smith in ASCII format:

BEGIN:VCARD

FN:John Smith
N:Smith;John;; ;MD

TEL ; TYPE=WORK:555-7352
TEL ; TYPE=HOME : 555-4321
END:VCARD

Note
More information about |ETF RFC 2426 can be found at

http://www.nic.mil/ftp/rfc/rfc2426.txt

Contacts and Their Fields

As mentioned earlier, the interface Contact extending the P IME lement interface representsasingle
contact. A contact consists of several fields such as name, phone number, or birthday. These fields are
of different data types, depending on their purpose. For example, the name and addressinformation is
stored in strings, whereas the birthday is stored in a date field. In the following subsections we will
describe the different field types and fields available in the PIM API.

http://www.nic.mil/ftp/rfc/rfc2426.txt

Theindividual fields of a contact are addressed by field IDs. Thefield IDs are integer values which are
defined in the Contact interface. Examples for fields IDs are Contact . FORMATTED NAME or
Contact.PUBLIC_KEY.

String-Based Data

String datais added to a Contact using the setString () method, which takes two parameters.
Thefirst parameter isthe field 1D, and the second takes the string to be stored. For reading string data
fields, the method getString() isprovided. This method takes the field ID to beread asa
parameter and returns the corresponding value. If the field has not been set, nul I is returned.

A contact containing one field, the formatted name, is created as follows:

ContactList myContacts = PIM.openContactList (PIM.READ_WRITE);
Contact myContact = myContacts.createContact();
myContact.setString(Contact.FORMATTED NAME, *John, Smith');

Please note that a try-catch block for the PIMException is missing in the code above. We will omit
the mandatory try-catch block from all following code snippets.

A special field isthe UID field. It contains an identifier that is unique for each contact. The unique
identifier is generated automatically and cannot be modified. It can be used to quickly retrieve a
particular contact.

Table 7.1 shows all field IDs that can be used to add string datato a Contact.

Table 7.1. Field ID Constants for String-based Data Defined in the Contact Interface

Field Name Description

ORG The organization name
FORMATTED_NAME 'The formatted name
NAME_FAMILY The family name

NAME_GIVEN The given name

NAME_OTHER Undefined information
NAME_PREFIX The name prefix

NAME_SUFFIX The name suffix

N ICKNAME A nickname

NOTE A note

PUBLIC_KEY The public key, such as a PGP public key
TITLE The title

uib The contact's UID

URL A URL associated with the contact

Date-Based Data

In addition to text fields, the PIM API supports fields for storing dates, such as a person's birthday.
Similar to the setString() and getString() methods, the Contact class supports the
setDate() and getDate() methodsto store and retrieve datesin aContact. The set method
takesafield ID such asBIRTHDAY and agiven Date object as parameters. The date can be retrieved
by giving the corresponding field ID to the getDate () method.

Another field containing adate isREVISION. This entry stores the date when the contact was last
modified. Setting this value is not recommended because it is automatically done by the
implementation. BIRTHDAY and REVISION are the only date fields supported by PDAP.

192

The birthday of a contact can be set as shown in the following line of code:

myContact.setDate(Contact.BIRTHDAY, new Date());
Binary Data

Another simple field type is the byte array that can be added to a contact, for instance to store a photo
of aperson inaContact object. Analogous to the string and date fields, methods for setting and
retrieving the contents of that field are provided. The only supported field ID for a byte array typeisthe
predefined PHOTO constant to store a person's photograph.

For setting a byte array, use the setBinary () method, which takes afield ID and the byte array to
be stored in the contact. For retrieving the byte array, use getBinary (), which takesafield ID as
the only parameter.

Multivalue Data

Multivalue fields are used to store multiple instances of the same field. For instance, afield of a
Contact might contain different types (locations) of phone numbers, such as home or work phone
numbers. All phone numbers are stored in the different subentries of the same TEL entry. Typed datais
added to a contact using the set setTypedString() method that takes three parameters: the field
ID, the type ID, and the value to be stored. Revision isaread-only field that is set by the
implementation automatically.

Table 7.2 shows the fields that can take multiple values and the corresponding predefined type IDs.

Table 7.2. Multivalue Contact Fields and the Corresponding Type IDs

Field IDs Type IDs

EMAIL, FAX, TEL TYPE_ASSISTANT, TYPE_AUTO,
TYPE_HOME, TYPE_MOBILE, TYPE_OTHER,
TYPE_PAGER, TYPE_WORK

ADDR_COUNTRY, ADDR_EXTRA, TYPE_HOME, TYPE_OTHER, TYPE_WORK
ADDR_LOCALITY, ADDR_POBOX,
ADDR_POSTALCODE, ADDR_REGION,
ADDR_STREET

The following code snippet shows how two phone numbers, the home and work phone number, are
assigned to a contact:

myContact.setTypedString(Contact.TEL, Contact.TYPE_WORK, "555-1177");
myContact.setTypedString(Contact.TEL, Contact.TYPE HOME, "555-7711");

Device-Specific Meta Information

Because the currently available PDA devices have different native PIM implementations, the
PIMList interface provides query methods for retrieving information about all supported fields and
the supported types for agiven field ID.

For obtaining thisinformation, the getSupportedFields(), isFieldSupported() and
getSupportedTypes() methods are provided. The getSupportedFields() method returns
an integer array containing all field IDsthat are supported by the device. The method
IsSupportedField() returnsaboolean determining whether the given field ID is supported. The
getSupportedTypes() method takesafield ID as a parameter and returns an int array
containing all possible subtypes for thisfield. For example, you can query the possible type IDs for the
Contact.TEL field of agiven ContactList using the following code snippet:

193

int [] possibleSubTypes =
myContactList.getSupportedTypes(Contact.TEL);

On adevicethat is capable of storing only a home and a work phone number, the resulting int array
contains the type IDs Contact . TYPE_HOME and Contact.TYPE_WORK only.

Extended Fields

A Contact may also provide support for so-called "extended" fields. Extended fields are supported to
store device-dependent fields, where no field ID is predefined.

The IDsfor extended fields are returned by the getSupportedFields() method of the PIMLiSt
interface. They are returned together with the standard fields in the same array. The method
isExtendedField() can be used to determine whether afield is an extended field with a non-
standard ID.

When working with extended fields, two additional methods of the PIML i st interface are of special
interest. The method getFieldLabel () returns a human-readable label for agiven field ID. This
method allows an application to display alabel for an extended field, although the meaning of the ID is
not known to the application. The method PIME lement.getDataType() returns one of the
PIMElIement constants STRING, DATE, INT, BINARY, or TYPED STRING. This method allows
the application to figure out the correct access methods for an extended field.

Categories

Contacts can be assigned to one or more categories using the addToCategory () method. The
method takes the name of the category as String parameter. The maximum number of categories a
contact may be assigned to can be queried using the maxCategories() method. A return value of -
1 means that the number of categoriesis not limited. A Contact can be removed from a category
using removeFromCategory().

Please note that devices may limit the category names to those defined in the corresponding PIMList.
If aContact isadded to aninvalid category an PIMListException isthrown. PIMList
provides the following methods to manage categories available: addCategory (),
deleteCategory(), and getCategories().

ContactLists: Creating, Updating, and Deleting Contacts

Now that you are familiar with the fields of the Contact interface, it istimeto take alook at the
ContactList interface, which encapsulates access to the persistent contact database.

The ContactList isderived from the PIML i st interface, which offers the base functionality for
handling collections of PIM elements. ContactList providesacreateContact() method for
creating new contacts.

When creating new contacts or modifying existing contacts, the commi t() method of the Contact
interface must be called in order to make the changes persistent. Without calling commit, a new contact
will not be stored in the database.

ThePIMList class supportsadeleteElement() method, which takesaP IMElement asa
parameter, can be used to delete the specified element from the database.

The PIMLi st class aso provides two methods for retrieving an enumeration: an ellements()
method that returns all elements of the database, and a second e lements () method that gets all

194

elements matching the element passed as a parameter to this method. Finally, aclose() method is
provided.

The functionality to get access to the contact list(s) stored on the deviceis provided by the PIM class.
The PIM class provides two static openContactList() methods and one method for retrieving the
names of the non-default contact databases. The first openContactL ist() method takes the mode
in which the contact database should be opened, either PIM_READ_ONLY or PIM_.READ_WRITE.
This method is used to open the default contact database. The second openContactList() method
takes two parameters: the mode and the contact database name. In order to get an overview of all
possible contact database names, the I istContactLists() method is supported; it returns a string
array containing the database names. The first entry in the array contains the name of the default
database.

Now you are able to create anew Contact associated with the default ContactList and fill it with
personal information, as shown in the code snippet below:

ContactList myContacts = PIM.openContactList (PIM.READ_WRITE);
Contact myContact = list.createContact;
myContact.setString(Contact.FORMATTED NAME, "John Smith™);
myContact.setString(Contact.TEL, TYPE WORK, '"555-1177'");
myContact.setString(Contact.TEL, TYPE HOME, '555-7711');

Once the contact is created, it can be added to the default contact database:

myContact.commit();
myContacts.close();

The second operation that is of importance when using a contact database is to update an already
existing element. This might be necessary, for example, if the phone number of a given contact has
changed. In order to update an element of the ContactList, you need to get the instance of the
Contact first. The ContactList provides an e lement() method for searching existing
Contacts, taking a Contact template as parameter. The template is filled with the information the
search isbased on. The e lement () method returns an enumeration containing all Contacts
matching the template. A partially filled Contact object is used as template.

In the following code snippet, you can see how to retrieve a given contact, update a phone number, and
then write it back to the database. Thereis no check whether the enumeration contains more than one
elements. In areal application, a corresponding test would be appropriate:

ContactList myContacts = PIM.openContactList (PIM.READ_WRITE);
Contact matchContact = myContacts.create();
matchContact.setString(Contact.FORMATTED NAME, *John Smith'™);
Enumeration enum = myContacts.elements(matchContact);

Contact myContact = (Contact)enum.nextElement();
myContact.setString(Contact.TEL, TYPE HOME, '555-1177'");
myContact.commit();

myContacts.close();

In order to make sure that only the desired contact is returned, the UID field could be used in the
template instead of the formatted name. Another important operation provided by the ContactList
isthe ability to delete a previously added Contact from the database. This can be performed by
passing the element to be deleted to the removeElement () method. So, you have to read the
particular contact as you did when updating a contact. Y ou can use the same code snippet used for
updating a contact, except that you don't call setString() to modify a phone number; instead, you
pass the element stored in myContact directly to the removeContact () method after you read it
from the enumerator. This procedure is shown in the following code snippet:

195

ContactList myContacts = PIM.openContactList (PIM.READ_WRITE);
Contact matchContact = myContacts.create();
matchContact.setString(Contact.FORMATTED NAME, "John Smith ');

Enumeration enum = myContacts.elements(matchContact);
Contact myContact =(Contact)enum.nextElement();
myContacts.removeContact(myContact);

myContact.commit();
myContacts.close();

Calendar API

Similar to the addressbook API, the calendar API supports most of the fields specified by the
vCalendar in IETF RFC 2445. The calendar APl supports two classes analogous to those in the
addressbook API.

The following code snippet shows a vCalendar entry:

BEGIN:VCALENDAR

VERSION:2.0
PRODID:-//hacksw/handcal//NONSGML v1.0/7/EN
BEGIN:VEVENT

DTSTART:19970714T170000Z
DTEND:19970715T0359597

SUMMARY :Bastille Day Party

END:VEVENT

END: VCALENDAR

Asyou can see, the format is very similar to the vCard format used in the addressbook API.
Note
More information about IETF RFC 2445 can be found at

http://www.nic.mil/ftp/rfc/rfc2445.txt

The calendar API supports two interfaces anal ogous to those in the addressbook API (one interface
extending the P IME lement interface and one interface derived from the PIML i st interface,
providing access to an event database).

Here the corresponding interfaces are the Event interface for a particular element and the
EventList interface, providing the necessary methods to access an event database.

Contactsand Events support different field IDs. The calendar API supports two interfaces
analogous to those in the addressbook API (one interface extending the P IME lement interface and
one interface derived from the PIML i st interface, providing access to an event database).

Here the corresponding interfaces are the Event interface for a particular element and the
EventList interface, providing the necessary methods to access an event database.

Repetition of Events

196

http://www.nic.mil/ftp/rfc/rfc2445.txt

The EventRepeat classis an encapsulation of the RRULE field in a vCalendar element. It is used to
determine how often an event occurs. The repetition details of the event are set using the setInt()
method, taking afield ID and an int value as parameter. The valid parameter combinations are shown
in Table 7.3. Additionally, an end date for the repetition can be set using the setDate () method,
taking the END field constant and a valid date as parameters.

Table 7.3. Field ID Constants and valid values for the setInt() method of the
EventRepeat class

[Field IDs Valid Values

COUNT any positive int

FREQUENCY DAILLY, WEEKLY, MONTHLY, YEARLY
INTERVAL any positive int

MONTH_IN_YEAR|JANUARY, FEBRUARY, MARCH, APRIL, MAY, JUNE, JULY, AUGUST,
SEPTEMBER, OCTOBER, NOVEMBER, DECEMBER

DAY_IN_WEEK |SUNDAY, MONDAY, TUESDAY, WEDNESDAY, THURSDAY, FRIDAY, SATURDAY

WEEK_IN_MONTH|FIRST, SECOND, THIRD, FOURTH, FIFTH, LAST, SECONDLAST,
THIRDLAST, FOURTHLAST, FIFTHLAST

DAY_IN_MONTH |[1-31

IDAY_IN_YEAR |1-366

The following snippet shows how arepeat pattern is added to an event:

EventList myEvents = PIM.openEventList(PIM.READ_WRITE);
Event myEvent = myEvents.createEvent();

Date startDate = new Date();

myEvent.setString(Event.SUMMARY, "Weekly developer meeting."');
myEvent.setDate(Event.START, startDate);
myEvent.setDate(Event.ALARM, new Date(startDate.getTime() - 60000));
EventRepeat repeat = new EventRepeat();

repeat.setint(EventRepeat. DAY_IN_WEEK, EventRepeat.MONDAY);

myEvent.setRepeat(repeat);

myEvent.commit();
myEvents.close();

In the following section, we will describe the list related calls used in this code snippet in more detail.
EventLists for Handling Events

For access to the event database, the PIM class provides openEventList() and
listEventLists() methods analogous to the methods available for obtaining contact lists. The
behavior of those methodsis as described in the previous section about contact lists, except that the
openEventList() methods both return instances of EventList. LikeContactList
EventList extends the general PIMLi st interface. In addition to the PIMList functionality, it
provides a new elements() method, returning an enumeration containing all Event elementsranging
from a start date to a specified end date.

ToDo API

197

Theto-do API supports a subset of the vToDo fields that are defined in the vCalendar RFC 2445
specification. Analogous to the addressbook and calendar API, the to-do API contains specializations
of the PIMElement and PIMLi st interfaces, namely the ToDo and ToDoL i st interfaces.

Field IDs supported in the ToDo interface are COMPLETED, DUE, NOTE, PRIORITY, SUMMARY, and
UID. The following code snippet illustrates the usage of the ToDo API:

TodoList myTodoList = PIM.openTodoList(PIM.READ WRITE);
Todo myTodo = myTodoList.createTodo();

myTodo.set(Todo.SUMMARY, "Buy a book covering MIDP and PDAP™);
myTodo.set(Todo.DUE, new Date());
myTodo.set(Todo.NOTE, "Perhaps Sams offers a good one."

+ "Take a look on their website Ffirst.");
myTodo.set(Todo.PRIORITY, 1);

myTodo.commut() ;
myTodoList.close();

Likethe EventList, the ToDoL ist supports an e lements () method that returns an enumeration
containing all ToDo elements ranging from a start date to an end date. Repeat patterns are not
supported for ToDos.

Contact Sample Application

In order to become familiar with the PDAP PIM API, you will now build asimple PIM sample
application. Although the sample will focus on the address book part of the AP, it will be designed in a
structured way that allows you to reuse many parts as building blocks for your own, more powerful

PIM applications.

For the PIM sample application, you will first design a simple dialog that allows you to edit asingle
contact, including fields with subtypes. The second building block of the application isthe main
window, showing the list of contacts stored in the default ContactL i st of the device.

An Edit Dialog for Contacts

For the regular contact fields, it is obvious how to present them to the user in a graphical user interface.
You just put themin two grid layouts contained in the right and center areas of a border layout; the | eft
grid shows the labels and the center one the input fields, asin many other examples. However, for the
fields supporting multityped values such as TEL or FAX, the task becomes a bit more complex.

One option to make all subtypes accessible in a convenient way isto create separate panels for each
subtype such as WORK, HOME, and so on using aCardLayout. A Choice element can then be used
to switch between the panels.

Thisapproach is shownin Listing 7.1. Figure 7.2 shows a screenshot of the contact dialog. The panels
are represented by the inner class FielldPane. FieldPane contains an integer variable type
representing the subtype of all contained fields. The method addField() adds afield with the given
label and ID. In order to be able to synchronize the user interface with a concrete Contact instance,
the FieldInfo helper classis used to store the link between the TextField in the user interface
and the ID and type of the corresponding field. All FieldInfo objects are stored in the vector
fieldList. Whenthedialog isfilled from a contact in the edit method, all field info objects are

198

iterated, and the TextFieldsarefilled according to the corresponding content of the contact. If the
user confirmsthe dialog, the Field I nfo objects are iterated again, and the contents of the
TextFields, possibly altered by the user, are transferred back to the contact. Note that the transfer to
a contact object always needs to be committed to the database in order to become persistent.

Figure 7.2. The ContactDialog showing a sample contact.

x
Work |
FO-Box
ZIP-Code
Town
Region
Country NE
Extra
Telephone |595-1234
Fax 555-4321
Email john.smithi@hotmail.com
D_kl cancell

The addField() method of the FieldPane inner classis not accessed in the ContactDialog
directly, but ContactDial og hasits own addField() method. Depending on the given type
parameter, the STRING fields are added directly to the main FieldPane, whereasfields with
MULT IPLE subtypes are distributed to all corresponding panels. For this purpose, the subtypes
supported by the platform are queried using the getSupportedTypes() method. Then, for each
type, addSub () iscaled. InaddSub(), theaddField() method of the corresponding
FieldPane iscalled. Additional panels and choice entries are created as needed.

Note that the given add method supports string and multitype fields only, but no date or binary fields.
However, it should not be a problem to support those types by adding corresponding constants and user
interface elements.

Listing 7.1 ContactDialog. java—A Dialog for a Single Contact

import java.awt.™;

import java.awt.event.™;

import javax.microedition.pim.*;
import java.util _Hashtable;
import java.util_Vector;

public class ContactDialog extends Dialog
implements ItemListener, ActionListener {

Hashtable cards = new Hashtable();

Contact contact;

ContactList contactList;

Panel cardPane = new Panel(new CardLayout());
Choice typeChoice = new Choice();

Button okButton = new Button('ok™);

Button cancelButton = new Button(''cancel'™);

199

boolean result = false;
Vector fieldList = new Vector();

class FieldInfo {
int id;
int type;
TextField field;
}

class FieldPane extends Panel {
Panel labels new Panel(new GridLayout(0, 1));
Panel fields new Panel(new GridLayout(0, 1));
int type;

FieldPane(int type) {
super(new BorderLayout());
this.type = type;
add(labels, BorderLayout.WEST);
add(fields, BorderLayout.CENTER);

}

void addField(int id, int type) {
FieldInfo info = new FieldInfo();
info.id = id;
info.field = new TextField(30);
info.type = type;
labels.add(new Label(contactList.getFieldLabel(id)));
fields.add(info.field);
fieldList.addElement(info);

}

}

public void actionPerformed(ActionEvent ev) {
result = ev.getSource() == okButton;
hide(Q;

}

void addSub(int id, String type, int typeld) {
FieldPane fieldPane = (FieldPane) cards.get(type);
if (fieldPane == null) {
fieldPane = new FieldPane(typeld);
typeChoice.add(type);
cards.put(type, fieldPane);
Panel compact = new Panel(new BorderLayout());
compact.add(fieldPane, BorderLayout.NORTH);
ScrollPane sp = new ScrollPane();
sp.add(compact);
cardPane.add(sp, type);

}
fieldPane.addField(id, typeld);
}

void addField(int id) {

if (id == Contact.UID |] id == Contact.REVISION)
return;

int dataType = contact.getDataType(id);

if (dataType == PIMElement.STRING)
addSub(id, "Main', -1);

else if (dataType == PIMElement.STRING_TYPED) {
int[] types = contactList.getSupportedTypes(id);
for (int i = 0; 1 < types.length; i++) {

200

switch (types[i]) {
case Contact.TYPE_HOME :
addSub(id, ""Home', types[i]);
break;
case Contact.TYPE_WORK :
addSub(id, "Work'™, types[i]);
break;
// add other types here

}

3
// other data types are ignored
}

public void itemStateChanged(ltemEvent e) {
CardLayout cl = (CardLayout) (cardPane.getLayout());
cl.show(cardPane, (String) e.getltem());

}

public ContactDialog(Frame frame, ContactList contactList) {

super(frame, "Edit Contact", true);
this.contactList = contactList;
contact = contactList.createContact();
add(typeChoice, BorderLayout.NORTH);
add(cardPane, BorderlLayout.CENTER);
typeChoice.addltemListener(this);
int[] ids = contactList.getSupportedFields();
for (int i = 0; 1 < ids.length; i++)

addField(ids[i]);
Panel buttonPane = new Panel();
buttonPane.add(okButton);
buttonPane.add(cancelButton);
okButton.addActionListener(this);
cancelButton.addActionListener(this);
add(buttonPane, BorderLayout.SOUTH);
addWindowL istener(new WindowAdapter() {

public void windowClosing(WindowEvent ev) {

result = false;
hide(Q);

}
}):
pack(Q);

public boolean edit(Contact contact, String title) {
setTitle(title);
this.contact = contact;
result = false;
for (int i = 0; 1 < fieldList.size(); i++) {
Fieldlnfo info = (Fieldinfo) fieldList.elementAt(i);
String text =
contact.getDataType(info.id) == PIMElement.STRING
? contact.getString(info.id)
. contact.getTypedString(info.id, info.type);
info.field.setText(text == null ? """ : text);

}
show();
if (result) {
for (int i = 0; 1 < fieldList.size(); i++) {
Fieldlnfo info = (Fieldinfo) fieldList.elementAt(i);
String text = info.field.getText();

TYaZDIﬁfw

if (text.equals(™))
text = null;

if (contact.getDataType(info.id) == PIMElement.STRING)
contact.setString(info.id, text);

else
contact.setTypedString(info.id, info.type, text);

info.field.setText(text == null ? """ : text);

}

contact.commit();

}

return result;

}

The PimDemo MIDlet

Having implemented the dialog for editing a single contact, the main application isrelatively simple.
You just need to display alist of all entries contained in the address book, obtained from the
corresponding ContactList. Listing 7.2 shows a corresponding sample application. Figure 7.3
shows the PimDemo MIDlet.

Figure 7.3. The PIMDemo application showing a list of all contacts added to the contact

database.
=Y
John Smith
Sally Smith

edit | {add]| delete | et

Because the displayed names of the entries might not be unique, it makes senseto storethe UIDsina
separate vector. Of course, it would be possible to keep all the Contact objectsin the vector directly,
but this would demand alot of heap memory, which might not be available on the PDA. The stored
UlDsareused inthe getContact() method, where agiven UID istrandated back to aContact
object using the filtered contact enumeration.

The application displays buttons to add, edit, or remove an entry. When the add or edit button is
pressed, aContactDialog isshown, and the user can edit the content of the fields displayed. When
the program control returns from the dialog, and the dialog was not cancelled, the changes are made
persistent by calling the addElement () or updateElement() method of the ContactList.

Listing 7.2 FieldDialog. java—A Dialog, Based on the FieldDescription Class, for
Editing Single Item Fields

import java.awt.™;

import java.awt_event.*;

import javax.microedition.midlet.*;
import javax.microedition.pim.*;
import java.util.*;

public class PimDemo extends MIDlIet implements ActionListener {

202

ContactList contactList = PIM.openContactList(PIM.READ WRITE);

Frame frame = new Frame(''PimDemo™);

ContactDialog contactDialog = new ContactDialog(frame,
contactList);

Java.awt.List list = new java.awt.List();

Vector uids = new Vector();

Button editButton = new Button(edit");

Button addButton = new Button(*'add™);

Button deleteButton = new Button(‘'delete™);

Button exitButton = new Button(exit');

public Pimbemo() {
for (Enumeration e = contactList.elements();
e._hasMoreElements();) {
Contact ¢ = (Contact) e.nextElement();
uids.addElement(c.getString(Contact.UID));
list.add(getLabel (c));
}
Panel buttonPane = new Panel();
buttonPane.add(editButton);
buttonPane.add(addButton);
buttonPane.add(deleteButton);
buttonPane.add(exitButton);
editButton.addActionListener(this);
addButton.addActionListener(this);
deleteButton.addActionListener(this);
exitButton.addActionListener(this);
frame.add(buttonPane, BorderLayout.SOUTH);
frame.add(list, BorderLayout.CENTER);
frame.addWindowListener(new WindowAdapter() {
public void windowClosing(WindowEvent ev) {
destroyApp(true);
notifyDestroyed();

}
)
frame.pack();
}

Contact getContact(String uid) {
Contact template = contactList.createContact();
template.setString(Contact.UID, uid);
Enumeration e = contactList.elements(template);
return (Contact) e.nextElement();

}

String getLabel(Contact c¢) {
String label = c.getString(Contact.FORMATTED NAME);
if (label == null)
label =
""" + c.getString(Contact.NAME_FAMILY) + ", " +
getString(Contact.NAME_GIVEN);
return label;

}

public void actionPerformed(ActionEvent ev) {
System.out.printIn(ev: " + ev);
if (ev.getSource() == addButton) {
Contact c = contactList.createContact();
if (contactDialog.edit(c, "New Contact™)) {
list.add(getLabel(c));
uids.addElement(c.getString(Contact.UID));

203

}

else if (ev.getSource() == exitButton) {
destroyApp(true); // clean up
notifyDestroyed();
}
else if (ev.getSource() == editButton || ev.getSource() ==
deleteButton) {
int index = list.getSelectedIindex();
if (index == -1)
return;
Contact c = getContact((String) uids.elementAt(index));
if (ev.getSource() == deleteButton) {
contactList.deleteElement(c);
list.remove(index);
uids.removeElementAt(index);

else if (contactDialog.edit(c, getLabel(c))) {
list.replaceltem(getLabel(c), index);

}
}
}
public void pauseApp() {
}

public void startApp() {
frame.show();
}

public void destroyApp(boolean uncond) {
contactList.close();
}

}

What Is Missing?

The PimDemo sample application shows basic accessto the PIM API, but for areal PIM application, a
lot of functionality is missing. For example, categories are not supported, and the dialog shows only a
fraction of the fields available. Event and to-do entries are not supported at all. Field types other than
string and multityped fields are not supported. The contact list is not sorted, and a search functionis
missing. The delete button lacks a confirm dial og.

Use the example as a starting point for your own ideas and extensions, and feel free to reuse the codein
your own applications.

Summary

In this chapter, you learned about the general design of the PIM API that isincluded in PDAP.

Y ou know about the different kinds of PIMLists and PIMElements. Moreover, you are
familiar with the concept of the vCard and the vCalendar, you are able to create contact cards and
calendar entries and you know how to store them in alist, and how to use the PIM API to create a
PDAP application using this specific API.

204

Chapter 8. Size Does Matter: Optimizing J2ME
Applications

INTHISCHAPTER

Reducing Class File Sizes

Freeing Unused Variables and Resources

Loop Condition Checking

Avoiding Recursion

Using Arrays Instead of Vectors

Using Record Stores Instead of Heap Memory
Distributing Functionality over Several Small MIDlets
Fragmentation Problems

User Interface |ssues

Because of several computing and memory restrictions of mobile devices, you need to pay
particular attention to the size and performance of J2ME applications.

The most important hint is probably to keep everything as simple as possible. If an application
will be ported from the desktop, you may want to consider a re-implementation instead of trying
to downsize the existing program until it fits into J2ME.

Although most optimization possibilities depend on the individual application, in this chapter welll
show you some general approaches and hints for saving resources. Unfortunately, thereis often a
tradeoff between execution speed and memory consumption. Thus, not al of our hints will make
sense in al application scenarios.

Usually, memory in 2ME devicesis divided into three different categories: program storage
space, persistent memory, and heap memory. The heap memory is used at runtime only and holds
all volatile objects. Depending on the device, there may be different limits on each of the types,
making trade-off decisions even more complicated.

Reducing Class File Sizes

When importing libraries, the fully qualified name—including the class and package name of each
imported function—is stored in the classfile. Thus, limiting the number of imports may reduce the
size of aclassfile significantly. One large class will probably consume less memory than a set of
smaller classes, and the import overhead of additional convenience methods will often weigh more
than the code actually saved.

Freeing Unused Variables and Resources

The Java garbage collection mechanism usually frees unused objects automatically. "Unused”
from the point of view of the garbage collector means that the objects are not referenced from
somewhere else. If objects are no longer needed in a program, but are still referenced by avariable
or indirectly by another object, the garbage collector can't determine that the object can be
removed, and the corresponding memory is not reclaimed. Thus, if an object is allocated and then
no longer needed, but the variable holding the object is still in the valid scope, it may make sense

205

to set the variableto nul I explicitly. For example, if abuffer is allocated at the beginning of a
method, but then no longer needed in the method, the garbage collector cannot reclaim the buffer
because the variable till points to the buffer. If the variable is explicitly set to null I, the buffer is
no longer referenced and can be reclaimed by the garbage collection.

For 2ME, it is aso very important to always dispose resources such as record stores or
connections when they are no longer needed. J2ME does not support finalization, which means
that system resources cannot be closed automatically during garbage collection. Thus, if the
reference to a system resource is removed without closing the resource, the resource will stay
allocated until system cleanup, when the program is terminated compl etely.

Loop Condition Checking

When you're trying to optimize execution speed, loops are the most important pieces of code to look at:
statements inside aloop are executed several times. Thus, even small optimizations can have a
significant effect.

A standard method to speed up loops is to move constant expressions out of the loop. For example, the
following simple for loop iterates all elements of the Vector vector:

for (int i = 0; i < vector.size(); i++) ...

Inthisline, the size () method of vector iscaled at each iteration. This repetition can be avoided
by storing the size in alocal variable:

int size = vector.size();
for (i for (int 1 = 0; 1 < size; I++) ...

Please note that access to local variablesis generally less expensive than access to instance or class
variables. Here, the size () method is called only once and stored in alocal variable for fast access
inside the loop. If the direction the vector isiterated is not important, counting down may be a
reasonable alternative to introducing a new variable;

for (int i = vector.size()-1; i >=0; i--) ...

The same technique can be applied to all expressions that are calculated inside the loop, but do not
change with the iterations.

Avoiding Recursion

Another common optimization technique that may speed up program execution and that definitely
saves memory isto transform recursions into iterations. Y ou can usually do so if thereis only one
simple recursion call. For example, the factorial of a number nis defined as n multiplied by the
factorial of (n-1). The corresponding recursive function is

public static void fact (int n) {
returnn=17?1: n* fact (n — 1);
}

206

The problem with recursion is that it consumes stack space: The return address and local variables are
stored on the program stack when a method is called. Also, the program state changes that correspond
to amethod call might take more time than a simple loop.

Thus, for the function defined previoudy, the following iterative function may be more efficient:

public static void fact (int n) {
int result = 1;
while (n > 1) result *= n--;
return result;

}

Obviously, the tradeoff is that the iterative constructs are often less readabl e than the recursive versions.

Using Arrays Instead of Vectors

Vectorsare powerful and flexible containers for all kinds of objects. Their main advantage over
arraysisthat their size grows dynamically as needed. The disadvantages are

e Many type casts may be needed because aVector can hold any kind of objects.

e Vectorscarry some overhead compared to a corresponding array. Actualy, Vectorsuse
an array internally to store their data. Thus, using aVector requires an additional indirection
step and an additional object when compared to using an array.

e TheVector access methods are synchronized, which also resultsin some performance
tradeoff. The fact that the size of an array cannot change may help to achieve thread safety
without synchronization.

For these reasons, in some cases it may make sense to use arraysinstead of Vectors, especialy if the
size of the structure does not change frequently. However, using an array instead of a Vector isnot
free of costs. Y ou can't change the size of an array. If an array must be extended, you have to allocate a
new array and copy its entire contents. Thus, for structures that frequently change size, sticking to a
Vector may be abetter choice. An alternative that is also used internally by the Vector classisto
allow that the array islarger than necessary. The actual sizeis stored in a separate variable in that case.

Table 8.1 shows some Vector operations and the corresponding counterparts for arrays.

Table 8.1. Vector Operations and the Corresponding Counterparts for Array Access

Vector Array

(MyObject) v.elementAt v[i];

(i);

v.addElement (0); v2 = new MyObject[v.length+1];

System.arraycopy (v, 0, v2, 0, v.length);
v2 [v.length] = o;
vV = Vv2;

v.removeElementAt (i); v2 = new MyObject [v.length-1];
System.arraycopy (v, 0, v2, 0, i-1);
System.arraycopy (v, i+l, v2, i, v.length
- 1)

vV = V2;

v.insertElementAt (o, i1); [v2 = new MyObject [v.length+1];
System.arraycopy (v, 0, v2, 0, i-1);
System.arraycopy (v, i+1, v2, i+l,
v.length);

207

\Y

\v.setElementAt (o, i); \v[i] = obj;

Using Record Stores Instead of Heap Memory

An additional opportunity for saving heap space is to store application datain arecord store instead of
consuming heap memory. The space available for persistent storage is often significantly larger than
the heap memory, so in situations where heap memory is really rare, it may make sense to shift some of
the memory consumption from the heap to persistent storage. However, accessing persistent storage
may be significantly slower than heap access. Thus, the price for having more heap may be a
significant performance tradeoff.

In order to demonstrate how to store objectsin arecord store instead of aVector, let's create a sample
implementation of aStringVectorRms classthat storesalist of Stringsinarecord store. In
contrast to an ordinary Vector, only asmall amount of heap is consumed. The StringVectorRms
implementation provides the access methods listed in Table 8.2.

Table 8.2. Methods of the StringVectorRms Class

IMethod |Description

StringVectorRms() Constructs an instance and creates the underlying
record store if needed.

addString (String text) Adds a String to the end of the Vector.

String stringAt (int index) Returnsthe String at the given index.

removeStringAt (int index) |Removes the String atthe given index and shifts the
entries starting at index+1 down in order to fill the
resulting gap.

SetStringAt (String Replaces the String at position index with the new

newText, int newlndex) String that is contained in the variable newText.

int size() Returns the number of Strings that are currently
stored.

Listing 8.1 shows the corresponding StringVectorRms implementation. It handles the
conversation between Strings and the byte arrays stored in the record store. It also maps the
Vector indices starting with 0 to RM S indices starting with 1 and maps all RmsExceptionsto
RuntimeExceptions. Finaly, it takes care of shifting the remaining elementsto their new index if
an element is deleted.

Note

Especially for flash memory, write operations might take seconds. Thus, the removeStringAt()
method should be used with special caution; al remaining items are moved to their new index position,
requiring alot of write operations.

Listing 8.1 StringVectorRMS. java—The StringVectorRMS Class for Storing
Strings in a Record Store During Application Runtime

import javax.microedition.rms.*;

208

public class StringVectorRms {
RecordStore store;
String storeName;
int size;

static int openedStores = 0;

public StringVectorRms() {

storeName = "'StringVectorRms"+(openedStores++);
size = 0;
try {

store = RecordStore.openRecordStore (storeName, true);
if (store.getNumRecords() > 0) {
store.closeRecordStore();
RecordStore.deleteRecordStore (storeName);
store = RecordStore.openRecordStore (storeName, true);
}

}

catch (Exception e) {
throw new RuntimeException (e.toString());

}

public void addString (String text) {
try {
byte[] data = text.getBytes();
if (size < store.getNumRecords())
store.setRecord (size+l, data, 0, data.length);
else
store.addRecord (data, 0, data.length);
size+t+;
}
catch (Exception e) {
throw new RuntimeException (e.toString());
}

public String stringAt (int index) {

try {
return new String (store.getRecord (index+1));

catch (Exception e) {
throw new RuntimeException (e.toString());
}

public void removeStringAt (int index) {
try {
for (int i1 = index; 1 < size-1; i++) {
byte[] data = store.getRecord (i+2);
store.setRecord (i+l, data, 0, data.length);
}

size--;

catch (Exception e) {
throw new RuntimeException (e.toString());

209

public void setStringAt (String newText, int newlndex) {

try {
byte[] newData = newText.getBytes();

store.setRecord (newlndex+1, newData, 0, newData.length);

}
catch (Exception e) {

throw new RuntimeException (e.toString());
3

public int size() {
return size;
}

public void close() {

try {
store.closeRecordStore();

RecordStore.deleteRecordStore (storeName);

catch (Exception e) {
throw new RuntimeException (e.toString());
}

Distributing Functionality over Several Small MIDlets

Anacther way to save memory isto distribute the functionality of an application to two or more
smaller applications in the same MIDlet suite. This approach seems especialy feasible if the
application consists of mostly independent building blocks, which only share their persistent data.
An example could be any loosely connected client application, mainly operating on alocal
database, but synchronizing data with a server from time to time. Instead of integrating the
synchronization in the main application, it can be moved to a separate application. Thus, the size
of the main application can probably be reduced significantly. Other parts of the application, such
as configuration dialogs, can probably be spun off as well.

Please note that you can split MIDIets only if all the applications are stored in the same suite;
otherwise, they can't share their persistent data.

Fragmentation Problems

A frequent problem for 2ME applications that are running on aKVM implementation without
compacting garbage collection is amemory paradox: Runtime. freeMemory () reportslots of
free memory, but a memory allocation following immediately fails and causes an
OutOfMemoryException

210

This issue was especially problematic with early versions of the SUN KVM. The SUN KVM now
provides a compacting garbage collector, so this problem seems less important. However, some
KVM implementations may not provide a compacting garbage collector for some reason, so you
should at least know about the characteristics of the problem.

The reason for the discrepancy between the return value of Runtime . freeMemory () and the
ability to allocate a certain block of memory is usually a fragmentation problem: Lots of memory
isavailable, but only in very small pieces. Runtime . freeMemory () reportsthe total anount of
memory available, but the largest continuous block of memory may be much smaller.

The garbage collection for J2SE is usually implemented using a compacting algorithm—all
memory blocks that can be reclaimed are compacted to asingle large block of memory. In the
KV M, free memory blocks are reclaimed, but the compaction step may be omitted for
performance and complexity reasons. Thus, a fragmentation problem may occur when alot of
small memory blocks are allocated. Even if most of the small blocks can be reclaimed during
garbage collection, the remaining blocks may fragment the free memory into several small pieces.

Although no general solution exists for the fragmentation problem, it may help to call the garbage
collector explicitly at some points in the program. Explicit calls of Runtime .gc() will force a
garbage collection before all the memory is used up. Thus, only part of the memory is fragmented.
New memory allocations are served from the small chunks before the remaining block is touched.
Please note that explicit callsto Runtime.gc() may help, but will not do soin al cases,
depending on the concrete memory consumption behavior of the application and on the total
amount of memory available on the device.

User Interface Issues

Compared to the desktop, the screen space available on MIDP devices or even PDAsis very
limited. This limited space requires a careful user interface design. Also, the situations in which
mobile devices are used are different. Whereas desktop applications are normally used for alonger
period of time, mobile applications are usually used for just afew seconds, but more frequently.
Thus, access to the desired information should be fast and navigation as simple as possible.

It should also be possible to leave the application at any point without |oss of data. The reason is
that in mobile application scenarios, the user may want to switch or leave applications quickly—
for example, to answer an incoming call, when the subway reaches the destination station, or when
the airplane pilot asks passengers to switch off all electronic devices during landing. Thus, nested
dialogs should be avoided.

The built-in Palm Pilot applications provide very good examples for appropriate PDA user
interface design. Before designing your own applications, it makes sense to look at some other
typical PDA or MIDP applications, in order to get afeel for their design.

MIDP

The MIDP Ul was designed for limited screens from the beginning, so it's difficult to give general
hints for improvements that don't depend on the individual application.

Because of the limited screen size, you'll often need to distribute the user interface to severa
screens. Although commands provide one possibility to switch between forms, an important
aternative for selecting actionsisto usealList inthe IMPLICIT mode. Selecting a command
may require going to a submenu if the key mapping is not sufficient, but the list is always

21X

displayed directly on the main screen. Also, List Itemscan hold an Image, which isnot
possible for commands.

PDAP

The PDAP user interface is based on the Abstract Windows Toolkit (AWT) that was originally
developed for the desktop. It provides more design freedom than the MIDP Ul elements, but it

also loads more responsibility on the devel oper: Screen formats and sizes may differ significantly
from device to device, and the application should try to adopt to these characteristics. For example,
a configuration panel may fit completely on the screen of one device, but on another device a split
may be necessary. Y ou could achieve such adivision by putting both partsin panels and switching
between aCardLayout and aBorderLayout, depending on the actual screen size of the device.

The Choice classis a space-saving, comfortable widget. For PDA applications, it can often be
used as a space-saving alternative to a set of radio buttons or a number of other buttons. The
combination of aChoice with aCardlayout may be used to simulate tab panes for PDAP.

Summary

In this chapter you learned about some possible program optimizations, alowing enhancement of
your I2ME applications with respect to execution speed and memory consumption. Y ou now
know how to shift application data from the heap to record stores. Y ou have seen some casesin
which it may make sense to split the functionality of an application into afew separate programs
in the same MIDlet or PDAlet suite. Finally, you saw some ways to optimize the user interface of
MIDP and PDAP applications.

The next chapter presents an advanced application example that illustrate integrated usage of the
MIDP and PDAP APIs, which have been described separately in the previous chapters. We will
show how to build an application for both MIDP and PDAP, sharing most of the classes, and
differing only in the implementation of the user interface.

212

Chapter 9. Advanced Application: Blood Sugar Log

INTHISCHAPTER

Requirement Analysis

Day Log

Persistent Storage: The LogStorage Class
The User Interface

This chapter demonstrates building integrated software that utilizes various CLDC APIsand
provides interfaces for both MIDP and PDAP while using identical classes for data handling.
Further, the application demonstrates the combination of the low-level and high-level MIDP API.

Here, we use blood sugar logging as an example application. People suffering from diabetes often
keep adaily log of their blood sugar level in order to keep track of their blood sugar values and
adjust the amount of insulin for their daily injection accordingly. They keep arecord of their blood
sugar levels at several times every day. Our application can help those people by enabling them to
use their PDA or MID for keeping their daily log.

The purpose of this application isto log blood sugar values and graphically display the blood
sugar measurement values that have been taken during one day. However, the main purpose of
this application is to demonstrate the separation of the application logic from the user interface
and combine various CLDC APIsin asingle program. Parts of the program can be reused for
building your own applications. For example, the graphics display could be used for building a
stock quotes display.

We will also utilize the example to show efficient binary search on record stores.

Requirement Analysis

Thefirst step in building our application is to do arequirement analysis. What functionality will
the application perform? Here, we want to provide the following functionality to the user:

e Display the blood sugar values of the current day as a diagram, as shown in Figure 9.1.
The x-axisisthe time, ranging from 6 to 22 o'clock. The y-axisis the blood sugar level in
mg/dI ranging from 40 to 280.

Figure 9.1. The running BloodSugarMidp application showing the logged
blood sugar values of the current day.

Famil B
2001 -6-11
a0
N
40
G 14 2
Ezxit henL

e Track hypoglycemic values that are lower than 80 mg/dl and hyperglycemic values that
are higher than 160 by drawing red lines on the chart at 80 and 160 mg/dl.

213

e Enablethe user to enter new values.
e Enablethe user to delete erratic values.
e Enable the user to switch to previous logs.

In accordance with the design guidelines, persistent storage shall be performed in the background.

Day Log
In order to provide the desired functionality, we need two main data structures:

e A datastructure for the current day, holding the date and the values and times for the day's
measurements
e A datastructure storing all the days persistently

Thus, the day log data structure needs a field holding the date and alist of the time and value pairs. The
dateis stored in the integer variable date, holding the day of the month in the lowest byte, the month in
the second-lowest byte, and the year in the two upper bytes. We are using this format instead of the
Date or Calendar object for simplified comparison, required for keeping the log entriesin the right
order. To store the pairs, alocal classEntry isused, consisting of two integer values: time and
value. Similar to the date field, we use an integer to represent the time, measured in minutes since
midnight. Again, the main reason is simpler comparison. We aso use the DayLog class to define the
minimum and maximum value constants for the graphics display (see Figure 9.2).

Figure 9.2. The DayLog constants.

A value (mg/d)

e s ., — MAX_VALUE
device screen
‘- MAX_BORDER
— MIN_BORDER

time i

“ MIN_VALUE

MIN_TIME MAX_TIME

Our basic DayLog classlooks as follows:

import java.io.*;
import java.util.*;

214

public class DaylLog {

public static final int MIN_TIME = 6 * 60;
public static final int MAX_TIME = 22 * 60;
public static final int MIN_VALUE = 40;
public static final int MAX_VALUE = 280;
public static final int MIN_BORDER = 70;
public static final int MAX BORDER = 160;

int date; // yymd per byte
Vector entries = new Vector();

class Entry {
int time; // minutes since midnight
int value;

}

For creating new DayL ogs, a constructor, initializing the structure with the given date, is required:

public DayLog (int date) {
this.date = date;
}

In order to fill the structure with data, a set method, adding a new entry, is needed. The following
method adds a new entry with respect to the correct time ordering of the entries. If an entry for the
given point of time already exists, it is overwritten:

public void set (int minutes, int value) {
Entry entry = new Entry();
entry.time = minutes;
entry.value = value;

for (int i = getCount()-1; i1 >= 0; i--) {
int minutesl = getTime (i);

if (minutes <= minutesl) {
if (minutes == minutesl)
entries.setElementAt (entry, i);
else
entries.insertElementAt (entry, i+1);
return;

}

entries.insertElementAt (entry, 0);

}

Storing information in the day log data structure does not make sense if the information cannot be read
back. Thus, we add access methods for the date, the number of entries, and the time and value of an
entry at a given index:

public int getDate() {
return date;
3

public int getCount() {
return entries.size();

215

}
public int getTime (int index) {
return ((Entry) entries.elementAt (index)).time;

public int getvValue (int index) {
return ((Entry) entries.elementAt (index)).value;

Finally, we add a method for deleting an entry. The method takes a point of time asinput and removes
the best matching entry:

public void remove (int time) {

int bestDelta
int bestlndex

24;
_1;

for (int i = 0; 1 < entries.size(); i++) {
int delta = Math.abs (time - getTime (i1));
if (delta < bestDelta) {
bestDelta = delta;
bestIndex i;

}

if (bestindex 1= -1) {
entries.removeElementAt (bestindex);
}

}

Serialization and Deserialization for Persistent Storage

Because the DayLog isintended to be stored persistently, conversion methods from and to byte arrays
are necessary. As described in Chapter 5, "Data Persistency,” we use aByteArray InputStream
for deserialization and a By teArrayOutputStream for seridlization:

public DayLog (byte [] data) throws I0Exception {

DatalnputStream dis = new DatalnputStream
(new ByteArraylnputStream (data));

date = dis.readlnt();
int count = dis.readInt();

for (int 1 = 0; 1 < count; i++) {
Entry entry = new Entry();
entry.time = dis.readlnt();
entry.value = dis.readInt();
entries.addElement (entry);

}

dis.close();

public byte [] getByteArray() throws 10Exception {
ByteArrayOutputStream bos = new ByteArrayOutputStream();
DataOutputStream dos = new DataOutputStream (bos);

216

dos.writelnt (date);

int size = entries.size();

dos.writelnt (size);

for (int i = 0; 1 < size; 1++) {
dos.writelnt (getTime (i));
dos.writelnt (getvalue (1));

}

dos.close();

return bos.toByteArray();
}

Helper Methods for the User Interface

Although the user interface itself is specific to the target profile, we can simplify the user interface code
by providing some helper methods in the DayL og class. Here, we add a set of methods for two
purposes.

e Converting the date of the DayLog to areadable string
e Scaling the entries to a given display size for smplified drawing

In order to convert the dateto a String, we just extract the year, month, and day of month using the
corresponding shift and mask operations. Those parts are concatenated with hyphens:

public String getTitle() {
return """ + (date >> 16)
+ "-" + ((date >> 8) & OxOffF)
+ "-" + (date & OxOff);

}

In order to scale a value to the size of the screen, we would usually normalize it by subtracting the
MIN_VALUE and dividing by the difference of MAX_VALUE and MIN_VALUE, and then scale it up to
the space available by multiplying by the size available. Because we do not have floating-point
numbersin CLDC, we swap the normalization and scaling steps. Thus, we first multiply by the screen
size and then divide by the value range. By first multiplying and then dividing, we make sure that we
do not leave the scope of the integer data type:

public static int getY (int value, int size) {
return - (value - MIN_VALUE) * size / (MAX_VALUE - MIN_VALUE);
}

Inthe getYPoints() method, we build an array of all values of the DayL og, scaled to the given
screen size, utilizing the getY () method:

public int [] getYPoints (int size) {
int [] v = new int [getCount()];
for (int i = 0; 1 < getCount(); i++) {

y [1] = getY (getvalue (i), size);

return y;

}

The getXPoints() method isanalogousto getYPoints(), except that we do not define a
getX() helper method but perform the scaling step immediately in the loop:

217

public int [] getXPoints (int size) {
int [] x = new int [getCount()];

for (int i = 0; i < getCount(); i++) {
x [i] = (getTime (i)-MIN_TIME) * size / (MAX_TIME-MIN_TIME);

return Xx;

}

Finally we add a parseTime () method in order to convert atime string such as 12200, consisting
of an hour and a minute val ue separated by a colon, to our internal time format. For MIDP, instead of
this conversion we could also use the time selector provided by DateField.

public static int parseTime (String time) {
int cut = time.indexOf (":%);
ifT (cut==-1)
return Integer.parselnt (time) * 60;

return Integer.parselnt (time.substring (0, cut)) * 60
+ Integer.parselnt (time.substring (cut+l));

Persistent Storage: The LogStorage Class

Beneath the DayL og class for storing the log of a single day, we need another classto store all the
DayLogs persistently. The LogStorage class uses arecord store for that purpose.

In the constructor, the record store with the name **BloodSugarlLog" is opened and assigned to the
days object variable:

import javax.microedition.rms.*;
import java.util.*;

import java.io.*;

import java.util._*;

public class LogStorage {

RecordStore days;
public LogStorage() throws RecordStoreException {

days = RecordStore.openRecordStore (*'BloodSugarlLog'™, true);
}

}

The most important functionality of the persistent storage is to provide efficient access to the day log of
a specific date. If the logs are stored and put in order by time in the record store, we do not need to
iterate all recordsin order to find a specific date. Instead, we can take advantage of the ordering and
perform a so-called binary search. Wejust pick the middlie element and compare it to our target date.
Now we know in which half we need to continue the search. Thus, we reduce the questionable records
by half with each iteration.

For our binary search, we implement a helper method that just reads the date of a record without
building the complete Dayl og data structure:

218

int getDate (int index) throws RecordStoreException {
byte[] buf = days.getRecord (index);
return ((((int) buf [0]) & OxOFffF) << 24)
| ((((int) buf [1]) & OxOff) << 16)
| ((((int) buf [2]) & OxOff) << 8)
| ((((int) buf [3]) & OxO0ffF));
}

The getIndex() method performs the binary search, returning the index of the day log of the given
date. If aday log for the given date does not exist, the negative index where the day log for the given
date should be inserted is returned:

public int getlndex (int date) throws RecordStoreException {

int i = 1;

int Jj = days.getNumRecords();
int k;

int dateK

while (1 <= j) {
k= +]3) 7/ 2;
dateK = getDate (k);
if (date == dateK) return k;
else if (date > dateK) i = k+1;
else j = k-1;

}

return -i;

}

The method for reading aDayLog of agiven dateis quite simple. First, the index for the given dateis
calculated by calling getIndex(). Then, whether the index is negative or not, anew DayLog is
created or loaded from the record store:

public DayLog getDaylLog (int date)
throws RecordStoreException, I0Exception {
int index = getlndex (date);

return (index == -1)

? new DaylLog (date)
: new DaylLog (days-getRecord (index));

}

Storing aDayLog is ahbit more complicated. If an entry for the given date does not yet exist, all
following records need to be shifted in order to obtain space for the new record:

public void storeDaylLog (DayLog daylLog)
throws RecordStoreException, I0Exception {
if (ldayLog.isDirty()) return;
int index = getlndex (dayLog.getDate());
byte [] target = daylLog.getByteArray();

if (index < 0) {
index = -index;

int num = days.getNumRecords();

219

if (index > num) {
days.addRecord (target, 0, target.length);
return;

}

byte [] buf = days.getRecord (num);
days.addRecord (buf, 0, buf.length);

for (int i = num; 1 > index; 1++) {
buf = days.getRecord (i-1);
days.setRecord (i, buf, 0, buf.length);

}

days.setRecord (index, target, 0, target.length);
3
We also need a method for closing the record store. However, thisis quite straightforward:

public void close() throws RecordStoreException {
days.closeRecordStore();
}

Finally, we add a static method for converting Java Date objectsto our internal format. For this
purpose, we create a calendar, set it to the given date, and then read the year, month, and day of month
fields:

public static int dateTolnt (Date date) {
Calendar c = Calendar.getlinstance();
c.setTime (date);
return (c.get (Calendar.YEAR) << 16)
| ((c.get (Calendar_MONTH)-Calendar.JANUARY+1) << 8)
| (c.get (Calendar.DAY_OF_MONTH));

The User Interface

At this stage, we have finished the classes needed for data management. Using these classes, it isan
easy task to create a platform-dependent user interface. We need to create user interfaces for MIDP and
PDAP. The core of both application interfaces is the chart that is used to display the daily logs.

In the MIDP user interface, the chart classisrealized using the low-level
Javax.microedition. lcdui .Canvas. The corresponding PDAP classis derived from
Java.awt.Component, the PDAP base class for components.

In both cases, the first step is to create the coordinate system and to draw borderlines for critical values.

To draw the actual data points on the chart, we can use the DaylLog methods getXPoints() and
getYPoints() previoudy implemented for that purpose.

The remaining Ul components for both platforms are quite straightforward. For a general discussion of
the MIDP Ul components, refer to Chapter 3, "MIDP Programming." PDAP Ul components are
described in Chapter 4, "PDAP Programming."

220

The user interfaces for MIDP and PDAP are shown in Listings 9.1 and 9.2. In addition, Figure 9.3
shows aBloodSugarPDAP screenshot.

Figure 9.3. The running BloodSugarPdap application showing the logged blood sugar
values of the current day

280

40

14 22

=]
Tirne ¢hbernrnd 20:000
Value {rgsdl) 180

Fernove

Listing 9.1 BloodSugarMidp . java—The BloodSugarMidp MIDlet

import javax.microedition.midlet.*;
import javax.microedition.lcdui.*;
import javax.microedition.rms.*;

import java.util.*;
import java.io.*;

public class BloodSugarMidp extends MIDlet implements CommandListener

{

LogStorage log;
DayLog daylLog;
Display display;

Chart chart;
ValueForm valueForm;
DateForm dateForm;

class Chart extends Canvas {

public void paint (Graphics g) {
g-setColor (OXOOFFFFFF);
g-FillRect (0, 0, getWidth(), getHeight());
g.-setColor (0x00000000);

int charWidth = g.getFont().charWidth (*0%);
int xSpace = 3*charWidth;
int ySpace = g.getFont().getHeight();

int h
int w

getHeight() - 2*ySpace;
getWidth() - xSpace;

String title = daylLog.getTitle();
int tw = g.getFont().stringWidth (title);

221

L L

g.drawString (title, getWidth() 7 2 - tw /7 2, O,

g.TOP|g.LEFT);

g-drawString ("'+DayLog-MAX VALUE, 0, ySpace,

g.TOP|g.LEFT);

g.drawString ("'+DayLog.-MIN_VALUE, charWidth, h,

g.TOP|g.LEFT);

g-drawRect (xSpace, ySpace, w-1, h);

g-translate (xSpace, h);
g.drawString ("""'+(DayLog.MIN_TIME/60), 0O, ySpace,

g-TOP|g-LEFT);

g-drawString ("'+(DayLog.MAX_TIME+DayLog-MIN_TIME)/120,
w/2-charWidth, ySpace, g.TOP|g.LEFT);
g.drawString ("""'+(DayLog.MAX_TIME/60),
w-2*charWidth, ySpace, g.TOP|g.LEFT);

int mnb = DaylLog.getY (DayLog-MIN_BORDER, h);
int mxb = DayLog.getY (DayLog.MAX BORDER, h);
g.-setColor (0OxO0FFO000);

g-drawLine
g-drawLine
g.setColor

int[] x

(0, mnb, w + 2, mnb);
(0, mxb, w + 2, mxb);
(0Ox000000FF) ;

daylLog.getXPoints (w);

int[] y = dayLog.getYPoints (h);

int count = daylLog.getCount();

DA

if (count

g
}
else {
for (int i

.drawArc (x[O0] - 2, y[O] - 2, 4, 4, 0, 360);

g.drawArc (x[i] -2 , y[i] - 2, 4, 4, 0, 360);
g-drawArc (x[i+1] -2 , y[i+l1] - 2, 4, 4, 0, 360);

}

class DateForm extends Form {

DateField dateField = new DateField (‘'Log date:",

DateField.DATE);

public DateForm (CommandListener cmdListener) {
super (“'Select);
append (dateField);
addCommand (okCommand) ;
setCommandListener(cmdListener);

}
public Date getDate() {
return dateField.getDate();

222

class ValueForm extends Form {
TextField measuredMgDl =
new TextField ('mg/sdl', ", 3, TextField.NUMERIC);
TextField measurementTime =
new TextField (“'Measured at:", "', 5, TextField.ANY);

public ValueForm (CommandListener cmdListener) {
super (“'Enter Value'™);
append (measuredMgDl);
append (measurementTime);
addCommand (okCommand) ;
setCommandListener(cmdListener);

public String getvValue() {
return measuredMgDl .getString();
}

public int getTime() {
return DaylLog.parseTime (measurementTime.getString(Q));
}

}

static final Command okCommand = new Command ("'OK",
Command.SCREEN, 1);
static final Command exitCommand = new Command (“Exit",
Command .SCREEN, 1);
static final Command setCommand = new Command (*'Set",
Command.SCREEN, 2);
static final Command removeCommand =
new Command (*'Remove’™, Command.SCREEN, 2);
static final Command dateCommand =
new Command (‘'Date...', Command.SCREEN, 2);

public BloodSugarMidp() throws RecordStoreException, I0Exception

log = new LogStorage();

dayLog = log.getDayLog (LogStorage.dateTolnt (new Date()));
valueForm = new ValueForm (this);

dateForm = new DateForm (this);

chart = new Chart();

chart.addCommand (exitCommand);
chart.addCommand (setCommand);
chart.addCommand (removeCommand);
chart.addCommand (dateCommand) ;

chart.setCommandListener(this);

public void startApp() {
display = Display.getDisplay (this);
display.setCurrent (chart);

223

public void pauseApp() {
}

public void destroyApp (boolean unconditional) {

}
public void commandAction (Command c, Displayable d) {

if (c == exitCommand) {

notifyDestroyed();
}
else if (c == setCommand) {
display.setCurrent (valueForm);
}

else if (c == dateCommand) {
display.setCurrent (dateForm);

else {
try {
if (c == okCommand && d == valueForm) {
daylLog.set (valueForm.getTime(),
Integer.parselnt
(valueForm.getvalue()));
log.storeDaylLog (dayLog);
display.setCurrent (chart);
chart.repaint();

else if (c == okCommand && d == dateForm) {
dayLog = log.getDaylLog (LogStorage.dateTolnt
(dateForm.getDate()));
display.setCurrent (chart);

else if (c == removeCommand) {
dayLog.remove (valueForm.getTime(Q));
log.storeDaylLog (dayLog);

}

catch (Exception e) {
Alert inputError = new Alert (“"Invalid Value:");
inputError._setString (e-toString());
display.setCurrent (inputError);

}
Listing 9.2 BloodSugarPdap . java—The BloodSugarPdap Application

import java.util.*;
import java.io.™;

import java.awt.*;
import java.awt.event.*;

import javax.microedition.midlet.*;
import javax.microedition.rms.*;

public class BloodSugarPdap extends MIDlet implements ActionListener

{

224

public class ErrorDialog extends Dialog implements ActionListener

private Button okButton = new Button ("'Ok'™);

public ErrorDialog(String error) {
super (frame, "Error', true);
add('Center', new Label (error));
Panel buttonPanel = new Panel();
buttonPanel .add(okButton);
okButton.addActionListener(this);
add('South', buttonPanel);

addWindowL istener(new WindowAdapter() {
public void windowClosing (WindowEvent ev) {
setVisible (false);
dispose();
}
s

pack();

public void actionPerformed (ActionEvent e) {
setVisible (false);
dispose();

}

Frame frame = new Frame();
LogStorage log;
DayLog daylLog;

Button setButton = new Button (“'set");

Button removeButton = new Button (“'remove');
Button dateButton = new Button (“'date...");

TextField timeField = new TextField();
TextField valueField = new TextField();

Chart chart = new Chart();
class Chart extends Canvas {
public void paint (Graphics g) {

FontMetrics fm
Dimension size

g-getFontMetrics();
getSize();

int cw = fm.stringWidth ("'0");
int lw = 3*cw;

int Ih = fm_getHeight();

int w size.width - lw;

int h = size.height - Ih;

g.drawString ("'+DayLog.MAX VALUE, 0, fm.getAscent());

g-drawString ("'+DayLog-MIN_VALUE, cw, h -
fm_getDescent());

g-translate (lw, h);

225

g.drawString ("'+(DayLog.-MIN_TIME/60), 0, fm.getAscent());
g-drawString ("'+(DayLog.MAX_TIME+DayLog-MIN_TIME)/120,
w/2-cw, fm.getAscent());
g.drawString (""'+(DayLog.MAX_TIME/60), w-2*cw,
fm.getAscent());

g-drawLine (-2, 0, w + 2, 0);
g-drawLine (0, 2, 0, - (h + 2));

int mnb
int mxb

DayLog.getY (DayLog-MIN_BORDER, h);
DayLog.getY (DayLog.MAX_ BORDER, h);

g-setColor (Color.red);
g.drawLine (-2, mnb, w + 2, mnb);
g.drawLine (-2, mxb, w + 2, mxb);

g-setColor (Color.blue);

int[] x
int[] y

= dayLog.getXPoints (w);

= dayLog.getYPoints (h);

for (int i = 0; 1 < dayLog.getCount(); i++)
g-drawOval (x [i]-1, y[i]-1, 2, 2);

g.-drawPolyline (x, y, dayLog.getCount());
}

public Dimension getPreferredSize() {
return new Dimension (200, 200);
}

public BloodSugarPdap() throws RecordStoreException, I0Exception

log = new LogStorage();

dayLog = log.getDayLog (LogStorage.dateTolnt (new Date())):
frame.setTitle (dayLog.getTitle());

Panel inputPane = new Panel (new BorderLayout());

Panel labelPane = new Panel (new GridLayout (0,1));
labelPane.add(new Label (*'Time (hh:mm)'));
labelPane.add(new Label (*'Value (mg/Zdl)'™));
inputPane.add(*'West", labelPane);

Panel fieldPane = new Panel (new GridLayout (0,1));
fieldPane.add(timeField);
fieldPane.add(valueField);

inputPane.add(*'Center', fieldPane);

Panel buttonPane = new Panel();
buttonPane.add(setButton);
setButton.addActionListener(this);
buttonPane.add(removeButton) ;
removeButton.addActionListener(this);
buttonPane .add(dateButton);
dateButton.addActionListener(this);
inputPane.add(*'South™, buttonPane);

226

frame.add(""Center', chart);
frame.add(*'South™, inputPane);
frame.pack();

frame.addWindowListener(new WindowAdapter() {
public void windowClosing (WindowEvent ev) {
frame.dispose();
notifyDestroyed();
}
s
}

public void startApp() {
frame.show();
}

public void pauseApp() {

public void destroyApp (boolean conditional) {
frame.dispose();
}

public void actionPerformed (ActionEvent action) {
try {
if (action.getSource() == setButton) {
dayLog.set (DayLog.parseTime (timeField.getText()),
Integer.parselnt (valueField.getText())):;

log.storeDaylLog (daylLog);
else if (action.getSource() == removeButton) {
dayLog.remove (DayLog.parseTime
(timeField.getText()));
log.storeDaylLog (dayLog);
else if (action.getSource() == dateButton) {
dayLog = log.getDaylLog
(LogStorage.dateTolnt
(new DateDialog (frame).getDate (new Date()))):;

frame.setTitle (dayLog.getTitle());
}

catch (Exception e) {
new ErrorDialog (e.toString()).show();
}

chart.repaint();

}

The source codes of the classes CalendarComponent and CallendarCanvas shown in Listings
9.3, 9.4 and 9.5 contain helper components providing a date dialog and the correspondig helper classes.

Listing 9.3 DateDialog. java—The DateDialog Class Source Code

import java.util._*;
import java.awt.*;

227

import java.awt.event.*;

public class DateDialog extends Dialog implements ActionListener {
CalendarComponent calendarComponent = new CalendarComponent();
Button okButton = new Button ("'Ok'™);
Button cancelButton = new Button (“'Cancel™);
boolean ok;

public DateDialog (Frame owner) {
super (owner, ''Set Date', true);
Panel buttons = new Panel();
buttons.add(okButton);
buttons.add(cancelButton);
okButton.addActionListener(this);
cancelButton.addActionListener(this);
add("'Center™, calendarComponent);
add('South', buttons);

addWindowL istener(new WindowAdapter() {
public void windowClosing (WindowEvent e) {
setVisible (false);
}

DE
packQ);

public Date getDate (Date d) {
show();
return ok ? calendarComponent.getDate() : d;

public void actionPerformed (ActionEvent e) {
ok = e.getSource() == okButton;
setVisible (false);

}

Listing 9.4 CalendarComponent. java—The CalendarComponent Class Source Code

import java.awt.*;

import java.awt.event.*;

import java.util._*;

public class CalendarComponent extends Panel implements
ActionListener, lItemListener {

Calendar calendar = Calendar.getlinstance();
Choice monthChoice = new Choice();
Label yearLabel = new Label (’'9999'");
Button buttonPlus = new Button ("+');
Button buttonMinus = new Button ('-");
CalendarCanvas calendarCanvas = new CalendarCanvas();
public CalendarComponent() {
super (new BorderLayout());

monthChoice.add(*'Jan);

228

monthChoice

monthChoice
monthChoice

monthChoice

-add("'Feb™);
monthChoice.
monthChoice.
-add('May'™);
-add('Jun'™);
monthChoice.
monthChoice.
-add('Sep™);
monthChoice.
monthChoice.

add("'Mar™);
add("'Apr™);

add(""'Jul™);
add(""'Aug™) ;

add('Oct™);
add("'Nov'™);

monthChoice.
monthChoice.

add("'Dec™);
addltemListener(this);

Panel top = new Panel();
top.add(monthChoice);
top.add(yearLabel);
top.add(buttonMinus);
top.-add(buttonPlus);
buttonPlus.addActionListener(this);
buttonMinus.addActionListener(this);

add("'North", top);
add("'Center', calendarCanvas);

propagate();

public void setDate (Date date) {
calendar.setTime (date);

propagate();

void propagate() {
calendar.set
(Calendar .DAY_OF MONTH,
calendarCanvas.getCalendar() .get
(Calendar .DAY_OF _MONTH));
calendarCanvas.setDate (calendar.getTime());
yearlLabel .setText (*"'+calendar.get(Calendar.YEAR));
monthChoice.select

(calendar.get (Calendar_MONTH)-Calendar.JANUARY) ;
repaint();

public Date getDate() {
calendar.set (Calendar.DAY_OF MONTH,
calendarCanvas.getCalendar() .get
(Calendar .DAY_OF_MONTH));

return calendar.getTime();

public void itemStateChanged (ltemEvent ev) {

229

calendar.set (Calendar.MONTH,

Calendar .JANUARY) ;

monthChoice.getSelectedIndex() +

propagate();

public void actionPerformed (ActionEvent ev) {
if (ev.getSource() == buttonPlus)
calendar.set (Calendar.YEAR, calendar.get (Calendar.YEAR)

+ 1);

else if (ev.getSource() == buttonMinus)

calendar.set (Calendar.YEAR, calendar.get (Calendar

- 1;

propagate();

}

Listing 9.5 CalendarCanvas. java—The CalendarCanvas Class Source Code

import java.awt.*;

import java.awt.event.*;

import java.util._*;

public class CalendarCanvas extends Component implements

MouseListener {

Calendar calendar = Calendar.getlnstance();

private static

String[] days

= {"Su", "Mo", "Tu™, "We, "Th", “Fr', "Sa"} ;

private static
= {31, 28,

int cellWidth;
int cellHeight;

int totalWidth;
int left;
int top;

int FirstDay;

int daysinMonth[]

31, 30, 31, 30, 31, 31, 30, 31, 30, 31} ;

int totalHeight;

public CalendarCanvas() {
addMouselL istener (this);

}

public void pai

nt(Graphics g) {

cellwidth = (getWidth() - 1) 7/ 7;
cellHeight = (getHeight() - 1) / 7;
totalWidth = 7 * cellWidth + 1;
totalHeight = 7 * cellHeight + 1;

left = (getWidth() - totalWidth) / 2;
top = (getHeight() - totalHeight) / 2;

230

_YEAR)

g-translate (left, top);

for (int i = 0; 1 < 8; i++)
g.-drawLine
(cellwidth * i1, cellHeight,
cellwidth * i, 7 * cellHeight - 1);

for (int i = 1; 1 < 8; i++)
g.-drawLine
(0, cellHeight * i,
totalWidth - 1, cellHeight * 1);

FontMetrics font = g.getFontMetrics();
int textHeight = font.getHeight();
int ascent = font.getAscent();

for (int i = 0; i < 7; i++) {
String name = days [i];
int textWidth = font.stringWidth(name);

g.drawString
(name, cellWidth * i + (cellWidth - textWidth) 7/ 2,
cellHeight - 1);

int day = calendar.get (Calendar.DAY_OF MONTH);
calendar.set(Calendar.DAY_OF_MONTH, 1);

firstDay = calendar.get(Calendar.DAY OF WEEK) - 1;
calendar.set(Calendar.DAY_OF MONTH, day);

int dayOfWeek = firstDay;

int days = daysInMonth (calendar);
int weekOfMonth = 1;

for (int i = 1; i1 <= days; i++) {
String s = String.valueOf(i);
int textWidth = font.stringWidth(s);
int cellLeft = cellWidth * dayOfWeek;
int cellTop = cellHeight * weekOfMonth;

it (i == day) {
g-fillRect (cellLeft, cellTop,
cellwidth, cellHeight);
g.setColor (Color.white);

}

g.drawString (s,
cellLeft + (cellWidth - textWidth) / 2,
cellTop + ascent + (cellHeight - textHeight)
/ 2);

g-setColor (Color.black);

dayOfWeek++;
if (dayOfweek == 7) {
weekOfMonth++;

dayOfWeek = 0;

TYaZBIﬁfw

public static int daysinMonth (Calendar calendar) {
int year = calendar.get (Calendar.YEAR);
int month = calendar.get (Calendar.MONTH);
int days = daysInMonth [month-Calendar.JANUARY];
if ((month == Calendar.FEBRUARY) && (year % 4 == 0)
&& T(year % 100 == 0) || (year % 400 == 0))
days++;

return days;

public void setDate (Date date) {
calendar.setTime (date);
repaint();

}

public Calendar getCalendar() {
return calendar;

}

public Date getDate() {
return calendar.getTime();
}

public Dimension getMinimumSize() {
return getPreferredSize();
}

public Dimension getPreferredSize() {
FontMetrics fm = getFontMetrics (getFont());

return new Dimension ((fm.stringWidth ('88™) + 1) * 7 + 1,
(fm.getHeight() + 1) * 7 + 1);

public void mouseEntered (MouseEvent ev) {}
public void mouseExited (MouseEvent ev) {}

public void mousePressed (MouseEvent ev) {}
public void mouseReleased (MouseEvent ev) {}

public vo
int x
int y

id mouseClicked (MouseEvent ev) {

= (ev.getX() - left) / cellWidth;

= (ev.getY() - top) 7/ cellHeight - 1;
int index = x + 7 *y - firstDay + 1;

if (index > 0 && index <= dayslInMonth (calendar))
calendar.set (Calendar.DAY_OF MONTH, index);

repaint();

232

Summary

In this chapter, you learned how to create an advanced application using most of the APIs that are
available in MIDP and PDAP. Y ou have learned to split the functionality of one application into a
user interface independent base part in order to useit in an MIDP and PDAP implementation.
Finally, you have learned to create a user interface for the Blood Sugar Logger in order to run it on
MIDP and the PDAP devices.

233

Chapter 10. Third-Party Libraries

INTHISCHAPTER

XML

Simple Object Access Protocol: SOAP
MathFP

The Bouncy Castle Crypto API

User Interface Extensions

At this point we have discussed the whole CLDC AP, including all core packages and the profile-
specific extensions of MIDP and PDAP. Y ou might have noticed that some important APIs aren't
provided in CLDC. However, for several purposes such as parsing XML or fixed-point integer
arithmetic, third-party libraries are available for CLDC.

In this chapter, we will discuss afew important libraries that can be downloaded from the Internet.
In most cases, we will demonstrate their usage by creating a small sample application.

XML

Currently, three different libraries are available for XML parsing. Table 10.1 shows an overview of the
features and limitations of the different APIs. In general, atrade-off exists between the package size
and the features available. None of the XML parsers available for CLDC isavalidating XML parser.

Table 10.1. XML Parsers Available for CLDC

Parser JAR License URL and Remarks

Size
NanoXML KVM |9.7KB |Libpng http://nanoxml.sourceforge.net
port

No support for mixed content.

The whole document is parsed to a memory
structure.

Optional SAX interface available. XML writing

support.
TinyXML KVM 79KB |GPL http://www.microjava.com
port

SAX-like callback interface.

No XML writing support.
KXML 19.9KB |Enhydra http://www.kxml.org

License
Namespace support.

Optional WBXML/WML support.

Optional kDOM support.

XML writing support.

234

http://nanoxml.sourceforge.net/
http://www.microjava.com/
http://www.kxml.org/

NanoXML

NanoXML isavery small XML parser developed by Marc De Scheemaecker. Eric Giguere has
provided a CLDC port of version 1.6.4 of the parser. The parser parses the whole XML document to a
memory structure that is accessible viathe NanoXML API. The advantage of this approach is that
access to the document content is extremely simple. The trade-off is that the device needs enough heap
memory to hold the whole document structure. It isn't possible to access the XML document until it has
been read completely, so progressive display isn't possible.

The NanoXML API consists of only two classes: kXMLElement and XMLParseException (an
exception class). An XML document is parsed by creating an kXMLE Iement and then invoking
parseFromReader () with areader as parameter. A KXMLE lement object can be writtento a
writer or astring using thewr i te () method. Further important methods are

enumerateChi ldren(), which returns an Enumeration for iterating through all child elements,
and getContents(), which returns the text content of the given kXMLE lement. For complete
NanoXML reference, refer to the NanoXML JavaDOC, available at http://nanoxml.sourceforge.net.

Asanillustrative example for parsing XML, we will use the NewsForge XML format. NewsForgeisa
news Web site with afocus on open source development, and it provides a URL where you can
download the current content in XML format. The NewsForge XML code consists of a
<backslash> element containing a number of <story> elements. The child elements of <story>
contain information about the story such astitle, the author, and possibly a short description. Listing
10.1 shows an example of the NewsForge XML code. If you would like to run the demo but cannot
access NewsForge, you can use the example XML code for testing. For more details about NewsForge,
refer to http://www.newsforge.com.

Listing 10.1 newsforge.xml—NewsForge XML Code Example

<?xml version="1.0" encoding="1s0-8859-1"7?>
<backslash xmlns:backslash=""http://www.newsforge.com/backslash.dtd">
<story>
<title>Linux 2.4.6-ac2</title>

<url>http://www.newsforge.com/article.pl?sid=01/07/07/169250</ur >

<time>2001-07-07 16:08:37</time>
<author>tina</author>
<department></department>
<topic>gnulinux</topic>
<comments>0</comments>
<section>newsvac</section>

<description>"Drop out various bits that
are 2.5 stuff.._"</description>

</story>

<story>
<title>Millions are shut out of Microsoft"s
instant-messaging service</title>

<url>http://www.newsforge.com/article.pl?sid=01/07/07/0854238</url>

<time>2001-07-07 12:04:23</time>

<author>cdlu</author>

<department></department>

<topic>closedsrc</topic>

<comments>0</comments>

<section>newsvac</section>



<description>The Seattle Post-Intelligencer reports that
Microsoft®s

instant-messaging service has been inaccessible

235

http://nanoxml.sourceforge.net/
http://www.newsforge.com/

to a third of its users for
three days. </description>
</story>
</backslash>

Listing 10.2 contains the code of the NanoNewsreader example MIDlet. When the MIDlet is started,
it reads the XML code from NewsForge and displays alist of the story titlesincluded. When atitle is
selected from the list, the description of the story is displayed in aTextBox, if available, otherwise
only the titleis displayed. The interesting methods are readNews () and readStory().
readNews () connectsto the server using an HttpConnection and constructs a kXMLE lement.
Then it opens areader on the InputStream provided by the connection and passesit to the
parseFromReader () method of the kKXMLE lement. Now the root element is parsed to the given
kXMLElement. The method enumerateChi ldren() isused to enumerate al <story> child
elements of the <backs lash> root element. For each child, the readStory () method is called.
readStory () again iterates through the child elements, now those of the <story> element. The
content of the<title> and <description> eementsis extracted using the getContents()
method of KXMLE lement. Figure 10.1 shows the NanoNewsreader.

Figure 10.1. The NanoNewsreader MIDlet.

Faml B F amill AEC EED

HewsForge July 1 0th, in

) Philadelphia,

Borland held
hicro=soft to free seminar far
allowy PC makers showing the nes
to remove Internet Delohi 6 and Keyvlix.
+ Back *

Listing 10.2 NanoNewsreader . java—NanoXML Newsreader Example

import java.io.*;
import java.util_Vector;
import java.util_Enumeration;

import javax.microedition.midlet.*;
import javax.microedition.lcdui.*;
import javax.microedition.io.™;

import nanoxml._*;

public class NanoNewsreader extends MIDlet implements CommandListener

{

static final String URL = "http://newsforge.com/newsforge.xml";
static final String TITLE = "NewsForge";

Vector descriptions = new Vector();

List newsList = new List (TITLE, Choice.IMPLICIT);

TextBox textBox = new TextBox (', "', 256, TextField.ANY);
Display display;

Command backCmd = new Command (*‘Back', Command.BACK, 0);
public void startApp() {
display = Display.getDisplay (this);

display.setCurrent (newsList);
newsList.setCommandListener(this);

236

textBox.setCommandListener(this);

textBox.addCommand (backCmd);

if (descriptions.size() == 0)
readNews() ;

public void readNews() {
try {
HttpConnection httpConnection =
(HttpConnection) Connector.open (URL);

kXMLElement xml = new kXMLElement();
xml _parseFromReader (new InputStreamReader
(httpConnection.openlnputStream()));

for (Enumeration e = xml.enumerateChildren();
e.hasMoreElements();)
readStory ((kXMLElement) e.nextElement());

catch (10Exception e) {
newsList.append (“Error™, null);
descriptions.addElement (e.toString());

/** Read a story and append it to the list */

public void readStory (kXMLElement story) {
String title = null;
String description = null;
for (Enumeration e = story.enumerateChildren();
e._hasMoreElements();) {
kXMLElement Ffield = (kXMLElement) e.nextElement();

if (field.getTagName().equals ('title™))
title = field.getContents();

else if (Field.getTagName().equals (“'description'™))
description = field.getContents();

it (title '=null){
descriptions.addElement
(description !=null ?description :title);
newsList.append (title,null);
}

public void pauseApp() {
}

public void commandAction (Command c, Displayable d) {
if (c == List.SELECT_COMMAND) {

String text = (String) descriptions.elementAt
(newsList.getSelectedindex());

237

ifT (textBox.getMaxSize() < text.length())
textBox.setMaxSize (text.length());

textBox.setString (text);
display.setCurrent (textBox);

}
else if (c == backCmd)
display.setCurrent (newsList);

}

public void destroyApp (boolean really) {
x }
TinyXML

TinyXML was designed by Tom Gibarato be used in applets and other situationsin which code sizeis
important. TinyXML has been ported to CLDC by Christian Sauer. Detailed information about the port
isavailable at http://www.microjava.com/news/techtal k/tinyxml. In contrast to NanoXML, TinyXML
provides a callback interface similar to the Smple Access Interface to XML (SAX), the de facto Java
parsing standard. In order to parse an XML document, you need to create an XMLParser object,
register aDocumentHandler using the setDocumentHandler () method, and assign an
XMLInputStream using setlnputStream(). The DocumentHandler provides the callback
interface mentioned earlier. It contains methods such as e lementStart(), charData(), and
elementEnd(), which are called when the parser encounters the corresponding XML code.

Y ou will again use Newsforge XML to build an example application (see Listing 10.3). Unfortunately,
you cannot just use any InputStream or Reader with TinyXML; you must provide an

XML InputStream that is constructed from a String. Thus, you need to build a string from the
InputStream obtained from the HttpConnection before you can invoke the parser.

Listing 10.3 TinyNewsreader . java—TinyXML Newsreader Example

import java.io.*;
import java.util._Vector;
import java.util _Hashtable;

import tinyxml._*;

import javax.microedition.midlet.*;
import javax.microedition.lcdui.*;
import javax.microedition.io.™;

public class TinyNewsreader extends MIDlet implements CommandListener

{

static final String URL = "http://newsforge.com/newsforge.xml";
static final String TITLE = "NewsForge";

Vector descriptions = new Vector();

List newsList = new List (TITLE, Choice.IMPLICIT);

TextBox textBox = new TextBox (', """, 256, TextField.ANY);
Display display;

Command backCmd = new Command (*‘Back', Command.BACK, 0);

class NewsHandler extends HandlerBase {
StringBuffer title;
StringBuffer description;
String currentElement = ""';

http://www.microjava.com/news/techtalk/tinyxml

public void elementStart (String name, Hashtable attributes)

currentElement = name;

if (name.equals (“story™)) {
title = new StringBuffer();
description = new StringBuffer();

}

public void charData (String s) {
if (currentElement.equals ("title™))
title.append (s);
else if (currentElement.equals (‘'description™))
description.append (s);

public void elementEnd (String name){
currentElement ="";
if (name.equals (“story ")){
newsList.append (title.toString(),null);
String d =description.toString();
descriptions.addElement

(d.length(D==0 ?title.toString():d);
}
}

public void readNews() {
try {
HttpConnection httpConnection =
(HttpConnection) Connector.open (URL);
InputStream is = httpConnection.openlnputStream();

ByteArrayOutputStream bos = new ByteArrayOutputStream();
byte [] buf = new byte [256];

while (true) {
int cnt = is.read (buf, 0, 256);
if (cnt < 0) break;
bos.write (buf, 0, cnt);

}

XMLParser parser = new XMLParser();
parser.setlnputStream
(new XMLInputStream (new String (bos.toByteArray())));
parser.setDocumentHandler (new NewsHandler());
parser.parse();
}
catch (ParseException e) {
newsList.append (“Error™, null);
descriptions.addElement (e.toString());

catch (10Exception e) {

newsList.append (“Error™, null);
descriptions.addElement (e.toString());

}
public void startApp() {

239

display = Display.getDisplay (this);
display.setCurrent (newsList);
newsList.setCommandListener(this);
textBox.setCommandListener(this);
textBox.addCommand (backCmd);

iT (descriptions.size() == 0) readNews();

}

public void pauseApp() {
}

public void commandAction (Command c, Displayable d) {
if (c == List.SELECT_COMMAND) {

String text = (String) descriptions.elementAt
(newsList.getSelectedindex());

iT (textBox.getMaxSize() < text.length())
textBox.setMaxSize (text.length());

textBox.setString (text);
display.setCurrent (textBox);
}
else if (c == backCmd)
display.setCurrent (newsList);

}

public void destroyApp (boolean really) {

}
}

The most interesting part of the example isthe inner class NewsHandler. Instead of implementing
the full DocumentHandl er interface, you derive your class from the convenience class
HandlerBase, which provides empty implementations for all DocumentHandler methods. Thus,
you only need to implement the callback methods for events you are actually interested in. For parsers
with a callback (push) interface, you need some representation of the current state in order to know
what to do with the incoming events. For that purpose, you save the name of the element in
currentElement when the start of an element isindicated by acall to elementStart().Ifa
new <story> element starts, the title and description buffer variables are initialized. When a text
event isreceived, it isignored or appended to the title or description, depending on the current element.

Note that the implemented handling of the currentElement nameisn't sufficient for nested
structures; it works only for elements that have no further sub-elements. However, inthiscaseit is
sufficient. Finally, when an element end is detected and the name of the element is story, the title and
description are appended to the corresponding lists.

kXML

kXML islarger than NanoXML and TinyXML, but it isthe only XML parser for CLDC that provides
XML namespace support. In addition, optional kDOM and WBXML packages are available for kXML.

In contrast to the other parsers, kXML is a pull-based parser. The motivation for pull parsersisto
provide an easier handling mechanism than a centralized callback interface without needing to build an
explicit XML memory structure. Push parsers such as TinyXML; push all XML eventsto afew
centralized callback methods. Inside the callback methods, the application needs to look up itsinternal
state before being able to handle the event correctly. For the Newsforge XML example, it isrelatively
simple to keep track of the state; but for highly nested structures, doing so becomes quite a problem.

240

For that reason, many implementers prefer to have a complete object tree such as the NanoXML
kXMLE lement structure before actually processing an XML document.

A pull parser such as kXML works similar to a reader, where the application isin control of reading
data. The advantage isthat parsing can be performed in recursive functions, following the tree structure
of the document. Instead of having an explicit global state object, the program state reflects the parsing
statein a natural way.

The kXML pull parser isimplemented in the XmIParser object. The next parse event can be queried
with the peek () method or read with the read () method. Both methods return a ParseEvent
object. ParseEvent provides access methods such as getType (), getName(), and getText().
The getType () method returns the type of the event—for example, Xml . START _TAG,

XmI _END_TAG, or Xml . TEXT. The getName () method returns the name of the element if the

event is an element start or element end event. The corresponding namespace can be obtained with
getNamespace(). For text events, getText () returns the corresponding text strings. The parser
also provides some convenience methods. For example, XmIParser .skip() skipsover events that
are ignorable in most cases, such as whitespace or comments. Special versions of peek () and read()
also test for acertain type of event. For example, peek(Xml .START_TAG, null, "story'™)
returns true if the next event is a start tag with the name story in any namespace.

Asyou did for the other two parsers, you will implement an MIDP client for the Newsforge XML
service (see Listing 10.4). kXML accepts any reader as a source for the XML input, so you just need to
wrap an InputStreamReader around the InputStream obtained from the HttpConnection.
This feature enables you to begin processing the XML code while still receiving data. The advantage is
that you can display the first news titles while still reading data from the server, reducing the time users
need to wait before they can start reading. In order to use this feature, you just need to put the parsing
process in a separate thread. Note that this approach wouid make sense for the TinyXML example, too,
if the CLDC port would accept aregular InputStream for reading.

Note

This section handles kXML version 1.x. Version 2.0 will have adightly different interface, similar to
the XML parser available from kobjects.org. The kobjects parser isa pull parser as well, but it does not
support XML namespaces.

Listing 10.4 KxmINewsreader . java—kXML Newsreader Example

import java.io.*;
import java.util _Vector;

import org.kxml_*;

import org.kxml.parser.*;

import javax.microedition.midlet.*;
import javax.microedition.lcdui.*;
import javax.microedition.io.*;

public class KxmINewsreader extends MIDlet implements CommandListener

{

static final String URL = "http://newsforge.com/newsforge.xml";
static final String TITLE = "NewsForge";

Vector descriptions = new Vector();

List newsList = new List (TITLE, Choice.IMPLICIT);
TextBox textBox = new TextBox (", "', 256, TextField.ANY);

241

http://kobjects.org/

Display display;
Command backCmd = new Command (*‘Back', Command.BACK, 0);
class ReadThread extends Thread {

public void run(Q) {
try {
HttpConnection httpConnection =
(HttpConnection) Connector.open (URL);

XmlParser parser = new XmlParser (new
InputStreamReader
(httpConnection.openlnputStream()));

parser.skip(Q);
parser.read (Xml.START_TAG, null, "backslash™);

while (true) {
parser.skip(Q);

if (parser.peek (Xml.START_TAG, null, "story'™))
readStory (parser);
else if (parser.peek (Xml_END_TAG, null,
"backslash™)) {
parser.read();
break;
¥
else throw new RuntimeException
(XML error: Unexpected event: "+
parser.peek());

catch (Exception e) {
newsList.append (“Error', null);
descriptions.addElement (e.toString());

/** Read a story and append it to the list */

void readStory (XmlParser parser) throws I0Exception {
parser.read (Xml.START_TAG, "', ''story");

String title = null;
String description = null;

while (true) {
parser.skip(Q;
ParseEvent event = parser.peek();

if (event.getType() == Xml.START_TAG) {
String name = event.getName();
parser.read();
String text = parser.readText();
parser.read (Xml.END_TAG, "', name);

if (name.equals ('title™))

title = text;
else if (name.equals (‘'description'™))

242

description = text;

}

else if (event.getType() == Xml.END_TAG) {
parser.read (Xml_END_TAG, ', "'story");
break;

}

else throw new RuntimeException (“'unexpected event:
"+event) ;

it (title '=null){
descriptions.addElement
(description !=null ?description
ctitle);
newsList.append (title,null);

}

public void startApp() {
if (display == null) {
display = Display.getDisplay (this);
newsList.setCommandListener(this);
textBox.setCommandListener(this);
textBox.addCommand (backCmd);
new ReadThread().start();

}
di

splay.setCurrent (newsList);

public void pauseApp() {
}

public void commandAction (Command c, Displayable d) {
if (c == List.SELECT_COMMAND) {

String text = (String) descriptions.elementAt
(newsList.getSelectedindex());

if (textBox.getMaxSize() < text.length())
textBox.setMaxSize (text.length());

textBox.setString (text);
display.setCurrent (textBox);

}
else if (c == backCmd)
display.setCurrent (newsList);

public void destroyApp (boolean really) {

}
}

In the example, the run() method of the ReadThread class connects to the server and creates an
XmIParser object from the corresponding input stream. Then the XML processing instruction and
whitespace at the beginning of the document are skipped using the skip () method. After the

243

<backslash> isread, the code enters the main loop for reading the <story> elements. Depending
on the event type, the program descends into the readStory () method for reading a story or leaves
the loop

Simple Object Access Protocol: SOAP

The Smple Object Access Protocol (SOAP) isan XM L-based protocol for remote method invocation.
The SOAP protocol allows you to access Web services such as weather forecasts, stock quotes, or
flight-booking information in a machine readable manner. Possible applications are clients adding
value by combining different related services, or providing an user interface appropriate for mobile
devices.

SOAP calls consist of arequest sent from a client to a server and aresponse from the server. Listing
10.5 shows an example SOAP request, taken from the delayed stock quote example available at
http://www.xmethods.org. The <getQuote> element in the body of the message represents the
method to be called on the server, and the embedded symbol element contains the only method
parameter: the name of the symbol to be queried. The corresponding server response example is shown
inListing 10.6. The <getQuoteResponse> element contains the return value in the <return>
element.

Note

The XMethods Web site (http://www.xmethods.org) also provides a nice overview of SOAP resources
available on the Net.

Listing 10.5 SampleSoapRequest.xml—Sample SOAP Stock Quote Request

<SOAP-ENV:Envelope
xmlIns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
xmIns:xsi="http://www.w3.0rg/1999/XMLSchema-instance"
xmlns:xsd="http://www.w3_0rg/1999/XMLSchema'">

<SOAP-ENV:Body>
<nsl:getQuote
xmIns:nsl="urn:xmethods-delayed-quotes"
SOAP-
ENV:encodingStyle=""http://schemas.xmlsoap.org/soap/encoding/"">

<symbol xsi:type="xsd:string">I1BM</symbol>
</nsl:getQuote>
</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

Listing 10.6 SampleSoapResponse . xml—Sample Server Response to the Stock Quote
Request

<SOAP-ENV:Envelope
xmlIns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:xsi="http://www.w3.0rg/1999/XMLSchema-instance"
xmlns:xsd="http://www.w3_.0rg/1999/XMLSchema'*>

<SOAP-ENV:Body>
<nsl:getQuoteResponse

244

http://www.xmethods.org/
http://www.xmethods.org/

xmIns:nsl="urn:xmethods-delayed-quotes"
SOAP-
ENV:encodingStyle=""http://schemas.xmlsoap.org/soap/encoding/"">
<return xsi:type="xsd:float'>133.625</return>
</nsl:getQuoteResponse>
</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

SOAP Serialization

In addition to an XML call envelope, the SOAP specification includes a simple XML -based data
serialization format. The serialization formats standardized transmission of complex objects via SOAP
remote method calls. It serializes the top-level abject to an XML element corresponding to the
classname, with embedded elements representing the properties. The following shows an example
SOAP seridization of aPerson class. Thensp - prefix isan XML namespace prefix, determining the
namespace of the Person element. (XML namespaces can be compared to Java package namesto
some extent. For more details about XML namespaces, refer to the W3C recommendation found on
http://www.w3.org/TR/1999/REC-xml-names-19990114/ or to Sams Teach Yourself XML in 21 Days,
Second Edition.)

Javaclass:

class Person {
String familyName;
String givenName;

b
SOAP seridlized instance:

<nsp:Person>
<familyName>Turing</fami lyName>
<givenName>Adam</givenName>
</nsp:Person>

The SOAP seridization format is able to serialize complex object graphs. Related objects can be
seridlized in alinked or embedded form. Single-referenced objects can be embedded in the referenced
object, whereas multi-referenced objects should be linked. The following shows a simple example of a
referenced object, serialized in both embedded and linked forms. Note that for embedded objects, there
is no separate element for the classname, reducing the nesting depth and keeping the format human
readable. However, for polymorphic properties, the classname must be contained in a type attribute of
the corresponding element. In SOAP, the remote method call and the response are also serialized asif
they were objects. For more details about SOAP, refer to Sams Publishing's Understanding SOAP: The
Authoritative Solution. The specification is available at http://www.w3.0rg/TR/SOAP/.

Embedded objects:

<nsp:Person>
<fami lyName>Douglas</fami lyName>
<givenName>Mike</givenName>
<father>
<fami lyName>Douglas</fami lyName>
<givenName>Kirk</givenName>
</father>
</nsp:Person>

Linked objects:

<nsp:Person>

245

http://www.w3.org/TR/1999/REC-xml-names-19990114/
http://www.w3.org/TR/SOAP/

<fami lyName>Turing</familyName>

<givenName>Adam</givenName>

<father href="#P02" />
</nsp:Person>

<nsp:Person>
<fami lyName>Turing</familyName>
<givenName>Adam</givenName>
<father href="#P02" />
</nsp:Person>

Note

A simple alternative to SOAP is XML-RPC. An XML-RPC package for CLDC isrecently available
from http://kxmirpc.enhydra.org.

kSOAP

The kSOAP API, available at http://www.ksoap.org, contains a kXM L-based implementation of the
SOAP protocol and serialization format for CLDC. Because CLDC doesn't provide reflection
capabilities, existing classes must implement the interface KvmSerial izabl e to add SOAP
serialization capabilities. kKSOAP already includes serialization support for primitive types and
Vectors. KvmSerializable objects must be registered with aClassMap object, providing a
mapping between XML namespaces and names and Java classnames. For classes that are needed in the
SOAP call only, you can use the convenience class SoapObject.

Listing 10.7 shows an example MIDlet for querying delayed stock quotes, corresponding to the request
and response code given in Listings 10.5 and 10.6. The SOAP call is performed in the
commandAction() method. First, the SoapObject rpc is created, modeling the method object
getQuote. Then the symbol property is added. The symbol nameisretrieved from the
corresponding Ul field. Finally, an HttpTransport object is created, and the remote method
invocation is performed by the cal I () method with the rpc object as a parameter. The returned
valueisdisplayed inthe resultltem. Figure 10.2 shows the StockQuoteDemo MIDlet.

Figure 10.2. The StockQuoteDemo MIDlet.

Fanil B
StockQuotes

ka1 03,55

et

Listing 10.7 StockQuoteDemo. java—A Stock Quote MIDlet Using kSOAP

import javax.microedition.midlet.*;
import javax.microedition.lcdui.*;
import java.io.*;

import javax.microedition.io.™;

import org.ksoap.*;
import org.ksoap.transport.HttpTransport;

246

http://kxmlrpc.enhydra.org/
http://www.ksoap.org/

public class StockQuoteDemo extends MIDlet implements CommandListener

{

Form mainForm = new Form ("'StockQuotes'™);

TextField symbolField = new TextField (*'Symbol™, "IBM", 5,
TextField.ANY);

Stringltem resultltem = new Stringltem ("', "");

Command getCommand = new Command (*‘Get", Command.SCREEN, 1);

public StockQuoteDemo() {
mainForm_.append (symbolField);
mainForm_.append (resultltem);
mainForm.addCommand (getCommand);
mainForm.setCommandListener(this);

}

public void startApp() {
Display.getDisplay (this).setCurrent (mainForm);

}
public void pauseApp() {
}
public void destroyApp (boolean unconditional) {
}
public void commandAction (Command c, Displayable d) {
try {

// build request string

String symbol = symbolField.getString();
resultltem.setLabel (symbol);

SoapObject rpc = new SoapObject
("'urn:xmethods-delayed-quotes', "getQuote™);

rpc.addProperty ('symbol®, symbol);
HttpTransport transport = new HttpTransport
(""http://services.xmethods.net:9090/soap",
"'urn:xmethods-delayed-quotes#getQuote™);
Object result = transport.call (rpc);
resultltem.setText ("""'+result);

catch (Exception e) {
resultltem_setLabel (“Error:");
resultltem_setText (e.toString());

MathFP

Because CLDC doesn't provide the primitive Java types float and doubl e or the corresponding
classes Float and Doubl e, it seemsthat you cannot write a 2ME CLDC application that performs

247

mathematical calculations beyond integer calculations. As a substitute for the missing floating-point
arithmetic, Onno Hommes created a library called MathFP providing 32-bit fixed-point integer math
functions. The MathFP library and the corresponding documentation can be downloaded at
http://www.jscience.net.

To perform calculations in the MathFP format, you need to convert an integer or a string representing a
floating-point value to the MathFP format. Those conversions are performed using the static methods
of the classMathFP givenin Table 10.4.

Table 10.4. Conversion Methods to the MathFP Format

Method Name Description
toFP(int 1) Converts a normal Java int to a fixed-point integer.
toFP(String s) Converts a string input to a fixed-point integer.

The following code snippet shows the conversion on two small examples:

// conversion of an integer to a MathFP integer
int mathFPIntl = MathFP.toFP (1234);

// conversion of a String to a MathFP integer
int mathFPInt2 = MathFP.toFP("'12.9881");

After successful conversion to the MathFP format, you are able to perform mathematical calculations
using the methods supported in the MathFP library. The MathFP functionality ranges from simple
addition, subtraction, multiplication, and division to powerful operations such as sine, cosine, and
tangent of radian values.

To add or subtract two MathFP integers, you can use the methods add () and sub() or use the plus
(+) or minus (-) operators directly:

// adding two MathFP integers using methods
int mathFPResultl = MathFP_.add(mathFPIntl, mathFPInt2);

// adding two MathFP integers using operators
int mathFPResult2 = mathFPIntl + mathFPInt2;

// subtracting two MathFP integers using methods
int mathFPResult3 = MathFP.sub (mathFPIntl, mathFPInt2);

// subtracting two MathFP integers using operators
int mathFPResult4 = mathFPIntl - mathFPInt2;

Simplifying the code by using the standard i nt operatorsis only possible for the add () and sub()
methods. Y ou can convert the result back to a Javainteger or String type (for example, to display the
result) using one of the three methods listed in Table 10.5.

Table 10.5. Conversion Methods from the MathFP Format Back to the Java Standard

Types
Method Name Description
tolnt(int x) Converts a MathFP integer back to a normal integer.
‘toString(int X) ‘Returns the MathFP integer as String.

‘toString(int X, Int d) ‘Returns the MathFP integer as String with rounding.

The following snippet of code demonstrates how the result of a particular MathFP operation can be
converted to aString:

248

http://www.jscience.net/

int resultOfMathFPMul = MathFP.mul (MathFP.toFP (*'1.231"),
MathFP.toFP (*'3.14'));
System.out.println (MathFP.toString (resultOfMathFPMul));

In order to show how the MathFP library can be used in areal-life application, let'simplement a small
MIDP calculator. The main functionality of the application is donein the commandAction()
method, where the arithmetic operations take place. MathFP functions are used after the user activates
the equals (=) command, depending on the operator selected for the current calculation.

The complete source code of the CallculatorMidp MIDlet isshownin Listing 10.8. Figure 10.3
shows the application in action.

Figure 10.3. The CalculatorMidp MIDlet.

Listing 10.8 CalculatorMidp . java—The CalculatorMidp Sample Source Code

import javax.microedition.midlet.*;
import javax.microedition.lcdui.*;

import net.jscience.math_kvm.*;

public class CalculatorMidp extends MIDlet implements CommandListener

{

char operator = "=";

Stringltem operandlltem = new Stringltem (', ");

TextField operand2Field = new TextField ("', ', 7,
TextField .NUMERIC);

TextField operand2FField = new TextField (".", ", 5,
TextField .NUMERIC);

Display display;
Form list;

public CalculatorMidp() {
display = Display.getDisplay (this);
list = new Form (*"Calculator™);
list.append (operandlltem);
list.append (operand2Field);
list._append (operand2FField);

list.addCommand (new Command (*'+', Command.SCREEN, 1));
list.addCommand (new Command (*'=", Command.SCREEN, 2));
list.addCommand (new Command (*'-'", Command.SCREEN, 3));
list.addCommand (new Command ('*', Command.SCREEN, 3));
list.addCommand (new Command (**/', Command.SCREEN, 2));
list.addCommand (new Command (*'CLR", Command.SCREEN, 4));

list.setCommandListener(this);

}

public void startApp() {
display.setCurrent (list);
}

public void pauseApp() {
}

249

public void destroyApp (boolean unconditional) {
}

public void commandAction(Command c, Displayable d) {

it (c.getLabel().equals ('CLR™)) {
operator = "=%;
operandlltem.setText ('''");

operand2Field.setLabel ('"");

else {

// 1. apply op

int op2 = MathFP.toFP

(operand2Field.getString()
+ "." + operand2FField.getString(Q));

if (operator !'= "=") {

}

int opl = MathFP.toFP (operandlltem.getText());
switch (operator) {

case "+": op2 MathFP.add(opl, op2); break;
case "-": op2 MathFP.sub (opl, op2); break;
case "*": op2 MathFP.mul (opl, op2); break;
case "/": op2 MathFP.div (opl, op2); break;
}

String result = MathFP.toString (op2);
operator = c.getLabel().charAt (0);

if (operator I=

operandlltem.setText (MathFP.toString (op2));
operand2Field.setLabel (c.getLabel());

operand2FField.setString ("");

else {

operand2Field.setLabel ("");

int cut = result.indexOf (".");

if (cut == -1) {
operand2Field.setString (result);
operand2FField.setString ('''");

else {
operand2Field.setString (result.substring (O,
cut));
operand2FField.setString (result.substring
(cut+l));
}
}
}
}
}

250

The Bouncy Castle Crypto API

An additional feature that is currently unavailable in 2ME CLDC isthe Java Cryptography Extension
(JCE). The JCE is a set of packages providing aframework for encryption, key generation and key
agreement, and Message Authentication Code (MAC) algorithms. It supports encryption for symmetric,
asymmetric, block, and stream ciphers.

The Bouncy Castle Crypto API, which is available from http://www.bouncycastle.org, supports the
following features:

A clean-room implementation of the JCE 1.2.1

A lightweight cryptography API in Java

A provider for the JCE and JCA

Generators for Version 1 and Version 3 X.509 certificates

Because a complete implementation of the JCE istoo big for the 2ME CLDC platform, we will focus
on the lightweight API available for the 2ME CLDC platform. It is specially developed for
circumstances in which the complete API and the integration of the JCE aren't required.

The lightweight API provides the following subset of the JCE:

o AsymmetricBlockCipher

e BlockCipher

e BufferedBlockCipher

e BufferedAsymmetricBlockCipher
e BufferedStreamCipher

e Digest

o KeyAgreement
e Mac

e PBE

e StreamCipher

For example, these tools et you cipher a password that needs to be transferred over a network for user
authorization. Listing 10.9 shows an example of how a String can be ciphered using a private key
with the Blowfish encryption algorithm that is part of the Bouncy Castle Crypto API. Encryption and
decryption are performed entirely in the methods encryptText() and decryptText() in order
to providing an easy mechanism for adopting to your own implementations. Figure 10.4 shows the
original and the encrypted text in the MIDlet.

Figure 10.4. The Blowfish MIDlet showing decrypted text on the left and the encrypted

on the right.

Famll EED Fantll EEED
BlowfishMidp BlowfishMidp
~tatuz = decrypted. =tatuz = encrypted.
Text = J2ME Crypto Text =

Hey = acdciiaeesdatec
ahcdefghijkimnopor Go3095521 70951 2e
sty z 0123456 Hey =

Decrypt 4 Encrypt Decrypt 4+ Encrypt

Listing 10.9 BlowFfishMidp.java—The BlowfishMidp Sample Source Code

import java.io.*;
import java.lang.*;

http://www.bouncycastle.org/

import javax.microedition.midlet.*;
import javax.microedition.lcdui.*;

import org.bouncycastle.util.encoders.*;

import org.bouncycastle.crypto.™;

import org.bouncycastle.crypto.engines.*;

import org.bouncycastle.crypto.modes.*;

import org.bouncycastle.crypto.params.™;

public class BlowFishMidp extends MIDlet implements CommandListener

private Display display = null;
private boolean encrypted = false;

private String key = "abcdefghi jkImnopgrstuvwxyz0123456789";
private String text = "J2ME Crypto';

private BufferedBlockCipher bfCipher = null;

private Form mainForm = null;

private Stringltem statusltem = new Stringltem (“'Status = ",
"init");

private Stringltem keyltem = new Stringltem ("Key = ", key);

private Stringltem textltem = new Stringltem ("Text = ", text);

public static Command encrypt = new Command (“Encrypt",
Command.SCREEN, 1);

public static Command decrypt
Command.SCREEN, 2);

new Command (*‘Decrypt’,

public BlowFishMidp() throws CryptoException {
mainForm = new Form(*'BlowfishMidp'™);
mainForm_.append (statusltem);
mainForm.append (textltem);
mainForm.append (keyltem);
mainForm.addCommand (encrypt);

mainForm.addCommand (decrypt);
mainForm.setCommandListener(this);

public void startApp() {
display = Display.getDisplay(this);
display.setCurrent(mainForm);

public void pauseApp(Q) {}

public void destroyApp(boolean unconditional) {}

public void commandAction (Command c, Displayable d) {

252

if (c == encrypt && lencrypted) {
try {
textltem.setText (encryptText(key, text));
statusltem.setText (“encrypted.™);
encrypted = true;

catch (CryptoException ce) {
throw new RuntimeException (ce.toString());
}
}

else if (c == decrypt && encrypted) {
try {
textltem.setText (decryptText(key,
textltem.getText()));
statusltem.setText (“'decrypted.™);
encrypted = false;

catch (CryptoException ce) {
throw new RuntimeException (ce.toString());
}

private String encryptText (String key, String text)
throws CryptoException {

byte[] keyBytes= Hex.decode(key.getBytes());
byte[] ptBytes = text.getBytes();
bfCipher = new PaddedBlockCipher
(new CBCBlockCipher
(new BlowFishEngine()));

bfCipher.init(true, new KeyParameter(keyBytes));
byte[] result = new
byte[bfCipher.getOutputSize(ptBytes. length)];

int len = bfCipher.processBytes(ptBytes, 0, ptBytes.length,
result, 0);

bfCipher.doFinal(result, len);

return new String(Hex.encode(result));

private String decryptText(String key, String cipherText)
throws CryptoException {

byte[] keyBytes = Hex.decode(key.getBytes());
byte[] textBytes = Hex.decode(cipherText.getBytes());

bfCipher.init(false, new KeyParameter(keyBytes));

byte[] result = new
byte[bfCipher.getOutputSize(textBytes.length)];
int len = bfCipher.processBytes(textBytes, O,

textBytes.length, result, 0);
bfCipher.doFinal(result, len);
return new String(result).trim();

253

User Interface Extensions

Although PDAP and MIDP provide user interface APIs appropriate to the corresponding devices,
some extensions are available for both profiles.

For PDAP, KAWT provides some additional widgets such as a tabbed pane, a progress bar, and an
option dialog to overcome some of the limitations in the widget set of AWT when compared to
SWING.

Three different user interface extensions are available for MIDP. The Open Windowing Toolkit
(OWT) provides a set of simple lightweight widgets based on the MIDP Canvas class. OWT is
developed by Digital Focus for Nextel and Motorola. Motorolaitself provides a similar widget
toolkit called the Lightweight Windowing Toolkit (LWT). Unfortunately, LWT is available for
Motorola phones only. Finally, the KAWT toolkit provides an AWT subset on top of the MIDP
canvas toolkit. Table 10.6 contains a brief overview of the APIs available. Aswith the XML
parsers, thereis atradeoff between size and functionality. Figure 10.5 shows the OWT Grass Seed
sample application; Figure 10.6 shows the KawtDemo MIDIet.

Figure 10.5. The OWT Grass Seed example application.

Faml i)
Lawn

B =

) £ New

BACK

Figure 10.6. The KawtDemo MIDlet.

Full [ea)
Somoll | Miss | |«

I Public tet
2 Hidden text
5 e

hlenu E=c

Table 10.6. User Interface APIs Available for MIDP

Toolkit |JAR File |Remarks
Size
KAWT for |75.4KB |http://www.kawt.de
MIDP
AWT subset
Optional additional widgets such as TabbedPane and ProgressBar
available
LWT (native) |http://devel opers.motorola.com/devel opers/wirel ess/tool s/index.html# wt
Native implementation available for Motorola Accompli phones only

254

http://www.kawt.de/
http://developers.motorola.com/developers/wireless/tools/index.html#lwt

OWT 52.7KB |http://nextel.sourceforqe.net

Summary

In this chapter, you have gained an overview of third-party libraries that overcome some
limitations of the CLD Configuration and its profiles, including various libraries for XML parsing,
kSOAP for remote method invocation, the bouncycastle library for cryptography, and mathFP for
fixed point mathematics.

255

http://nextel.sourceforge.net/

Appendix A. Class Library: CLDC Packages

IN THISAPPENDIX

The java.io Package

The javalang Package

The javalang.ref Package

The java.util Package
The javax.microedition.io Package

M IDP-Specific Packages

PDAP-Specific Packages

This appendix gives an overview of the API provided in the Connected Limited Device
Configuration (CLDC) version 1.0 and version 1.1 also called CLDC Next Generation (NG). It
also lists profile-related additions to the configurations.

The java.io Package

The java. 10 package contains all the interfaces, classes, and exceptions that provide a mechanism
for system input and output through data streams.

Interfaces

Datalnput |The Datalnput interface provides methods for reading binary streams and

converting them into Java primitive data types.

DataOutput|The DataOutput interface provides methods for writing/converting Java

primitive data types to a binary stream.

Classes

ByteArraylnputStream

The ByteArraylnputStream encapsulates an InputStream
that uses a byte array as a buffer that might be read from a
stream.

ByteArrayOutputStream

The ByteArrayOutputStream provides an OutputStream
that might be used to write data to a byte array.

DatalnputStream

The DatalnputStream implements the Datalnput interface
and provides methods to read primitive Java data types from a
stream.

DataOutputStream

The DataOutputStream implements the DataOutput
interface and provides methods to write primitive Java data
types to a stream.

InputStream

The InputStream is the abstract superclass of all byte-related
input streams.

InputStreamReader

The InputStreamReader closes the gap between byte-related
input streams and character-related input streams. Bytes that
are read using this class are internally converted to characters.

OutputStream

The OutputStream is the abstract superclass of all byte-

related output streams.

256

OutputStreamWriter The OutputStreamWriter closes the gap between byte-
related output streams and character-related output streams.
Characters that are written using this class are internally
converted to bytes.

PrintStream The PrintStream is an extension to an OutputStream. It
adds functionality that lets you print representations of various
data types.

Reader The Reader is the abstract superclass of all character-oriented
InputStreams.

Writer The Writer is the abstract superclass of all character-oriented
OutputStreams.

Exceptions

EOFException The EOFException signals that an unexpected end of

the stream has been reached during input.

InterruptedlOException The InterruptedlOException signals that an I/O

operation has been interrupted.

I0Exception The I0Exception signals that an exception of some

kind has occurred.

UnsupportedEncodingException|The UnsupportedEncodingException signals that

the character encoding is not supported.

UTFDataFormatException The UTFDataFormatException signals that a

malformed UTF-8 String has been read by a class
implementing the Datalnput interface.

257

The java.lang Package

This package provides classes that are fundamental to the design of the Java programming language.

Interface

The Runnab I e interface needs to be implemented by a class when its instances are intended for
execution by athread.

Classes

Boolean The Boolean class is a wrapper class for a value of the primitive Java data
type boolean.

Byte The Byte class is a wrapper class for a value of the primitive Java data type
byte.

Character The Character class is a wrapper class for a value of the primitive Java
data type char.

Class The instances of the class Class represent Java classes and interfaces of a
running Java application.

Double The Double class is a wrapper class for a value of the primitive type
double. This class is part of CLDC since version 1.1.

Float The Float class is a wrapper class for a value of the primitive type Float.
This class is part of CLDC since version 1.1.

Integer The Integer class is a wrapper class for a value of the primitive Java data
type int.

Long The Long class is a wrapper class for a value of the primitive Java data type
long.

Math The Math class provides some basic mathematical operations on the Java
primitive data types int,long, float and double.

Object The Object class is the superclass of every Java class in a class hierarchy.

Runtime The Runtime class provides every Java application with an interface for
interacting with the application environment where it is executed. Only one
instance of the Runtime class is available in a running application.

Short The Short class is a wrapper class for a value of the primitive Java data
type short.

String The String class represents character-based strings.

StringBuffer|The StringBuffer class represents a mutable sequence of characters.

‘System ‘The Systenm class provides system-related methods.

‘Th read ‘The Thread class represents a running thread of a Java application.

Throwable The Throwable class is the superclass of every exception and error in the
Java language.

Exceptions

ArithmeticException The ArithmeticException is thrown if an

unexpected arithmetic exception occurs.
ArrayOutOfBoundsException The ArrayOutOfBoundsException is thrown
when an illegal index of an array is accessed.
ArrayStoreException \The ArrayStoreException is thrown to indicate

258

that the code has tried to store an incorrect object
type in an array of objects.

ClassCastException

The ClassCastException is thrown to indicate
that the code has tried to convert the class into a
subclass that it is not an instance of.

ClassNotFoundException

The ClassNotFoundException is thrown to
indicate that the code has used the ForName()
method to try to load a class that could not be
found.

Exception

The Exception class and all its subclasses
indicate conditions that might be watched by an
application.

I1legalAccessException

The 11 legalAccessException indicates that
an application tried to load in a class, but the
currently executing method did not have access to
the definition of the specified class, because the
class was not public and was in another package.

11 legalArgumentException

The 11 legalArgumentException is thrown to
indicate that a method has passed an illegal
parameter.

I11egalMonitorStateException

The 11 legalMonitorStaeException is thrown
to indicate that a thread has attempted to wait on
an object's monitor or to notify other threads
waiting on an object's monitor without owning the
specified monitor.

I11legalStateException

The 11 legalStateException is an MIDP
extension to CLDC and is available only in MIDP-
conforming Java Virtual Machines. It indicates that
a method has been invoked at an illegal or
inappropriate time. In other words, the Java
environment or Java application is not in an
appropriate state for the requested operation.

I1legal ThreadStateException

The 11 legalThreadStateException is thrown
to indicate that a method has been invoked on a
thread that is not in an appropriate state.

IndexOutOfBoundsException

The IndexOutOfBoundsException is thrown in
order to indicate that an index of some sort (such
as to an array, to a string, or to a vector) is out of
range.

InstantiationException

The InstantiationException is thrown to
indicate that an application has tried to create an
instance using the newlnstance() method for an
instance of an interface or abstract class.

InterrruptedException

The InterruptedException is thrown to
indicate when a thread is interrupted while waiting,
sleeping, or otherwise pausing for a long period of
time.

NegativeArraySizeException

The NegativeArraySizeException is thrown
to indicate that the application has tried to create
an array of negative size.

Nul IPointerException

The NullPointerException is thrown to
indicate that an application tried to use nul l in a
case where an Object is required.

NumberFormatException

The NumberFormatException is thrown to
indicate that the application has attempted to

259

convert a string to one of the numeric types, but
the string did not have the appropriate format.

RuntimeException The RuntimeException is the superclass of
those exceptions that can be thrown during the
normal operation of the Java Virtual Machine.

SecurityException The SecurityException is thrown if the

security manager discovers a security violation.

StringIndexOutOfBoundsException|The StringlndexOutOfBoundsException is

thrown by the charAt method in the class String
and by other String methods to indicate that an
index is either negative, greater than, or equal to

the size of the string.

Errors

Error

The Error class is a subclass of the Throwabl e class indicating
serious problems that an application should not try to catch.

NoClassDefFoundError

The NoClassDefFoundError occurs, if the Java Virtual
Machine tries to load in the definition of a class and no definition
of the class could be found. This error is part of CLDC since
version 1.1.

OutOfMemoryError

The OutOfMemoryError is thrown in order to indicate that the
Java Virtual Machine cannot allocate an object, because it is out
of memory, and no more memory could be made available by the
garbage collector.

VirtualMachineError

The VirtualMachineError is thrown to indicate that the Java
Virtual Machine is broken or has run out of resources necessary
for it to continue operating.

260

The java.lang.ref Package

This package contains support for weak references and is part of CLDC since version 1.1.

Classes

Reference The Reference class is the abstract base class for all reference objects
and may not be sub classed directly.

WeakReference|The WeakReference class provides support for weak references which
are most often used to implement canonicalizing mappings.

The java.util Package
This package contains date and time facilities and miscellaneous utility classes.
Interface

The Enumeration interface provides methods for accessing a series of elementsin aclass
implementing thisinterface.

Classes

Calendar |[The Calendar class is an abstract class for setting and getting dates using a
set of integer fields.

Date The Date class represents a specific point of time in millisecond precision.

Hashtable|The Hashtable class implements a hashtable in order to map keys to values.

Random The Random class implements a stream of pseudorandom numbers.

Stack The Stack class implements a last-in-first-out (LIFO) stack of objects.

Timer The Timer class is an MIDP extension to CLDC and is available only in MIDP-
conforming Java Virtual Machines. The class provides a mechanism for threads
to schedule tasks for future executions in a background thread.

TimerTask|The TimerTask class is an MIDP extension to CLDC and is available only in
MIDP-conforming Java Virtual Machines. A Timer can schedule a TimerTask
for an one-time or a repeated execution.

TimeZone |The TimeZone class represents a time zone offset, and also calculates daylight
savings time changes.

Vector The Vector class implements a mutable array of objects.

Exceptions

EmptyStackException The EmptyStackException is thrown by the methods of the
Stack class to indicate that the stack is empty.

NoSuchElementException|The NoSuchElementException is thrown by the
nextElement() method of an Enumeration to indicate that
there are no more elements in the enumeration.

262

The javax.microedition.io Package

This package contains all interfaces, classes, and exceptions of the generic connection framework.

Interfaces

CommConnection The CommConnection interface is a PDAP extension to
CLDC and is only available in PDAP-conforming Java
Virtual Machines. The CommConnection interface defines
all necessary methods for a logical serial port connection.

Connection The Connection interface is the basic type of generic
connection and a superclass of all connections.

ContentConnection The ContentConnection interface defines methods for a
stream connection over which content is passed.

Datagram The Datagram interface defines generic methods for a
datagram that is used by the DatagramConnection.

DatagramConnection The DatagramConnection interface defines all necessary

methods for datagram connections.

FileConnection

The FileConnection interface is a PDAP extension to
CLDC and is available only in PDAP-conforming Java
Virtual Machines. The Fi leConnection interface defines
all necessary methods to access files that are stored on
removable media.

FileSystemEvent

The FileSystemEvent interface is a PDAP extension to
CLDC and is available only in PDAP-conforming Java
Virtual Machines. The Fi leSystemEvent interface defines
all necessary methods needed for an event used to detect
when a file system is added and removed on a device.

HttpConnection

The HttpConnection interface is an MIDP extension to
CLDC and is available only in MIDP-conforming Java Virtual
Machines. The HttpConnection interface defines all
necessary methods and constants for a HTTP connection.

InputConnection

The InputConnection interface defines all necessary
methods for an input connection.

OutputConnection

The OutputConnection interface defines all necessary
methods for an output connection.

StreamConnection

The StreamConnection interface is the combination of the
InputConnection and the OutputConnection.

StreamConnectionNotifier

The StreamConnectionNotifier interface defines the

methods that a stream connection notifier must have.

Classes

Connector

The Connector class provides a set of static methods for handling
all kinds of connections contained in the generic connection
framework.

FileSystemListener

The FileSystemListener is a PDAP extension to CLDC and is
available only in PDAP-conforming Java Virtual Machines. The
FileSystemListener is used for receiving Fi leSystemEvents
while adding or removing a file system root.

Exception

263

The ConnectionNotFoundException isthrown to indicate that a particular connection passed
to the Connector .open() methods can not be found.

264

MIDP-Specific Packages

The MIDP-specific packages javax.microedition. Icdul,
Javax.microedition.midlet, and javax.microedition.rms are described in the
following sections.

The javax.microedition. lcdui Package

This package provides a set of features for implementation of user interfaces for MIDP applications.

Interfaces

Choice The Choice interface defines methods for Ul components
implementing the capability of selecting elements from a predefined
number of elements.

CommandListener |The CommandListener interface defines methods that are used by
applications that want to receive high-level commands from the Ul
implementation.

ItemStatelListener The ItemStatelListener interface defines methods that are used
by applications that want to receive events that indicate changes in
the internal state of the interactive items within a Form screen.

Classes

Alert The Alert class provides a screen that shows data to the user and waits for

a specified period of time before proceeding to the next screen.
AlertType |The AlertType class provides an indication of the behavior of alerts.
Canvas The Canvas class is the base class for writing applications that need to
handle low-level events and to issue graphics calls for drawing to the display
at low-level.

ChoiceGroup|The ChoiceGroup class is a group of selectable elements that needs to be

appended to a Form.

Command The Command class encapsulates the semantic information of an action.

DateField |The DateField class provides a Ul component for editing date and time

information. This Ul component needs to be appended to a Form.

Display The Display class represents the manager of the display and input devices

of the system.

Displayable|The Displayable class encapsulates an object that has the capabilities to

be placed on the Display.

Font The Font class represents a font and font metrics.

Form The Form class is a Screen that contains an arbitrary mixture of all available

high-level Ul components.

Gauge The Gauge class represents a bar graph display of a value that needs to be

placed in a Form.

Graphics The Graphics class provides simple 2D geometric rendering in the low-level

API.

Image The Image class is used to hold image data.

Imageltem |The Imageltem class provides layout functionality for images that need to be

placed in a Form or Alert.

I'tem The Item class is the superclass of all Ul components that can be appended

265

to Forms and Alerts.

List The List class provides a Screen containing a list of choices.

Screen The Screen class is the superclass of all high-level user interface classes.

Stringltem |The Stringltem class is an I'tem containing a String.

TextBox The TextBox class provides a Screen that is capable of entering and editing
text.

TextField |The TextField class provides an I'tem that is capable of entering and

editing text that needs to be appended to a Form.

Ticker The Ticker class implements a Ul component where the text scrolls

continuously across the display.

The javax.microedition.midlet Package

This package defines MIDP applications and the interactions between the application and the
environment in which the application is executed.

Class

TheMIDIl et class provides an application for the MID profile.

Exception

TheMIDletStateChangeException signalsthat arequested MIDlet state change has failed.

The javax.microedition.rms Package

This package provides a mechanism to persistently store data and later retrieve it.

Interfaces

RecordComparator

The RecordComparator interface defines methods for a comparator
that compares two records, depending on the application-defined
criteria, in order to see if they match or to determine their relative sort
order.

RecordEnumeration

The RecordEnumeration interface defines methods for a
bidirectional record store record enumerator.

RecordFilter

The RecordFi lter interface defines methods for a filter that
examines a record to see if it matches depending on the application-
defined criteria.

RecordListener The RecordListener interface defines methods for receiving
events indicating that a Record was changed, added, or deleted from
a record store.

Class

The RecordStore class represents one record store.

Exceptions

InvalidRecordIDException The Inval idRecordIDException is thrown to

indicate that an operation could not be completed,
because the record ID was invalid.

266

RecordStoreException

The RecordStoreException is thrown to signal that
a general exception occurred in a record store
operation.

RecordStoreFul IException

The RecordStoreFul IException is thrown to
indicate that an operation could not be completed,
because the record store system storage was full.

RecordStoreNotFoundException

The RecordStoreNotFoundException is thrown to
indicate that an operation could not be completed,
because the record store could not be found.

RecordStoreNotOpenException

The RecordStoreNotOpenException is thrown to
indicate that an operation was attempted on a closed
record store.

267

PDAP-Specific Packages

The java.awt, java.awt.event, java.awt. image, javax.microedition.pim and the
additionsto the java. io, java.net, java.util packagesare available in PDAP only.

The java.awt Package

This package contains all the classes for creating user interfaces and for painting graphics and images
for implementation of user interfaces for PDAP applications.

Interfaces

ActiveEvent ActiveEvent provides an interface for events that know how dispatch
themselves. By implementing this interface, an event can be placed upon
the event queue and its dispatch() method will be called when the
event is dispatched, using the EventDispatchThread.

Adjustable The Adjustable interface is used for objects having an adjustable
numeric value contained within a bounded range of values.

ItemSelectable|The ItemSelectable provides an interface for objects containing a set
of items for which zero or more can be selected.

LayotManager |The LayoutManager interface defines methods for classes knowing how
to layout Containers.

LayoutManager2|LayoutManager2 provides an interface for classes that know how to
layout Containers based on a layout constraints object. It extends the
LayoutManager interface to handle layouts explicitly in terms of
constraint objects that specify how and where components should be
added to the layout.

MenuContainer |The MenuContainer interface provides methods for all menu related
containers.

Shape The Shape interface provides definitions for graphical objects that
represent some kind of geometric shapes.

Classes

AWTEvent The AWTEvent class is the root event for all AWT related

events.

AWTEventMulticaster The AWTEventMulsticaster class provides a mechanism for

efficient and thread-safe multi-cast event dispatching for the
AWT events included in the java.awt.event package.

BorderLayout The BorderLayout lays out a container, arranging and resizing
its components to fit in five regions: north, south, east, west, and
center.

Button The Button class represents a labeled button.

Canvas The Canvas class represents a blank rectangular area of the
screen onto which the application can draw or from which the
application can trap input events from the user.

CardLayout The CardLayout lays out a container, arranging each
component in the container as a card where only one card is
visible at a time.

Checkbox The Checkbox class represents a graphical component that can

be in either an "on" (true) or "off" (false) state.

268

CheckboxGroup

The CheckboxGroup class is used to combine a set
Checkboxes together in a group.

CheckboxMenultem The CheckboxMenultem represents a Checkbox that can be
added to a menu.

Choice The Choice class represents a graphical pop-up menu
component of choices.

Color The Collor class is used to encapsulate colors in the RGB color
space.

Component The Component class is the abstract super class of objects
having a graphical representation that can be displayed on the
screen and are able to interact with the user.

Container The Container class is a component that can contain other
AWT components.

Cursor The Cursor class provides the bitmap representation of the
mouse Cursor.

Dialog A Dialog class is a top-level window with a title and a border
that can be used to take input from the user.

Dimension The Dimension class encapsulates the width and height in
integer precision of a component in a single object.

Event The Event class is a platform-independent implementation of
events that can be dispatched from the platform's Graphical
User Interface in the Java 1.0 event model.

EventQueue The EventQueue class provides a platform-independent
mechanism for queuing events.

FlowLayout The FlowLayout class lays out components in a left-to-right
flow, like lines of text in a paragraph.

Font The Font class represents a font.

FontMetrics The FontMetrics class defines a font metrics object, which
encapsulates information about the rendering of a particular font
on a particular screen.

Frame The Frame class represents a top-level window with a title and a
border.

Graphics The Graphics class is the abstract base class for all graphics

contexts that allow an application to draw onto components that
are realized on various devices, as well as onto off-screen
images.

GraphicsConfiguration

The GraphicsConfiguration class describes the capabilities
of a graphics destination.

GraphicsDevice

The GraphicsDevice class holds the graphics devices that
might be available in a particular graphics environment.

GraphicsEnvironment

The GraphicsEnvironment class describes a set of
GraphicsDevice and Font objects available on a particular
platform.

GridBagConstraints The GridBagConstraints class defines constraints for
components that are laid out in a GridBagLayout.

GridBaglLayout The GridBagLayout class provides a flexible layout manager
that is capable of positioning components according to
constraints in the GridBayConstraints class.

GridLayout The GridLayout class lays out the components of a container
in a rectangular grid.

Image The Image class is the super-class of all classes that represent

graphical images.

269

Insets

The Insets class represents the borders of a container. It
specifies the space that a container must leave at each of its
edges.

Label The Label class represents a component for placing text in a
container.

List The List class represents a graphical component with a
scrolling list of text items.

MediaTracker The MediaTracker class is a utility class providing a
mechanism to track the status of media objects such as images.

Menu The Menu class represents an object acting as pull-down menu
component that is deployed in a menu bar.

MenuBar The MenuBar class encapsulates the platform's concept of a
menu bar bound to a frame.

MenuComponent The MenuComponent class is the super-class of all menu-
related components.

‘Menu Item ‘The Menultem class represents on item in a menu.

MenuShortcut The MenuShortcut class represents a keyboard accelerator
for a Menultem.

‘Panel ‘The Panel class is the simplest container class.

Point The Point class represents a location in (x, y) coordinate
space, specified in integer precision.

Polygon The Polygon class represents a geometric description of a
closed, two-dimensional region within a coordinate space.

PopupMenu The Popup class a menu that can be dynamically popped up at
a specified position within a component.

Rectangle The Rectangl e class specifies an area in a coordinate space
that is enclosed by the Rectangle object's top-left point (x, y) in
the coordinate space, its width, and its height.

Scrollbar The Scrol Ibar class represents a scroll bar user-interface

object.

Scrol IPane

The Scrol IPane class represents a container class which
implements automatic horizontal and/or vertical scrolling for a
single child component.

SystemColor The SystemColor class encapsulates a set symbolic colors
representing the color of GUI objects on a particular platform.

TextArea The TextArea class represents a graphical component capable
of displaying a multi-line region text.

TextComponent The TextComponent class is the super-class of any
component that allows the editing of text.

TextField The TextField class represents a graphical component
allowing the user to edit a single line of text.

Toolkit The Toolkit class is the abstract super-class of all actual
implementations of the Abstract Window Toolkit. Subclasses of
Toolkit are used to bind the various components to particular
native toolkit implementations.

Window The Window class is a top-level window with no borders and no
menubar.

Exceptions

AWTException The AWTExcention sianalizes that an AWT related

270

excaption occurred.

I1legalComponentStateException|The I1legalComponentStateException

signalizes that an AWT component is not in an
appropriate state for the operation.

Error

The java.awt package consists of the ANTError only that signalizes that a serious error in the
Abstract Window Toolkit occurred.

The java.awt.event Package

This package provides interfaces and classes for dealing with different types of eventsfired by AWT

components.

Interfaces

ActionListener The ActionListener interface provides methods for receiving
action events.

AdjustmentListener |The AdjustmentListener interface provides methods for
receiving adjustment events.

AWTEventListener The AWTEventListener interface provides methods for receiving
notification of events dispatched to objects that are instances of
Component or MenuComponent or their subclasses.

ComponentListener |The ComponentListener interface provides methods for
receiving component events.

ContainerListener |The ContainerListener interface provides methods for
receiving container events.

FocusListener The FocusListener interface provides methods for receiving
keyboard focus events on a component.

ItemListener The ItemListener interface provides methods for receiving item
events.

KeyListener The KeyL istener interface provides methods for receiving
keyboard events (keystrokes).

MouseListener The MouseL istener interface provides methods for receiving

mouse events such as (press, release, click, enter, and exit) on a
component.

MouseMotionListener |The MouseMotionListener interface provides methods for

receiving mouse motion events on a component.

TextListener The TextListener interface provides methods for receiving text
events.
WindowListener The WindowL istener interface provides methods for receiving
window events.
Classes
ActionEvent The ActionEvent class represents a semantic event, indicating
that a component-defined action occurred.
AdjustmentEvent The AdjustmentEvent class encapsulates an event emitted by
Adjustable objects.
ComponentAdapter |The ComponentAdapter class provides an abstract adapter class

for receiving component events.

ComponentEvent The ComponentEvent class encapsulates a low-level event
indicating that a component moved, changed size, or changed
visibility

ContainerAdapter |The ContainerAdapter class provides an abstract adapter class
for receiving container events.

ContainerEvent The ContainerEvent class encapsulates a low-level event which
indicates that a container's contents has changed because a
component was added or removed.

FocusAdapter The FocusAdapter class provides an abstract adapter class for
receiving focus events.

FocusEvent The FocusEvent class encapsulates a low-level event indicating
that a component has gained or lost the keyboard focus.

InputEvent The InputEvent class represents the root event class for all

component-level input events.

InvocationEvent The InvocationEvent encapsulates an event executing the
run() method on a Runnable object when dispatched by the AWT
event dispatcher thread.

ItemEvent The ItemEvent encapsulates a semantic event which indicates that
an item was selected or deselected.

KeyAdapter The KeyAdapter class provides an abstract adapter class for
receiving keyboard events.

KeyEvent The KeyEvent class encapsulates an event indicating that a
keystroke occurred in a component.

MouseAdapter The MouseAdapter class provides an abstract adapter class for
receiving mouse events.

MouseEvent The MouseEvent class encapsulates an event indicating that a

mouse action occurred in a component.

MouseMotionAdapter The MouseMotionAdapter class provides an abstract adapter
class for receiving mouse motion events.

PaintEvent The PaintEvent class encapsulates a component-level paint
event.

TextEvent The TextEvent class encapsulates a semantic event indicating that
an object's text changed.

WindowAdapter The WindowAdapter class provides an abstract adapter class for
receiving window events.

WindowEvent The WindowEvent class encapsulates a low-level event indicating

that a window has changed its status.

The java.awt. image Package
This package provides classes for creating and modifying images.

Interfaces

ImageConsumer |The ImageConsumer interface is used for expressing interest in image data
through the ImageProducer interfaces.

ImageObserver|The ImageObserver interface is asynchronous update interface for
receiving notifications about Image information as the Image is constructed.

ImageProducer|The ImageProducer interface defines methods for objects that can produce
the image data for images.

Classes

272

AreaAveragingScaleFilter|The AreaAveragingScaleFilter class is used to scale

images using a simple area averaging algorithm that
produces smoother results than the nearest neighbor
algorithm.

ColorModel

The ColorModel class is an abstract class encapsulating
methods for translating a pixel value to color components
and an alpha component.

CroplmageFi

Iter The CropImagefi lter class is used for cropping images.

DirectColorModel The DirectColorModel is a ColorModel class that

works with pixel values that represent RGB color and alpha
information as separate samples and that pack all samples
for a single pixel into a single int, short, or byte quantity.

FilteredImageSource The FilteredImageSource class is an implementation of

the ImageProducer interface which takes an existing
image and a filter object and uses them to produce image
data for a new filtered version of the original image.

ImageFilter

The ImageFi lter class implements a filter for the set of
interface methods that are used to deliver data from an
ImageProducer to an ImageConsumer.

IndexColorModel The IndexColorModel class that works with pixel values
consisting of a single sample which is an index into a fixed
colormap.

MemorylmageSource The MemorylmageSource is an implementation of the

ImageProducer interface which uses an array to produce
pixel values for an Image.

PixelGrabber The PixelGrabber class is an implementation of the

ImageConsumer class which can be attached to an Image
or ImageProducer object to retrieve a subset of the pixels
in that image.

ReplicateScaleFilter The ReplicateScaleFilter class is used for scaling

images using the simplest algorithm.

RGBImageFilter The RGBImageFi lter class provides an easy way to

create an ImageFi Iter which modifies the pixels of an
image in the default RGB ColorModel.

The Javax.microedition.pim Package

This package contains all of the classes for accessing the Personal Information Manager for PDAP

applications.

Interfaces

Contact The Contact interface defines all methods that need to be implemented by a
Contact object of an address book.

ContactList|The ContactList interface defines all methods that need to be implemented
by a ContactList object which is used to store the Contacts of an address
book

Event The Event interface defines all methods that needs to be implemented by an
Event object of a calendar.

EventList |The EventList interface defines all methods that needs to be implemented
by a EventList object which is used to store Events of a given calendar.

PIMElement |The PIMElement interface defines all methods necessary for an element of a

PIMList. Interfaces extending the PIME lement interface are Contact,

273

Event and ToDo.

PIMList The PIMList interface defines all methods necessary for a list that is capable
of storing PIME lements. Interfaces extending the PIMList interface are
ContactList, EventList and ToDoList.

ToDo The ToDo interface defines all methods that need to be implemented by an
entry of a ToDoL ist.

ToDoList The ToDoL ist interface defines all methods that needs to be implemented by
a ToDoL i st object which is used to store ToDo elements.

Classes

EventRepeat|The EventRepeat class represents a description for a repeating pattern for
an Event element.

PIM The PIM class is used to access all P 1M databases which are available on the
device by providing static access methods.

Exception

PimException|The PimException is thrown to indicate that a general error in the pim

classes occurred.

PDAP Additions to the java.io package

PDAP addsthe PrintWriter classwhich is used to print formatted representations of objectsto a
text-output stream.

PDAP Additions to the java.lang.reflect package

PDAP addsthe InvocationTargetException that can bethrowninthe java.awt.
EventQueue . invokeAndWait() method.

PDAP Additions to the java.net package

PDAP need to add the following class and exception to the java . net package.

URL

The URL class represents a Uniform Resource Locator, a pointer
to a "resource" on the World Wide Web.

MalformedURLException|The MalformedURLException is thrown to indicate that a

malformed URL has occurred.

PDAP Additions to the java.util package

PDAP need to add the following class and exception to the java . net package.

Interface

EventListener |The EventListener interface is a tagging interface that all event listener

interfaces must extend.

Classes

274

EventObject|The EventObject is the root class from which all event state objects shall be
derived.

Locale The Locale class represents a specific geographical, political, or cultural
region.

Exception

MissingResourceException The MissingResourceException is thrown to indicate
that a resource could not be found.

275

Appendix B. Comparison Charts
IN THISAPPENDI X

java.awt
java.awt.event
java.awt.image
java.io
javalang
java.lang.ref
java.lang.reflect
java.net
javautil
java.util.jar
java.util.zip
Packages Not Availablein CLDC

This appendix compares J2SE classes (v 1.3) to their 2ME CLDC and CLDC-NG(1.1)/PDAP
counterparts. If a J2SE classis contained in 2ME, but methods are omitted, a detailed comparison
is given in the sections following the package descriptions.

276

java.awt

The java.awt package and its sub packages java.awt.event and java.awt. image are
availablein PDAP only.

For a discussion of the MIDP counterpart, the javax.microedition.lcdui package, refer to Chapter 3,
"MIDP Programming."

Table B.1. Interfaces of the java.awt Package

J2SE Interface Availability in PDAP
ActiveEvent All J2SE Methods are available in PDAP.
Adjustable All J2SE Methods are available in PDAP.
Composite Not available in PDAP.
CompositeContext Not available in PDAP.
ItemSelectable All J2SE Methods are available in PDAP.
LayotManager All J2SE Methods are available in PDAP.
LayoutManager?2 All J2SE Methods are available in PDAP.
MenuContainer All J2SE Methods are available in PDAP.
Paint Not available in PDAP.
PaintContext Not available in PDAP.
PrintGraphics Not available in PDAP.
Shape Partly contained; see Table B.5 for details.
Stroke Not available in PDAP.
Transparency Not available in PDAP.

Table B.2. Classes of the java.awt Package
J2SE Class Availability in PDAP
AlphaComposite Not available in PDAP.
AWTEvent Fully available in PDAP.
AWTEventMulticaster Partially contained; see Table B.6 for details.
AWTPermission Not available in PDAP.
BasicStroke Not available in PDAP.
BorderLayout All J2SE Methods are available in PDAP.
Button Partially contained; see Table B.7 for details.
Canvas Partially contained; see Table B.8 for details.
CardLayout All J2SE Methods are available in PDAP.
Checkbox Partially contained; see Table B.9 for details.
CheckboxGroup All J2SE Methods are available in PDAP.
CheckboxMenultem Partly contained; see Table B.10 for details.
Choice Partially contained; see Table B.11 for details.
Color Partially contained; see Table B.12 for details.
Component Partially contained; see Table B.13 for details.
ComponentOrientation Not available in PDAP.
Container Partially contained; see Table B.14 for details.
Cursor Partly contained; see Table B.15 for details.
Dialog Partially contained; see Table B.16 for details.
Dimension Partially contained; see Table B.17 for details.
Event All J2SE Methods are available in PDAP.
EventQueue All J2SE Methods are available in PDAP.

277

FileDialog

Partially contained; see Table B.18 for details.

FlowLayout All J2SE Methods are available in PDAP.

Font Partially contained; see Table B.19 for details.
FontMetrics Partially contained; see Table B.20 for details.
Frame Partially contained; see Table B.21 for details.
GradientPaint Not available in PDAP.

Graphics Partially contained; see Table B.22 for details.
Graphics2D Not available in PDAP, please use Graphics instead.

GraphicsConfigTemplate

Not available in PDAP.

GraphicsConfiguration

Partially contained; see Table B.23 for details.

GraphicsDevice Partially contained; see Table B.24 for details.
GraphicsEnvironment Partially contained; see Table B.25 for details.
GridBagConstraints Partially contained; see Table B.26 for details.
GridBaylLayout Partially contained; see Table B.27 for details.
GridLayout All J2SE methods are available in PDAP.
Image All J2SE methods are available in PDAP.
Insets Partially contained; see Table B.28 for details.
JobAttributes Not available in PDAP.

Label Partially contained; see Table B.29 for details.
List Partially contained; see Table B.30 for details.
MediaTracker All J2SE methods are available in PDAP.
Menu Partially contained; see Table B.31 for details.
MenuBar Partially contained; see Table B.32 for details.
MenuComponent Partially contained; see Table B.33 for details.
Menultem Partially contained; see Table B.34 for details.
MenuShortcut All J2SE methods are available in PDAP.
PageAttributes Not available in PDAP.

Panel Partially contained; see Table B.35 for details.
Point Partially contained; see Table B.36 for details.
Polygon Partially contained; see Table B.37 for details.
PopupMenu Partially contained; see Table B.38 for details.
PrintJob Not available in PDAP.

Rectangle Partially contained; see Table B.39 for details.
RenderingHints Not available in PDAP.

Robot Not available in PDAP.

Scrollbar Partially contained; see Table B.40 for details.
ScrollPane Partially contained; see Table B.41 for details.
SystemColor Partially contained; see Table B.42 for details.
TextArea Partially contained; see Table B.43 for details.
TextComponent Partially contained; see Table B.44 for details.
TextField Partially contained; see Table B.45 for details.
TexturePaint Not available in PDAP.

Toolkit Partially contained; see Table B.46 for details.
Window Partially contained; see Table B.47 for details.

Table B.3. Exceptions of the java.awt Package

J2SE Exception

Availability in PDAP

AWTException

Available in PDAP.

278

FontFormatException Not available in PDAP.

11 legalComponentStateException Available in PDAP.
Table B.4. Errors of the jJava.awt Package

J2SE Error Availability in PDAP

AWTError Available in PDAP.

Shape

Table B.5. Methods ofthe Class Shape

Method

Alternative/Workaround

boolean contains(double x, double y)

Not available in PDAP.

boolean contains(double x, double y, double w,
double h)

Not available in PDAP.

boolean contains(Point2D p)

Not available in PDAP.

boolean contains(Rectangle2D r)

Not available in PDAP.

Rectangle getBounds()

Available in PDAP.

Rectangle2D getBounds2D()

Not available in PDAP.

Pathlterator getPathlterator (AffineTransform at)

Not available in PDAP.

Pathlterator getPathlterator (AffineTransform at,
double flatness)

Not available in PDAP.

boolean intersects(double x, double y, double w,
double h)

Not available in PDAP.

boolean intersects(Rectangle2D r)

Not available in PDAP.

AWTEventMul ticaster

Table B.6. Methods of the Class AWTEventMul ticaster

Method

Alternative/Workaround

Protected AWTEventMulticaster (EventListener a,
EventListener b)

Available in PDAP.

void actionPerformed(ActionEvent e)

Available in PDAP.

static ActionListener add(ActionListener a,
ActionListener b)

Available in PDAP

static AdjustmentListener add(AdjustmentListener
a, AdjustmentListener b)

Available in PDAP.

static ComponentListener add(ComponentListener a,
ComponentListener b)

Available in PDAP.

static ContainerListener add(ContainerListener a,
ContainerListener b)

Available in PDAP.

static FocusListener add(FocusListener a,
FocusListener b)

Available in PDAP.

static HierarchyBoundsListener
add(HierarchyBoundsListener a,
HierarchyBoundsListener b)

Not available in PDAP.

static HierarchylListener add(HierarchyListener a,
HierarchyListener b)

Not available in PDAP.

static InputMethodListener
add(InputMethodListener a, InputMethodListener b)

Not available in PDAP.

static ltemListener add(ltemListener a,
ItemListener b)

Available in PDAP

static KeyListener add(KeyListener a, KeylListener

Available in PDAP

279

b)

static MouselListener add(MouseListener a, Available in PDAP.

MouselListener b)

static MouseMotionListener
add(MouseMotionListener a, MouseMotionListener b)

Available in PDAP

static TextListener add(TextListener a,
TextListener b)

Available in PDAP

static WindowListener add(WindowListener a,
WindowListener b)

Available in PDAP

protected static EventListener addInternal
(EventListener a, EventListener b)

Available in PDAP

void adjustmentValueChanged(AdjustmentEvent e) Available in PDAP.

void ancestorMoved(HierarchyEvent e) Not available in PDAP.

void ancestorResized(HierarchyEvent e) Not available in PDAP.

void caretPositionChanged(InputMethodEvent e) Not available in PDAP.

void componentAdded(ContainerEvent e)

Available in PDAP.

void componentHidden(ComponentEvent e)

Available in PDAP

void componentMoved(ComponentEvent e)

Available in PDAP.

void componentRemoved(ContainerEvent e)

Available in PDAP.

void componentResized(ComponentEvent e)

Available in PDAP

void componentShown(ComponentEvent e)

Available in PDAP.

void focusGained(FocusEvent e)

Available in PDAP

void focusLost(FocusEvent e)

Available in PDAP.

void hierarchyChanged(HierarchyEvent e)

Not available in PDAP.

void inputMethodTextChanged(InputMethodEvent e)

Not available in PDAP.

void itemStateChanged(ltemEvent e)

Available in PDAP.

void keyPressed(KeyEvent e)

Available in PDAP

void keyReleased(KeyEvent e)

Available in PDAP.

void keyTyped(KeyEvent e)

Available in PDAP

void mouseClicked(MouseEvent e)

Available in PDAP.

void mouseDragged(MouseEvent e)

Available in PDAP.

void mouseEntered(MouseEvent e)

Available in PDAP

void mouseExited(MouseEvent e)

Available in PDAP.

void mouseMoved(MouseEvent e)

Available in PDAP

void mousePressed(MouseEvent e)

Available in PDAP.

void mouseReleased(MouseEvent e)

Available in PDAP.

static ActionListener remove (ActionListener 1,
ActionListener oldl)

Available in PDAP

static AdjustmentListener remove
(AdjustmentListener I, AdjustmentListener oldl)

Available in PDAP

static ComponentListener remove
(ComponentListener 1, ComponentListener oldl)

Available in PDAP.

static ContainerListener remove
(ContainerListener 1, ContainerListener oldl)

Available in PDAP

protected EventListener remove (EventListener
oldl)

Available in PDAP

static FocusListener remove (FocusListener 1,
FocusListener oldl)

Available in PDAP

static HierarchyBoundsListener remove
(HierarchyBoundsListener 1,

Not available in PDAP.

280

HierarchyBoundsListener oldl)

static HierarchylListener remove
(HierarchyListener 1, HierarchyListener oldl)

Not available in PDAP.

static InputMethodListener remove
(InputMethodListener 1, InputMethodListener oldl)

Not available in PDAP.

static ltemListener remove (ltemListener 1,
ItemListener oldl)

Available in PDAP

static KeyListener remove (KeyListener 1,
KeyListener oldl)

Available in PDAP

static MouseListener remove (MouselListener 1,
MouseListener oldl)

Available in PDAP

static MouseMotionListener remove
(MouseMotionListener I, MouseMotionListener oldl)

Available in PDAP

static TextListener remove (TextListener 1,
TextListener oldl)

Available in PDAP.

static WindowListener remove (WindowListener 1,
WindowListener oldl)

Available in PDAP.

protected static EventListener removelnternal
(EventListener I, EventListener oldl)

Available in PDAP.

protected static void save (ObjectOutputStream s,
String k, EventListener 1)

Not available in PDAP.

protected void savelnternal (ObjectOutputStream
s, String k)

Not available in PDAP.

void textValueChanged(TextEvent e) Available in PDAP.
void windowActivated(WindowEvent e) Available in PDAP.
void windowClosed(WindowEvent e) Available in PDAP.

void windowClosing(WindowEvent e)

Available in PDAP.

void windowDeactivated(WindowEvent e)

Available in PDAP

void windowDeiconified(WindowEvent e)

Available in PDAP.

void windowlconified(WindowEvent e)

Available in PDAP.

void windowOpened(WindowEvent e)

Available in PDAP

Button

Table B.7. Methods of the Class Button
Method Alternative/Workaround
Button() Available in PDAP.

Button(String label)

Available in PDAP.

Void addActionListener(ActionListener 1)

Available in PDAP.

void addNotify()

Not available in PDAP.

AccessibleContext getAccessibleContext()

Not available in PDAP.

String getActionCommand()

Available in PDAP.

String getLabel ()

Available in PDAP.

EventListener[] getListeners(Class listenerType)

Not available in PDAP.

Protected String paramString()

Available in PDAP.

protected void processActionEvent(ActionEvent e)

Available in PDAP.

protected void processeEvent(AWTEvent e)

Available in PDAP.

void removeActionListener(ActionListener 1)

Available in PDAP.

void setActionCommand(String command)

Available in PDAP.

void setLabel(String label)

Available in PDAP.

TYaZBIﬁfw

Canvas

Table B.8. Methodsof the Class Canvas

Method

Alternative/Workaround

Canvas(Q)

Available in PDAP.

Canvas(GraphicsConfiguration config)

Available in PDAP

void addNotify()

Not available in PDAP.

AccessibleContext getAccessibleContext()

Not available in PDAP.

void paint(Graphics @)

Available in PDAP.

Checkbox

Table B.9. Methods of the Class Checkbox
Method Alternative/Workaround
Checkbox() Available in PDAP.

Checkbox(String label)

Available in PDAP

Checkbox(String label, boolean state)

Available in PDAP

Checkbox(String label, boolean state,
CheckboxGroup group)

Available in PDAP.

Checkbox(String label, CheckboxGroup group,
boolean state)

Available in PDAP.

void addltemListener(ltemListener 1)

Available in PDAP.

void addNotify()

Not available in PDAP.

AccessibleContext getAccessibleContext()

Not available in PDAP.

CheckboxGroup getCheckboxGroup()

Available in PDAP.

String getLabel ()

Available in PDAP

EventListener[] getListeners(Class listenerType)

Not available in PDAP.

Object[] getSelectedObjects()

Available in PDAP

Boolean getState()

Available in PDAP.

Protected String paramString(Q)

Available in PDAP.

protected void processeEvent(AWTEvent e)

Available in PDAP

protected void processltemEvent(ltemEvent e)

Available in PDAP.

Void removeltemListener(ltemListener 1)

Available in PDAP

Void setCheckboxGroup(CheckboxGroup g)

Available in PDAP.

void setlLabel (String label)

Available in PDAP

void setState(boolean state)

Available in PDAP

CheckboxMenultem

Table B.10. Methods of the Class CheckboxMenultem

Method

Alternative/Workaround

CheckboxMenultem()

Available in PDAP.

CheckboxMenultem(String label)

Available in PDAP.

CheckboxMenultem(String label, boolean state)

Available in PDAP.

Void addltemListener(ltemListener 1)

Available in PDAP.

void addNotify()

Not available in PDAP.

AccessibleContext getAccessibleContext()

Not available in PDAP.

EventListener[] getListeners(Class listenerType)

Not available in PDAP.

282

Object[] getSelectedObjects()

Available in PDAP.

boolean getState()

Available in PDAP.

String paramString()

Available in PDAP.

Protected void processEvent(AWTEvent e)

Available in PDAP.

protected void processltemEvent(ltemEvent e)

Available in PDAP.

Void removeltemListener(ltemListener 1)

Available in PDAP.

void setState(boolean b)

Available in PDAP.

Choice

Table B.11. Methods of the Class Choice
Method Alternative/Workaround
Choice() Available in PDAP.
void add(String item) Available in PDAP.
void addltem(String item) Available in PDAP.
void addltemListener(ltemListener 1) Available in PDAP.

void addNotify()

Not available in PDAP.

int countltems()

Available in PDAP

AccessibleContext getAccessibleContext()

Not available in PDAP.

String getltem(int index)

Available in PDAP.

int getltemCount()

Available in PDAP

EventListeners[] getListeners(Class listenerType)

Not available in PDAP.

int getSelectedindex()

Available in PDAP.

String getSelectedltem()

Available in PDAP

Object[] getSelectedObjects()

Available in PDAP.

void insert(String item, int index)

Available in PDAP

protected String paramString(Q)

Available in PDAP.

protected void processeEvent(AWTEvent e)

Available in PDAP.

protected void processltemEvent(ltemEvent e)

Available in PDAP

void remove(int position)

Available in PDAP.

void remove(String item) Available in PDAP.

void removeAll() Available in PDAP.

void removeltemListener(ltemListener 1) Available in PDAP.

void select(int pos) Available in PDAP.

void select(String str) Available in PDAP.
Color

Table B.12. Methods of the Class Color
Method Alternative/Workaround

Color(ColorSpace cspace, float[] components,
float alpha)

Not available in PDAP.

Color(float r, float g, float b)

Available in PDAP.

Color(float r, float g, float b, float a)

Available in PDAP.

Color(int rgb) Available in PDAP.
Color(int rgba, boolean hasalpha) Available in PDAP.
Color(int r, int g, int b) Available in PDAP.
Color(int r, int g, int b, int a) Available in PDAP.

283

Color brighter(Q)

Available in PDAP.

PaintContext createContext(ColorModel cm,
Rectangle r, Rectangle2D r2d, AffineTransform
xform, RenderingHints hints)

Not available in PDAP.

Color darker()

Available in PDAP

static Color decode(String nm)

Available in PDAP.

boolean equals(Object obj)

Available in PDAP

int getAlpha(Q

Available in PDAP.

int getBlue()

Available in PDAP

static Color getColor (String nm)

Available in PDAP

static Color getColor(String nm, Color v)

Available in PDAP.

static Color getColor(String nm, int v)

Available in PDAP

float[] getColorComponents (ColorSpace cspace,
float[] compArray)

Not available in PDAP.

float[] getColorComponents(float[] compArray)

Available in PDAP.

ColorSpace getColorSpace()

Not available in PDAP.

float[] getComponents (ColorSpace cspace, float[]
compArray)

Not available in PDAP.

float[] getComponents(float[] compArray)

Available in PDAP

int getGreen()

Available in PDAP.

static Color getHSBColor (float h, float s, float
b)

Available in PDAP

int getRed()

Available in PDAP

int getRGB()

Available in PDAP

float[] getRGBColorComponents(float[] compArray)

Available in PDAP.

float[] getRGBComponents(float[] compArray)

Available in PDAP

int getTransparency()

Not available in PDAP.

int hashCode()

Available in PDAP

static int HSBtoRGB (float hue, float saturation,
float brightness)

Available in PDAP.

static float[] RGBtoHSB (int r, int g, int b,
float[] hsbvals)

Available in PDAP

String toString()

Available in PDAP

Component

Table B.13. Methods of the Class Component

Method

Alternative/Workaround

protected Component()

Available in PDAP

boolean action(Event evt, Object what)

Aavailable in PDAP.

void add(PopupMenu popup)

Available in PDAP

void addComponentListener(ComponentListener 1)

Available in PDAP.

void addFocusListener(FocusListener 1)

Available in PDAP

void

addHierarchyBoundsListener(HierarchyBoundsListener 1)

Not available in PDAP.

void addHierarchyListener(HierarchyListener 1)

Not available in PDAP.

void addlInputMethodListener(InputMethodListener 1)

Not available in PDAP.

void addKeyListener(KeyListener 1)

Available in PDAP

void addMouseListener(MouselListener 1)

Available in PDAP.

284

void addMouseMotionListener(MouseMotionListener 1)

Available in PDAP.

void addNotify()

Available in PDAP

void dddPropertyChangelListener(PropertyChangelListener
listener)

Not available in PDAP.

void addPropertyChangeListener(String propertyName,
PropertyChangeListener listener)

Not available in PDAP.

Rectangle bounds()

Available in PDAP.

int checklmage(lmage image, ImageObserver observer)

Available in PDAP.

int checklmage(lmage image,
ImageObserver observer)

int width, int height,

Available in PDAP

protected AWTEvent coalesceEvents (AWTEvent
existingEvent, AWTEvent newEvent)

Available in PDAP.

boolean contains(int x, int y)

Available in PDAP.

boolean contains(Point p)

Available in PDAP

Image createlmage(ImageProducer producer)

Available in PDAP.

Image createlmage(int width, int height)

Available in PDAP

void deliverkEvent(Event e)

Available in PDAP

void disable()

Available in PDAP.

protected void disableEvents(long eventsToDisable)

Available in PDAP

void dispatchEvent(AWTEvent e)

Available in PDAP.

void doLayout()

Available in PDAP

void enable()

Available in PDAP.

void enable(boolean b)

Available in PDAP.

protected void enableEvents(long eventsToEnable)

Available in PDAP

void enablelnputMethods(boolean enable)

Not available in PDAP.

protected void firePropertyChange (String
propertyName, Object oldvalue, Object newValue)

Not available in PDAP.

AccessibleContext getAccessibleContext()

Not available in PDAP.

float getAlignmentX()

Available in PDAP

float getAlignmentY()

Available in PDAP.

Color getBackground()

Available in PDAP

Rectangle getBounds()

Available in PDAP.

Rectangle getBounds(Rectangle rv)

Not available in PDAP.

ColorModel getColorModel ()

Available in PDAP.

Component getComponentAt(int x, int y)

Available in PDAP.

Component getComponentAt(Point p)

Available in PDAP

ComponentOrientation getComponentOrientation()

Not available in PDAP.

Cursor getCursor()

Available in PDAP

DropTarget getDropTarget()

Not available in PDAP.

Font getFont()

Available in PDAP

FontMetrics getFontMetrics(Font font)

Available in PDAP

Color getForeground()

Available in PDAP.

Graphics getGraphics()

Available in PDAP

GraphicsConfiguration getGraphicsConfiguration()

Available in PDAP.

int getHeight()

Available in PDAP

InputContext getlnputContext()

Not available in PDAP.

InputMethodRequests getlnputMethodRequests()

Not available in PDAP.

EventListener[] getListeners(Class listenerType)

Not available in PDAP.

Locale getLocale()

Available in PDAP.

285

Point getLocation()

Available in PDAP.

Point getLocation(Point rv)

Available in PDAP

Point getLocationOnScreen()

Available in PDAP.

Dimension getMaximumSize()

Available in PDAP

Dimension getMinimumSize()

Available in PDAP.

String getName()

Available in PDAP.

Container getParent()

Available in PDAP

Java.awt.peer.ComponentPeer getPeer()

Not available in PDAP
(deprecated J2SE
method).

Dimension getPreferredSize()

Available in PDAP

Dimension getSize()

Available in PDAP

Dimension getSize(Dimension rv)

Available in PDAP.

Toolkit getToolkit()

Available in PDAP

Object getTreelLock()

Available in PDAP.

int getWidth(Q

Available in PDAP

int getX()

Available in PDAP

int getY()

Available in PDAP.

boolean gotFocus(Event evt, Object what)

Available in PDAP

boolean handleEvent(Event evt)

Available in PDAP.

boolean hasFocus()

Available in PDAP

void hide()

Available in PDAP.

boolean imageUpdate(lmage img, int infoflags, int X

int y, int w, int h)

Available in PDAP.

boolean inside(int x, int y)

Available in PDAP.

void invalidate()

Available in PDAP

boolean isDisplayable()

Available in PDAP.

boolean isDoubleBuffered()

Available in PDAP

boolean isEnabled()

Available in PDAP.

boolean isFocusTraversable()

Available in PDAP.

boolean isLightweight()

Available in PDAP

boolean isOpaque()

Available in PDAP.

boolean isShowing()

Available in PDAP

boolean isvalid()

Available in PDAP.

boolean isVisible()

Available in PDAP.

boolean keyDown(Event evt, int key)

Available in PDAP

boolean keyUp(Event evt, int key)

Available in PDAP.

void layout()

Available in PDAP

void list()

Available in PDAP.

void list(PrintStream out)

Available in PDAP

void list(PrintStream out, int indent)

Available in PDAP

void list(PrintWriter out)

Available in PDAP.

void list(PrintWriter out, int indent)

Available in PDAP

Component locate(int x, int y)

Available in PDAP.

Point location()

Available in PDAP

boolean lostFocus(Event evt, Object what)

Available in PDAP.

Dimension minimumSize()

Available in PDAP.

boolean mouseDown(Event evt, int x, int y)

Available in PDAP

286

boolean mouseDrag(Event evt, int x, int y) Available in PDAP.
boolean mouseEnter(Event evt, int x, int y) Available in PDAP.
boolean mouseExit(Event evt, int x, iInt y) Available in PDAP.
boolean mouseMove(Event evt, int x, int y) Available in PDAP.
boolean mouseUp(Event evt, int x, int y) Available in PDAP.
void move(int x, int y) Available in PDAP.
void nextFocus() Available in PDAP.
void paint(Graphics Q@) Available in PDAP.
void paintAll(Graphics g) Available in PDAP.
protected String paramString() Available in PDAP.
boolean postEvent(Event e) Available in PDAP.
Dimension preferredSize() Available in PDAP.
boolean preparelmage (Image image, ImageObserver Available in PDAP.
observer)

boolean preparelmage(lmage image, int width, int Available in PDAP.

height, ImageObserver observer)

void print(Graphics g)

Available in PDAP.

void printAll(Graphics g)

Available in PDAP

protected void processComponentEvent (ComponentEvent

e)

Available in PDAP

Protected void processEvent(AWTEvent e)

Available in PDAP

Protected void processFocuskEvent(FocusEvent e)

Available in PDAP.

protected void processHierarchyBoundsEvent
(HierarchyEvent e)

Not available in PDAP.

protected void processHierarchyEvent (HierarchyEvent

e)

Not available in PDAP.

protected void processlnputMethodEvent
(InputMethodEvent e)

Not available in PDAP.

Protected void processkKeyEvent(KeyEvent e)

Available in PDAP.

Protected void processMouseEvent(MouseEvent e)

Available in PDAP

Protected void processMouseMotionEvent (MouseEvent e)

Available in PDAP.

void remove(MenuComponent popup)

Available in PDAP

void removeComponentListener(ComponentListener 1)

Available in PDAP.

void removeFocusListener(FocusListener 1)

Available in PDAP.

void
removeHierarchyBoundsListener(HierarchyBoundsListener

D

Not available in PDAP.

void removeHierarchyListener(HierarchyListener I) Not available in PDAP.
void removelnputMethodListener(InputMethodListener 1) |Not available in PDAP.
void removeKeyListener(KeyListener 1) Available in PDAP.
void removeMouselListener(MouselListener 1) Available in PDAP.
void removeMouseMotionListener(MouseMotionListener 1) |Available in PDAP.
void removeNotify() Available in PDAP.
void Not available in PDAP.

removePropertyChangelListener(PropertyChangelListener
listener)

void removePropertyChangelListener(String
propertyName, PropertyChangelListener listener)

Not available in PDAP.

void repaint()

Available in PDAP.

void repaint(int x, int y, int width, int height)

Available in PDAP

287

void repaint(long tm)

Available in PDAP.

void repaint(long tm, int x, int y, int width, int
height)

Available in PDAP

void requestFocus()

Available in PDAP

void reshape(int x, int y, int width, int height)

Available in PDAP.

void resize(Dimension d)

Available in PDAP

void resize(int width, int height)

Available in PDAP

void setBackground(Color c)

Available in PDAP.

void setBounds(int x, int y, int width, int height) |Available in PDAP.

void setBounds(Rectangle r)

Available in PDAP.

void setComponentOrientation (ComponentOrientation

0) |Not available in PDAP.

void setCursor(Cursor cursor)

Available in PDAP

void setDropTarget(DropTarget dt)

Not available in PDAP.

void setEnabled(boolean b)

Available in PDAP

void setFont(Font T)

Available in PDAP.

void setForeground(Color c)

Available in PDAP

void setLocale(Locale 1)

Available in PDAP.

void setLocation(int x, int y)

Available in PDAP.

void setLocation(Point p)

Available in PDAP

void setName(String name)

Available in PDAP.

void setSize(Dimension d)

Available in PDAP

void setSize(int width, int height)

Available in PDAP.

void setVisible(boolean b)

Available in PDAP

void show()

Available in PDAP

void show(boolean b)

Available in PDAP.

Dimension size()

Available in PDAP

String toString()

Available in PDAP.

void transferFocus()

Available in PDAP

void update(Graphics g)

Available in PDAP.

void validate()

Available in PDAP.

Container

Table B.14. Methods of the Class Container
Method Alternative/Workaround
Container() Available in PDAP.

Component add(Component comp)

Available in PDAP

Component add(Component comp, int index)

Available in PDAP.

void add(Component comp, Object constraints)

Available in PDAP

void add(Component comp, Object constraints, int
index)

Available in PDAP.

Component add(String name, Component comp)

Available in PDAP.

void addContainerListener(ContainerListener 1)

Available in PDAP.

protected void addImpl(Component comp, Object
constraints, int index)

Available in PDAP

void addNotify()

Not available in PDAP.

int countComponents()

Available in PDAP.

void deliverkEvent(Event e)

Available in PDAP

288

void doLayout()

Available in PDAP.

Component findComponentAt(int x, int y)

Available in PDAP

Component findComponentAt(Point p)

Available in PDAP.

float getAlignmentX()

Available in PDAP.

float getAlignmentY()

Available in PDAP

Component getComponent(int n)

Available in PDAP.

Component getComponentAt(int x, int y)

Available in PDAP

Component getComponentAt(Point p)

Available in PDAP

int getComponentCount()

Available in PDAP.

Component[] getComponents()

Available in PDAP

Insets getlnsets()

Available in PDAP.

LayoutManager getLayout()

Available in PDAP

EventListener[] getListeners(Class listenerType)

Not available in PDAP.

Dimension getMaximumSize()

Available in PDAP.

Dimension getMinimumSize()

Available in PDAP

Dimension getPreferredSize()

Available in PDAP.

Insets insets()

Available in PDAP

void invalidate()

Available in PDAP.

boolean isAncestorOf(Component c)

Available in PDAP.

void layout()

Available in PDAP

void list(PrintStream out, int indent)

Available in PDAP.

void list(PrintWriter out, int indent)

Available in PDAP

Component locate(int x, int y)

Available in PDAP.

Dimension minimumSize()

Available in PDAP

void paint(Graphics g)

Available in PDAP

void paintComponents(Graphics g)

Available in PDAP.

protected String paramString(Q)

Available in PDAP

Dimension preferredSize()

Available in PDAP.

void print(Graphics g)

Available in PDAP

void printComponents(Graphics g)

Available in PDAP.

protected void processContainerEvent
(ContainerEvent e)

Available in PDAP.

protected void processeEvent(AWTEvent e)

Available in PDAP.

void remove(Component comp)

Available in PDAP

void remove(int index)

Available in PDAP.

void removeAll()

Available in PDAP

void removeContainerListener(ContainerListener 1)

Available in PDAP

void removeNotify()

Not available in PDAP.

void setFont(Font T)

Available in PDAP

void setlLayout(LayoutManager mgr)

Available in PDAP.

void update(Graphics @)

Available in PDAP

void validate()

Available in PDAP.

protected void validateTree()

Available in PDAP.

Cursor

Table B.15. Methods of the Class Cursor

Method

Alternative/Workaround

289

Cursor(int type)

Available in PDAP.

protected Cursor(String name)

Not available in PDAP.

protected void finalize()

Available in PDAP.

static Cursor getDefaultCursor()

Available in PDAP.

String getName()

Not available in PDAP.

static Cursor getPredefinedCursor(int type)

Not available in PDAP.

static Cursor getSystemCustomCursor(String name) |Not available in PDAP.

int getType()

Available in PDAP.

String toString()

Not available in PDAP.

Dialog

Table B.16. Methods of the Class Dialog

Method

Alternative/Workaround

Dialog(Dialog owner)

Not available in PDAP.

Dialog(Dialog owner, String title)

Not available in PDAP.

Dialog(Dialog owner, String title, boolean modal) |[Not available in PDAP.

Dialog(Frame owner)

Available in PDAP

Dialog(Frame owner, boolean modal)

Available in PDAP.

Dialog(Frame owner, String title)

Available in PDAP

Dialog(Frame owner, String title, boolean modal) |Available in PDAP.

void addNotify()

Not available in PDAP.

void dispose()

Available in PDAP.

AccessibleContext getAccessibleContext()

Not available in PDAP.

String getTitle()

Available in PDAP

void hide()

Available in PDAP.

boolean isModal ()

Available in PDAP

boolean isResizable()

Available in PDAP.

protected String paramString(Q)

Available in PDAP

void setModal (boolean b)

Available in PDAP

void setResizable(boolean resizable)

Available in PDAP.

void setTitle(String title)

Available in PDAP

void show()

Available in PDAP.

Dimension

Table B.17. Methods of the Class Dimension
Method Alternative/Workaround
Dimension() Available in PDAP.

Dimension(Dimension d)

Available in PDAP.

Dimension(int width, int height)

Available in PDAP.

boolean equals(Object obj)

Available in PDAP.

double getHeight()

Not available in PDAP.

Dimension getSize()

Available in PDAP.

double getWidth()

Not available in PDAP.

int hashCode()

Available in PDAP.

void setSize(Dimension d)

Available in PDAP.

void setSize(double width, double height)

Not available in PDAP.

290

void setSize(int width, int height)

Available in PDAP.

String toString()

Available in PDAP.

FileDialog

Table B.18. Methods of the Class FileDialog

Method

FileDialog(Frame parent)

Available in PDAP.

FileDialog(Frame parent, String title)

Available in PDAP.

FileDialog(Frame parent, String title,

int mode)

Available in PDAP.

void addNotify()

String getDirectory()

Available in PDAP.

String getFile(Q)

Available in PDAP.

FilenameFilter getFilenameFilter()

int getMode()

Available in PDAP.

protected String paramString(Q)

Available in PDAP.

void setDirectory(String dir) Available in PDAP.
void setFile(String file) Available in PDAP.
void setFilenameFilter(FilenameFilter filter) Not available in PDAP.
void setMode(int mode) Available in PDAP.
Font

Table B.19. Methods of the Class Font
Method Alternative/Workaround

Font(Map attributes)

Not available in PDAP.

Font(String name, int style, int size)

Available in PDAP.

boolean canDisplay(char c)

Not available in PDAP.

int canDisplayUpTo (char[] text, int start, int |Notavailablein PDAP.
limit)

int canDisplayUpTo (Characterlterator iter, int |Notavailablein PDAP.
start, int limit)

int canDisplayUpTo(String str)

Not available in PDAP.

static Font createFont (int fontFormat,
InputStream fontStream)

Not available in PDAP.

GlyphVector createGlyphVector
(FontRenderContext frc, char[] chars)

Not available in PDAP.

GlyphVector createGlyphVector
(FontRenderContext frc, Characterlterator ci)

Not available in PDAP.

GlyphVector createGlyphVector
(FontRenderContext frc, int[] glyphCodes)

Not available in PDAP.

GlyphVector createGlyphVector
(FontRenderContext frc, String str)

Not available in PDAP.

static Font decode(String str)

Available in PDAP

Font deriveFont(AffineTransform trans)

Not available in PDAP.

Font deriveFont(float size)

Not available in PDAP.

Font deriveFont(int style)

Not available in PDAP.

Font deriveFont(int style, AffineTransform
trans)

Not available in PDAP.

Font deriveFont(int style, float size)

Not available in PDAP.

TYaZQIﬁfw

Alternative/Workaround

Not available in PDAP.

Not available in PDAP.

Font deriveFont(Map attributes)

Not available in PDAP.

boolean equals(Object obj)

Available in PDAP

protected void finalize()

Not available in PDAP.

Map getAttributes()
AttributedCharacterlterator.Attribute[]

Not available in PDAP.

getAvailableAttributes()

Not available in PDAP.

byte getBaselineFor(char c)

Not available in PDAP.

String getFamily()

Available in PDAP.

String getFamily(Locale I)

Not available in PDAP.

static Font getFont(Map attributes)

Not available in PDAP.

static Font getFont(String nm) Available in PDAP.
static Font getFont(String nm, Font font) Available in PDAP.
String getFontName() Not available in PDAP.

String getFontName(Locale 1)

Not available in PDAP.

float getltalicAngle()

Not available in PDAP.

LineMetrics getLineMetrics(char[] chars, int
beginindex, int limit, FontRenderContext frc)

Not available in PDAP.

LineMetrics getLineMetrics(Characterlterator
ci, int beginlndex, int limit,
FontRenderContext frc)

Not available in PDAP.

LineMetrics getLineMetrics (String str,
FontRenderContext frc)

Not available in PDAP.

LineMetrics getLineMetrics(String str, int
beginindex, int limit, FontRenderContext frc)

Not available in PDAP.

Rectangle2D getMaxCharBounds(FontRenderContext
frc)

Not available in PDAP.

int getMissingGlyphCode()

Not available in PDAP.

String getName()

Available in PDAP

int getNumGlyphs()

Not available in PDAP.

Java.awt.peer.FontPeer getPeer()

Not available in PDAP

(deprecated J2SE method).

String getPSName()

Not available in PDAP.

int getSize()

Available in PDAP.

float getSize2D()

Not available in PDAP.

Rectangle2D getStringBounds(char[] chars, int
beginlndex, int limit, FontRenderContext frc)

Not available in PDAP.

Rectangle2D getStringBounds(Characterlterator
ci, int beginlndex, int limit,
FontRenderContext frc)

Not available in PDAP.

Rectangle2D getStringBounds String str,
FontRenderContext frc)

Not available in PDAP.

Rectangle2D getStringBounds(String str, int
beginlndex, int limit, FontRenderContext frc)

Not available in PDAP.

int getStyle()

Available in PDAP

AffineTransform getTransform()

Not available in PDAP.

int hashCode()

Available in PDAP

boolean hasUniformLineMetrics()

Not available in PDAP.

boolean isBold() Available in PDAP.
boolean isltalic() Available in PDAP.
boolean isPlain() Available in PDAP.

292

]String toString(Q) Not available in PDAP.

FontMetrics

Table B.20. Methods of the Class FontMetrics

Method

Alternative/Workaround

protected FontMetrics(Font font)

Available in PDAP.

int bytesWidth(byte[] data, int off, int len)

Available in PDAP

int charsWidth(char[] data, int off, int len)

Available in PDAP.

int charWidth(char ch)

Available in PDAP

int charWidth(int ch)

Available in PDAP.

int getAscent()

Available in PDAP.

int getDescent()

Available in PDAP

Font getFont()

Available in PDAP.

int getHeight()

Available in PDAP

int getLeading()

Available in PDAP.

LineMetrics getLineMetrics(char[] chars, int
beginlndex, int limit, Graphics context)

Not available in PDAP.

LineMetrics getLineMetrics(Characterlterator ci,
int beginlndex, int limit, Graphics context)

Not available in PDAP.

LineMetrics getLineMetrics (String str, Graphics
context)

Not available in PDAP.

LineMetrics getLineMetrics(String str, int
beginindex, int limit, Graphics context)

Not available in PDAP.

int getMaxAdvance()

Available in PDAP

int getMaxAscent()

Available in PDAP

Rectangle2D getMaxCharBounds(Graphics context)

Not available in PDAP.

int getMaxDecent()

Available in PDAP

int getMaxDescent()

Available in PDAP.

Rectangle2D getStringBounds(char[] chars, int
beginindex, int limit, Graphics context)

Not available in PDAP.

Rectangle2D getStringBounds(Characterlterator ci,
int beginlndex, int limit, Graphics context)

Not available in PDAP.

context)

Rectangle2D getStringBounds (String str, Graphics |Not available in PDAP.

Rectangle2D getStringBounds(String str, int
beginlndex, int limit, Graphics context)

Not available in PDAP.

int[] getWidths(Q

Available in PDAP.

boolean hasUniformLineMetrics()

Not available in PDAP.

int stringWidth(String str)

Available in PDAP.

String toString()

Available in PDAP.

Frame

Table B.21. Methods of the Class Frame
Method Alternative/Workaround
Frame() Available in PDAP.

Frame(GraphicsConfiguration gc)

Available in PDAP.

Frame(String title)

Available in PDAP.

Frame(String title, GraphicsConfiguration gc)

Available in PDAP.

293

void addNotify()

Not available in PDAP.

protected void finalize()

Available in PDAP.

AccessibleContext getAccessibleContext()

Not available in PDAP.

int getCursorType()

Available in PDAP.

static Frame[] getFrames(Q)

Not available in PDAP.

Image getlconlmage()

Available in PDAP.

MenuBar getMenuBar()

Available in PDAP.

int getState()

Available in PDAP.

String getTitle()

Available in PDAP.

boolean isResizable()

Available in PDAP.

protected String paramString(Q)

Available in PDAP.

void remove(MenuComponent m)

Available in PDAP.

void removeNotify()

Not available in PDAP.

void setCursor(int cursorType)

Available in PDAP.

void setlconlmage(Image image)

Available in PDAP.

void setMenuBar(MenuBar mb)

Available in PDAP.

void setResizable(boolean resizable)

Available in PDAP.

void setState(int state)

Available in PDAP.

void setTitle(String title)

Available in PDAP.

Graphics

Table B.22. Methods of the Class Graphics

Method

Alternative/Workaround

protected Graphics()

Available in PDAP

abstract void clearRect(int x, int y, int width,
int height)

Available in PDAP.

abstract void clipRect(int x, int y, int width,
int height)

Available in PDAP.

abstract void copyArea(int x, int y, int width,
int height, int dx, int dy)

Available in PDAP.

Abstract Graphics create()

Available in PDAP

Graphics create(int x, int y, int width, int
height)

Available in PDAP.

abstract void dispose()

Available in PDAP.

void draw3DRect(int x, int y, int width, int
height, boolean raised)

Available in PDAP

abstract void drawArc(int x, int y, int width,
int height, int startAngle, int arcAngle)

Available in PDAP

void drawBytes(byte[] data, int offset, int
length, int x, int y)

Available in PDAP.

void drawChars(char[] data, int offset, int
length, int x, int y)

Available in PDAP.

abstract boolean drawlmage(lmage img, int x, int
y, Color bgcolor, ImageObserver observer)

Available in PDAP.

abstract boolean drawlmage(lmage img, int x, int
y, ImageObserver observer)

Available in PDAP.

abstract boolean drawlmage(lmage img, int x, int
y, int width, int height, Color bgcolor,
ImageObserver observer)

Available in PDAP.

294

abstract boolean drawlmage(lmage img, int x, int
y, int width, int height, ImageObserver observer)

Available in PDAP.

abstract boolean drawlmage(lmage img, int dx1,
int dyl, int dx2, int dy2, int sx1, int syl, int
sx2, int sy2, Color bgcolor, ImageObserver
observer)

Available in PDAP.

abstract boolean drawlmage(Ilmage img, int dx1,
int dyl, int dx2, int dy2, int sxl1, int syl, int
sx2, int sy2, ImageObserver observer)

Available in PDAP

abstract void drawLine(int x1, int yl, int x2,
int y2)

Available in PDAP

abstract void drawOval(int x, int y, int width,
int height)

Available in PDAP

abstract void drawPolygon(int[] xPoints, int[]
yPoints, int nPoints)

Available in PDAP.

void drawPolygon(Polygon p)

Available in PDAP.

abstract void drawPolyline(int[] xPoints, int[]
yPoints, int nPoints)

Available in PDAP

void drawRect(int x, int y, int width, int
height)

Available in PDAP

abstract void drawRoundRect(int x, int y, int
width, int height, int arcWidth, int arcHeight)

Available in PDAP

abstract void drawString
(AttributedCharacterlterator iterator, int x, int

y)

Not available in PDAP.

abstract void drawString(String str, int x, int

Y)

Available in PDAP

void Fill3DRect(int x, int y, int width, int
height, boolean raised)

Available in PDAP.

abstract void FfillArc(int x, int y, int width,
int height, int startAngle, int arcAngle)

Available in PDAP.

abstract void fillOval(int x, int y, int width,
int height)

Available in PDAP.

abstract void FillPolygon(int[] xPoints, int[]
yPoints, int nPoints)

Available in PDAP.

void FillPolygon(Polygon p)

Available in PDAP.

abstract void FfillRect(int x, int y, int width,
int height)

Available in PDAP

abstract void FfillRoundRect(int x, int y, int
width, int height, int arcWidth, int arcHeight)

Available in PDAP.

void Finalize()

Available in PDAP.

abstract Shape getClip(Q)

Available in PDAP

abstract Rectangle getClipBounds()

Available in PDAP.

Rectangle getClipBounds(Rectangle r)

Available in PDAP

Rectangle getClipRect()

Available in PDAP

abstract Color getColor()

Available in PDAP.

abstract Font getFont()

Available in PDAP

FontMetrics getFontMetrics()

Available in PDAP.

abstract FontMetrics getFontMetrics(Font T)

Available in PDAP

boolean hitClip(int x, int y, int width, int
height)

Available in PDAP.

abstract void setClip(int x, int y, int width,
int height)

Available in PDAP

295

abstract void setClip(Shape clip)

Available in PDAP.

abstract void setColor(Color ¢) Available in PDAP.
abstract void setFont(Font font) Available in PDAP.
abstract void setPaintMode() Available in PDAP.
abstract void setXORMode(Color cl) Available in PDAP.

String toString()

Available in PDAP.

abstract void translate(int x, int y)

Available in PDAP

GraphicsConfiguration

Table B.23. Class GraphicsConfiguration

Method

Alternative/Workaround

Protected GraphicsConfiguration()

Available in PDAP

abstract Bufferedlmage createCompatiblelmage (int
width, int height)

Not available in PDAP.

abstract Bufferedlmage createCompatiblelmage (int
width, int height, int transparency)

Not available in PDAP.

abstract Rectangle getBounds()

Available in PDAP.

abstract ColorModel getColorModel ()

Available in PDAP

abstract ColorModel getColorModel (int
transparency)

Not available in PDAP.

abstract AffineTransform getDefaultTransform()

Not available in PDAP.

abstract GraphicsDevice getDevice()

Available in PDAP.

abstract AffineTransform
getNormalizingTransform()

Not available in PDAP.

GraphicsDevice

Table B.24. Class GraphicsDevice

Method

Alternative/Workaround

protected GraphicsDevice()

Available in PDAP.

GraphicsConfiguration getBestConfiguration
(GraphicsConfigTemplate gct)

Not available in PDAP.

abstract GraphicsConfiguration[]
getConfigurations()

Available in PDAP.

abstract GraphicsConfiguration
getDefaultConfiguration()

Available in PDAP.

abstract String getlDstring()

Available in PDAP.

abstract int getType()

Available in PDAP

GraphicsEnvironment

Table B.25. Class GraphicsEnvironment

Method

Alternative/Workaround

Protected GraphicsEnvironment()

Available in PDAP

abstract Graphics2D createGraphics (Bufferedlmage
img)

Not available in PDAP.

abstract Font[] getAllFonts()

Not available in PDAP.

abstract String[] getAvailableFontFamilyNames()

Available in PDAP.

abstract String[] getAvailableFontFamilyNames

Available in PDAP

296

(Locale I)

abstract GraphicsDevice getDefaultScreenDevice()

Available in PDAP.

static GraphicsEnvironment
getLocalGraphicsEnvironment()

Available in PDAP.

abstract GraphicsDevice[] getScreenDevices()

Available in PDAP.

GridBagConstraints

Table B.26. Methods of the Class GridBagConstraints

Method

Alternative/Workaround

GridBagConstraints()

Available in PDAP.

GridBagConstraints(int gridx, int gridy, int
gridwidth, int gridheight, double weightx, double
weighty, int anchor, int fill, Insets insets, int
ipadx, Int ipady)

Not available in PDAP.

Object clone()

Not available in PDAP.

GridBaglLayout

Table B.27. Methods of the Class GridBagLayout
Method Alternative/Workaround
GridBagLayout() Available in PDAP.

void addLayoutComponent (Component comp, Object
constraints)

Available in PDAP

void addLayoutComponent (String name, Component
comp)

Available in PDAP.

protected void AdjustForGravity
(GridBagConstraints constraints, Rectangle r)

Available in PDAP.

protected void ArrangeGrid(Container parent)

Available in PDAP.

GridBagConstraints getConstraints (Component
comp)

Available in PDAP

float getLayoutAlignmentX(Container parent)

Available in PDAP

float getlLayoutAlignmentY(Container parent)

Available in PDAP.

int[][] getLayoutDimensions()

Available in PDAP.

protected ava.awt.GridBaglLayoutlnfo
GetLayoutlnfo(Container parent, int sizeflag)

Not available in PDAP.

Point getLayoutOrigin()

Available in PDAP

double[][] getLayoutWeights()

Available in PDAP.

protected Dimension GetMinSize (Container parent,
Java.awt.GridBagLayoutInfo info)

Not available in PDAP.

void invalidateLayout(Container target)

Available in PDAP.

void layoutContainer(Container parent)

Available in PDAP

Point location(int x, int y)

Available in PDAP.

protected GridBagConstraints lookupConstraints
(Component comp)

Available in PDAP

Dimension maximumLayoutSize(Container target)

Available in PDAP

Dimension

minimumLayoutSize(Container parent)

Available in PDAP.

Dimension preferredLayoutSize(Container parent)

Available in PDAP

void removelLayoutComponent(Component comp)

Available in PDAP.

297

void setConstraints(Component comp,
GridBagConstraints constraints)

Available in PDAP.

String toString()

Available in PDAP.

Insets

Table B.28. Methods of the Class Insets

Method

Insets(int top, int left, int bottom, int right) |Availablein PDAP.

Object clone()

Not available in PDAP.

boolean equals(Object obj)

Available in PDAP.

int hashCode()

Available in PDAP.

String toString()

Available in PDAP.

Label

Table B.29. Methods of the Class Label
Method Alternative/Workaround
Label Available in PDAP.

Label (String text)

Available in PDAP.

Label (String text, int alignment)

Available in PDAP

void addNotify()

Not available in PDAP.

AccessibleContext getAccessibleContext()

Not available in PDAP.

int getAlignment()

Available in PDAP.

String getText()

Available in PDAP.

protected String paramString(Q)

Available in PDAP

void setAlignment(int alignment)

Available in PDAP.

void setText(String text)

Available in PDAP

List

Table B.30. Methods of the Class List
Method Alternative/Workaround
ListQO) Available in PDAP.

List(int rows)

Available in PDAP.

List(int rows, Boolean multipleMode)

Available in PDAP.

void add(String item)

Available in PDAP.

void add(String item, int index)

Available in PDAP.

void addActionListener(ActionListener 1)

Available in PDAP.

void addltem(String item)

Available in PDAP.

void addlitem(String item, int index)

Available in PDAP.

void addltemListener(ltemListener 1)

Available in PDAP.

void addNotify()

Not available in PDAP.

boolean allowsMultipleSelections()

Available in PDAP.

void clear()

Available in PDAP.

int countltems()

Available in PDAP.

void delltem(int position)

Available in PDAP.

void delltems(int start, int end)

Available in PDAP.

298

Alternative/Workaround

void deselect(int index)

Available in PDAP.

AccessibleContext getAccessibleContext()

Not available in PDAP.

String getltem(int index)

Available in PDAP.

int getltemCount()

Available in PDAP.

String[] getltems()

Available in PDAP.

EventListener[] getListeners(Class listenerType)

Not available in PDAP.

Dimension getMinimumSize() Available in PDAP.
Dimension getMinimumSize(int rows) Available in PDAP.
Dimension getPreferredSize() Available in PDAP.
Dimension getPreferredSize(int rows) Available in PDAP.

int getRows()

Available in PDAP.

int getSelectedindex()

Available in PDAP.

int[] getSelectedlndexes()

Available in PDAP.

String getSelectedltem()

Available in PDAP.

String[] getSelectedltems()

Available in PDAP.

Object[] getSelectedObjects()

Available in PDAP.

int getVisiblelndex()

Available in PDAP.

boolean islndexSelected(int index)

Available in PDAP.

boolean isMultipleMode()

Available in PDAP.

boolean isSelected(int index)

Available in PDAP.

void makeVisible(int index)

Available in PDAP.

Dimension minimumSize()

Available in PDAP.

Dimension minimumSize(int rows) Available in PDAP.
protected String paramString() Available in PDAP.
Dimension preferredSize() Available in PDAP.
Dimension preferredSize(int rows) Available in PDAP.
protected void processActionEvent(ActionEvent e) |Available in PDAP.
protected void processEvent(AWTEvent e) Available in PDAP.

protected void processltemEvent(ltemEvent e)

Available in PDAP.

void remove(int position)

Available in PDAP.

void remove(String item) Available in PDAP.
void removeActionListener(ActionListener 1) Available in PDAP.
void removeAll() Available in PDAP.
void removeltemListener(ltemListener 1) Available in PDAP.
void removeNotify() Not available in PDAP.
void replaceltem(String newValue, int index) Available in PDAP.

void select(int index)

Available in PDAP.

void setMultipleMode(boolean b)

Available in PDAP.

void setMultipleSelections(boolean b) Available in PDAP.
Menu

Table B.31. Methods of the Class Menu
Method Alternative/Workaround
Menu(Q) Available in PDAP.

Menu(String label)

Available in PDAP.

Menu(String label, Boolean tearOff)

Available in PDAP.

Menultem add(Menultem mi)

Available in PDAP.

299

void add(String label)

Available in PDAP.

void addNotify()

Not available in PDAP.

void addSeparator()

Available in PDAP.

int countltems()

Available in PDAP.

AccessibleContext getAccessibleContext() Not available in PDAP.

Menultem getltem(int index)

Available in PDAP.

int getltemCount()

Available in PDAP.

void insert(Menultem menuitem,

int index) Available in PDAP.

void insert(String label, int index)

Available in PDAP.

void insertSeparator(int index)

Available in PDAP.

boolean isTearOff()

Available in PDAP.

String paramString()

Available in PDAP.

void remove(int index)

Available in PDAP.

void remove(MenuComponent item)

Available in PDAP.

void removeAll()

Available in PDAP.

void removeNotify()

Not available in PDAP.

MenuBar

Table B.32. Methods of the Class MenuBar
Method Alternative/Workaround
MenuBar () Available in PDAP.

Menu add(Menu m)

Available in PDAP.

void addNotify()

Not available in PDAP.

int countMenus()

Available in PDAP.

void deleteShortcut(MenuShortcut s)

Available in PDAP.

AccessibleContext getAccessibleContext() Not available in PDAP.

Menu getHelpMenu()

Available in PDAP.

Menu getMenu(int i)

Available in PDAP.

int getMenuCount()

Available in PDAP.

Menultem getShortcutMenultem(MenuShortcut s) Available in PDAP.

void remove(int index)

Available in PDAP.

void remove(MenuComponent m)

Available in PDAP.

void removeNotify()

Not available in PDAP.

void setHelpMenu(Menu m)

Available in PDAP.

Enumeration shortcuts()

Available in PDAP.

MenuComponent

Table B.33. Methods of the Class MenuComponent
Method Alternative/Workaround
MenuComponent() Available in PDAP.
void dispatchEvent(AWTEvent e) Available in PDAP.
AccessibleContext Not available in PDAP.

getAccessibleContext()

Font getFont()

Available in PDAP.

String getName()

Available in PDAP.

MenuContainer getParent()

Available in PDAP.

300

Java.awt.peer .MenuComponentPeer

getPeer() Not available in PDAP (deprecated J2SE

method).

protected Object Object getTreelLock() |Available in PDAP.

protected String paramString() Available in PDAP.

boolean postEvent(Event evt) Available in PDAP.

protected void processEvent(AWTEvent |Available in PDAP.
e)

void removeNotify() Not available in PDAP.

void setFont(Font f) Available in PDAP.

void setName(String name) Available in PDAP.

String toString() Available in PDAP.

Menultem

Table B.34. Methods of the Class Menultem
Method Alternative/Workaround
Menultem() Available in PDAP.

Menultem(String label) Available in PDAP.

Menultem(String label, MenuShortcut s) Available in PDAP.

void addActionListener(ActionListener 1) Available in PDAP.

void addNotify() Not available in PDAP.

void deleteShortcut() Available in PDAP.

void disable() Available in PDAP.

protected void disableEvents (long Available in PDAP.

eventsToDisable)

void enable() Available in PDAP.

void enable(boolean b) Available in PDAP.

protected void enableEvents(long eventsToEnable) |Available in PDAP.

AccessibleContext getAccessibleContext() Not available in PDAP.

String getActionCommand() Available in PDAP.

String getLabel () Available in PDAP.

EventListener[] getListeners(Class listenerType) |Not available in PDAP.

MenuShortcut getShortcut() Available in PDAP.

boolean isEnabled() Available in PDAP.

String paramString() Available in PDAP.

protected void processActionEvent(ActionEvent e)

Available in PDAP.

protected void processeEvent(AWTEvent e)

Available in PDAP.

void removeActionListener(ActionListener 1)

Available in PDAP.

void setActionCommand(String command)

Available in PDAP.

void setEnabled(boolean b)

Available in PDAP.

void setLabel (String label)

Available in PDAP.

void setShortcut(MenuShortcut s)

Available in PDAP.

Panel

Table B.35. Methods of the Class Panel

IMethod |AIternativeNVorkaround

Tea30F [y v

Panel ()

Available in PDAP.

Panel (LayoutManager layout)

Available in PDAP

void addNotify()

Not available in PDAP.

AccessibleContext getAccessibleContext()

Not available in PDAP.

Point

Table B.36. Methods of the Class Point
Method Alternative/Workaround
Point() Available in PDAP.

Point(int x, int y)

Available in PDAP.

Point(Point p)

Available in PDAP.

Boolean equals(Object obj)

Available in PDAP

Point getLocation()

Available in PDAP.

double getX()

Not available in PDAP.

double getY()

Not available in PDAP.

void move(int x, int y)

Available in PDAP

void setlLocation(double x, double y)

Not available in PDAP.

void setLocation(int x, int y)

Not available in PDAP.

void setLocation(Point p)

Available in PDAP

String toString()

Available in PDAP.

void translate(int x, int vy

Available in PDAP

Polygon

Table B.37. Methods of the Class Polygon
Method Alternative/Workaround
Polygon(Q) Available in PDAP.

Polygon (int[] xpoints, int[] ypoints, int
npoints)

Available in PDAP.

void addPoint(int x, int y)

Available in PDAP

boolean contains(double x, double y)

Not available in PDAP.

boolean contains (double x, double y, double w,

double h)

Not available in PDAP.

boolean contains(int x, int y)

Available in PDAP

boolean contains(Point p)

Available in PDAP.

boolean contains(Point2D p)

Not available in PDAP.

boolean contains(Rectangle2D r)

Not available in PDAP.

Rectangle getBoundingBox()

Available in PDAP.

Rectangle getBounds()

Available in PDAP

Rectangle2D getBounds2D()

Not available in PDAP.

Pathlterator getPathlterator(AffineTransform at)

Not available in PDAP.

Pathlterator getPathlterator (AffineTransform at,

double flatness)

Not available in PDAP.

boolean inside(int x, int y)

Available in PDAP

boolean intersects (double x, double y, double w,

double h)

Not available in PDAP.

boolean intersects(Rectangle2D r)

Not available in PDAP.

void translate(int deltaX, int deltaY)

Available in PDAP.

302

PopupMenu

Table B.38. Methods of the Class PopupMenu

Method

Alternative/Workaround

PopupMenu()

Available in PDAP.

PopupMenu(String label)

Available in PDAP.

void addNotify()

Not available in PDAP.

AccessibleContext getAccessibleContext()

Not available in PDAP.

void show(Component origin, int x, int y)

Available in PDAP.

Rectangle

Table B.39. Methods of the Class Rectangle
Method Alternative/Workaround
Rectangle() Available in PDAP.

Rectangle(Dimension d)

Available in PDAP

Rectangle(int width, int height)

Available in PDAP

Rectangle(int x, int y, int width, int height)

Available in PDAP.

Rectangle(Point p)

Available in PDAP

Rectangle(Point p, Dimension d)

Available in PDAP.

Rectangle(Rectangle r)

Available in PDAP

void add(int newx, int newy)

Available in PDAP

void add(Point pt)

Available in PDAP.

void add(Rectangle r)

Available in PDAP

boolean contains(int x, int y)

Available in PDAP.

boolean contains(int X, int Y, int W, int H)

Available in PDAP

boolean contains(Point p)

Available in PDAP.

boolean contains(Rectangle r)

Available in PDAP.

Rectangle2D createlntersection(Rectangle2D r)

Not available in PDAP.

Rectangle2D createUnion(Rectangle2D r)

Not available in PDAP.

boolean equals(Object obj)

Available in PDAP

Rectangle getBounds()

Available in PDAP.

Rectangle2D getBounds2D()

Not available in PDAP.

double getHeight()

Not available in PDAP.

Point getLocation()

Available in PDAP.

Dimension getSize()

Available in PDAP

double getWidth()

Not available in PDAP.

double getX()

Not available in PDAP.

double getY()

Not available in PDAP.

void grow(int h, int v)

Available in PDAP.

boolean inside(int x, int y)

Available in PDAP

Rectangle intersection(Rectangle r)

Available in PDAP.

boolean intersects(Rectangle r)

Available in PDAP

boolean isEmpty()

Available in PDAP.

void move(int x, int y)

Available in PDAP.

int outcode(double x, double y)

Not available in PDAP.

void reshape(int x, int y, int width, int height) |[Available in PDAP.

void resize(int width, int height)

Available in PDAP

303

void setBounds(int x, int y, int width, int Available in PDAP.
height)

void setBounds(Rectangle r) Available in PDAP.
void setLocation(int x, int y) Available in PDAP.

void setLocation(Point p)

Available in PDAP.

void setRect(double x, double y, double width,
double height)

Not available in PDAP.

void setSize(Dimension d)

Available in PDAP.

void setSize(int width, int height)

Available in PDAP

String toString()

Available in PDAP.

void translate(int x, int y)

Available in PDAP

Rectangle union(Rectangle r)

Available in PDAP.

Scrollbar

Table B.40. Methods of the Class Scrol lbar

Method

Alternative/Workaround

Scrollbar()

Available in PDAP.

Scrollbar(int orientation)

Available in PDAP

Scrollbar(int orientation, int value, int

visible, int minimum, int maximum)

Available in PDAP

void addAdjustmentListener(AdjustmentListener 1)

Available in PDAP

void addNotify()

Not available in PDAP.

AccessibleContext getAccessibleContext()

Not available in PDAP.

int getBlocklIncrement()

Available in PDAP.

int getLinelncrement()

Available in PDAP.

EventListener[] getListeners(Class listenerType)

Not available in PDAP.

int getMaximum()

Available in PDAP.

int getMinimum(Q)

Available in PDAP

int getOrientation()

Available in PDAP.

int getPagelncrement()

Available in PDAP

int getUnitlincrement()

Available in PDAP

int getvValue()

Available in PDAP.

int getVisible()

Available in PDAP

int getVisibleAmount()

Not available in PDAP.

protected String paramString(Q)

Available in PDAP

protected void processAdjustmentEvent
(AdjustmentEvent e)

Available in PDAP.

protected void processeEvent(AWTEvent e)

Available in PDAP

void removeAdjustmentListener(AdjustmentListener

D

Available in PDAP.

void setBlockIncrement(int v)

Available in PDAP.

void setLinelncrement(int v)

Available in PDAP

void setMaximum(int newMaximum)

Available in PDAP.

void setMinimum(int newMinimum)

Available in PDAP.

void setOrientation(int orientation)

Available in PDAP

void setPagelncrement(int v)

Available in PDAP.

void setUnitlncrement(int v)

Available in PDAP

void setValue(int newValue)

Available in PDAP.

304

void setValues(int value, int visible, int

minimum, Int maximum)

Available in PDAP.

void setVisibleAmount(int newAmount)

Available in PDAP.

Scrol IPane

Table B.41. Methods of the Class Scrol IPane

Method

Alternative/Workaround

ScrollPane()

Available in PDAP.

ScrollPane(int scrollbarDisplayPolicy)

Available in PDAP

protected void addImpl (Component comp, Object
constraints, int index)

Available in PDAP.

void addNotify()

Not available in PDAP.

void doLayout()

Available in PDAP.

AccessibleContext getAccessibleContext()

Not available in PDAP.

Adjustable getHAdjustable()

Available in PDAP.

int getHScrollbarHeight()

Available in PDAP

int getScrollbarDisplayPolicy()

Available in PDAP.

Point getScrollPosition()

Available in PDAP

Adjustable getVAdjustable()

Available in PDAP

Dimension getViewportSize()

Available in PDAP.

int getVScrollbarWidth()

Available in PDAP

void layout()

Available in PDAP.

String paramString()

Available in PDAP

void printComponents(Graphics Q)

Available in PDAP

void setLayout(LayoutManager mgr)

Available in PDAP.

void setScrollPosition(int x, int y)

Available in PDAP.

void setScrollPosition(Point p)

Available in PDAP

SystemColor

Table B.42. Methods of the Class SystemColor

Method

Alternative/Workaround

PaintContext createContext(ColorModel cm,
Rectangle r, Rectangle2D r2d, AffineTransform
xform, RenderingHints hints)

Not available in PDAP.

int getRGB()

Available in PDAP.

String toString()

Available in PDAP.

TextArea

Table B.43. Methods of the Class TextArea
Method Alternative/Workaround
TextArea() Available in PDAP.

TextArea(int rows, int columns)

Available in PDAP

TextArea(String text)

Available in PDAP.

TextArea(String text, int rows, int columns)

Available in PDAP

TextArea(String text, int

scrollbars)

int rows, int columns,

Available in PDAP.

305

void addNotify()

Not available in PDAP.

void append(String str)

Available in PDAP

void appendText(String str)

Available in PDAP.

AccessibleContext getAccessibleContext()

Not available in PDAP.

int getColumns()

Available in PDAP.

Dimension getMinimumSize()

Available in PDAP.

Dimension getMinimumSize(int rows, int columns)

Available in PDAP

Dimension getPreferredSize()

Available in PDAP.

Dimension getPreferredSize(int rows, int columns)

Available in PDAP

int getRows()

Available in PDAP.

int getScrollbarVisibility()

Available in PDAP

void insert(String str, int pos)

Available in PDAP

void insertText(String str, iInt pos)

Available in PDAP.

Dimension minimumSize()

Available in PDAP

Dimension minimumSize(int rows, int columns)

Available in PDAP.

protected String paramString(Q)

Available in PDAP

Dimension preferredSize()

Available in PDAP

Dimension preferredSize(int rows, int columns)

Available in PDAP.

void replaceRange(String str, int start, int end)

Available in PDAP

void replaceText(String str, int start, int end)

Available in PDAP.

void setColumns(int columns)

Available in PDAP

void setRows(int rows)

Available in PDAP.

TextComponent

Table B.44. Methods of the Class TextComponent

Method

Alternative/Workaround

void addNotify()

Not available in PDAP.

void addTextListener(TextListener 1)

Available in PDAP.

void enablelnputMethods(boolean enable)

Not available in PDAP.

AccessibleContext getAccessibleContext()

Not available in PDAP.

Color getBackground()

Not available in PDAP.

int getCaretPosition()

Available in PDAP.

EventListener[] getListeners(Class listenerType)

Not available in PDAP.

String getSelectedText()

Available in PDAP

int getSelectionEnd()

Available in PDAP.

int getSelectionStart()

Available in PDAP

String getText()

Available in PDAP.

boolean isEditable()

Available in PDAP

protected String paramString(Q)

Available in PDAP.

protected void processeEvent(AWTEvent e)

Available in PDAP.

protected void processTextEvent(TextEvent e)

Available in PDAP

void removeNotify()

Not available in PDAP.

void removeTextListener(TextListener 1)

Available in PDAP

void select(int selectionStart, int selectionEnd)

Available in PDAP.

void selectAll()

Available in PDAP

void setBackground(Color c)

Not available in PDAP.

void setCaretPosition(int position)

Available in PDAP.

306

setEditable(boolean b)

Available in PDAP.

setSelectionEnd(int selectionEnd)

Available in PDAP.

setSelectionStart(int selectionStart)

Available in PDAP.

void setText(String t) Available in PDAP.
TextField

Table B.45. Methods of the Class TextField
Method Alternative/Workaround
TextField() Available in PDAP.

TextField(int columns)

Available in PDAP.

TextField(String text)

Available in PDAP.

TextField(String text, int columns)

Available in PDAP.

void addActionListener(ActionListener 1)

Available in PDAP.

void addNotify()

Available in PDAP.

boolean echoCharlsSet()

Available in PDAP.

AccessibleContext getAccessibleContext()

Not available in PDAP.

int getColumns()

Available in PDAP.

char getEchoChar()

Available in PDAP.

EventListener[] getListeners(Class listenerType)

Not available in PDAP.

Dimension getMinimumSize() Available in PDAP.
Dimension getMinimumSize(int columns) Available in PDAP.
Dimension getPreferredSize() Available in PDAP.
Dimension getPreferredSize(int columns) Available in PDAP.
Dimension minimumSize() Available in PDAP.
Dimension minimumSize(int columns) Available in PDAP.
protected String paramString() Available in PDAP.
Dimension preferredSize() Available in PDAP.
Dimension preferredSize(int columns) Available in PDAP.
protected void processActionEvent(ActionEvent e) |Available in PDAP.

protected void processeEvent(AWTEvent e)

Available in PDAP.

void removeActionListener(ActionListener 1)

Available in PDAP.

void setColumns(int columns) Available in PDAP.
void setEchoChar(char c) Available in PDAP.
void setEchoCharacter(char c) Available in PDAP.

void setText(String t) Not available in PDAP.
Toolkit

Table B.46. Methods of the Class Toolkit
Method Alternative/Workaround
Toolkit() Available in PDAP.

void addAWTEventListener (AWTEventListener
listener, long eventMask)

Available in PDAP

void addPropertyChangelListener(String name,
PropertyChangeListener pcl)

Not available in PDAP.

abstract void beep()

Available in PDAP

abstract int checklmage(lmage image, int width,

Available in PDAP.

307

int height, ImageObserver observer)

protected abstract java.awt.peer.ButtonPeer
createButton(Button target)

Not available in PDAP.

protected abstract java.awt.peer.CanvasPeer
createCanvas(Canvas target)

Not available in PDAP.

protected abstract java.awt.peer.CheckboxPeer
createCheckbox(Checkbox target)

Not available in PDAP.

protected abstract java.awt.peer.
CheckboxMenultemPeer createCheckboxMenultem
(CheckboxMenultem target)

Not available in PDAP.

protected abstract java.awt.peer.ChoicePeer
createChoice(Choice target)

Not available in PDAP.

protected java.awt.peer.LightweightPeer
createComponent(Component target)

Not available in PDAP.

Cursor createCustomCursor (Image cursor, Point
hotSpot, String name)

Not available in PDAP.

DragGestureRecognizer createDragGestureRecognizer
(Class abstractRecognizerClass, DragSource ds,
Component c, int srcActions, DragGestureListener

dgl)

Not available in PDAP.

abstract java.awt.dnd.peer.DragSourceContextPeer
createDragSourceContextPeer(DragGestureEvent dge)

Not available in PDAP.

protected abstract java.awt.peer.FileDialogPeer
createFileDialog(FileDialog target)

Not available in PDAP.

protected abstract java.awt.peer.FramePeer
createFrame(Frame target)

Not available in PDAP.

Image createlmage(byte[] imagedata)

Available in PDAP

abstract Image createlmage(byte[] imagedata, int

imageoffset, int imagelength)

Available in PDAP

abstract Image createlmage(ImageProducer
producer)

Available in PDAP

abstract Image createlmage(String filename)

Available in PDAP

abstract Image createlmage(URL url)

Available in PDAP.

protected abstract java.awt.peer.LabelPeer
createlLabel (Label target)

Not available in PDAP.

protected abstract java.awt.peer.ListPeer
createList(List target)

Not available in PDAP.

protected abstract java.awt.peer._MenuPeer
createMenu(Menu target)

Not available in PDAP.

protected abstract java.awt.peer._MenuBarPeer
createMenuBar (MenuBar target)

Not available in PDAP.

protected abstract java.awt.peer_MenultemPeer
createMenultem(Menultem target)

Not available in PDAP.

protected abstract java.awt.peer.PanelPeer
createPanel (Panel target)

Not available in PDAP.

protected abstract java.awt.peer.PopupMenuPeer
createPopupMenu(PopupMenu target)

Not available in PDAP.

protected abstract java.awt.peer.ScrollbarPeer
createScrollbar(Scrollbar target)

Not available in PDAP.

protected abstract java.awt.peer.ScrollPanePeer
createScrollIPane(ScrollPane target)

Not available in PDAP.

protected abstract java.awt.peer.TextAreaPeer
createTextArea(TextArea target)

Not available in PDAP.

308

protected abstract java.awt.peer.TextFieldPeer
createTextField(TextField target)

Not available in PDAP.

protected abstract java.awt.peer._WindowPeer
createWindow(Window target)

Not available in PDAP.

Dimension getBestCursorSize(int preferredWidth,
int preferredHeight)

Not available in PDAP.

abstract ColorModel getColorModel ()

Available in PDAP.

static Toolkit getDefaultToolkit()

Available in PDAP.

Object getDesktopProperty(String propertyName)

Not available in PDAP.

abstract String[] getFontList()

Available in PDAP.

abstract FontMetrics getFontMetrics(Font font)

Available in PDAP

protected abstract java.awt.peer.FontPeer
getFontPeer(String name, int style)

Not available in PDAP.

abstract Image getlmage(String filename)

Available in PDAP.

abstract Image getlmage(URL url)

Not available in PDAP.

boolean getLockingKeyState(int keyCode)

Not available in PDAP.

int getMaximumCursorColors()

Not available in PDAP.

int getMenuShortcutKeyMask()

Available in PDAP

protected static Container getNativeContainer
(Component c¢)

Not available in PDAP.

PrintJob getPrintJob(Frame frame, String
jobtitle, JobAttributes jobAttributes,
PageAttributes pageAttributes)

Not available in PDAP.

abstract PrintJob getPrintJob(Frame frame, String
jobtitle, Properties props)

Not available in PDAP.

static String getProperty (String key, String
defaultValue)

Available in PDAP.

abstract int getScreenResolution()

Available in PDAP

abstract Dimension getScreenSize()

Available in PDAP.

abstract Clipboard getSystemClipboard()

Not available in PDAP.

EventQueue getSystemEventQueue()

Available in PDAP.

protected abstract EventQueue
getSystemEventQueuelmpl ()

Available in PDAP

protected void initializeDesktopProperties()

Not available in PDAP.

protected Object lazilyLoadDesktopProperty
(String name)

Not available in PDAP.

protected void loadSystemColors(int[]
systemColors)

Available in PDAP

abstract Map maplnputMethodHighlight
(InputMethodHighlight highlight)

Not available in PDAP.

abstract boolean preparelmage(lmage image, int

width, int height, ImageObserver observer)

Available in PDAP

void removeAWTEventListener (AWTEventListener
listener)

Available in PDAP.

void removePropertyChangelListener(String name,
PropertyChangeListener pcl)

Not available in PDAP.

protected void setDesktopProperty(String name,
Object newValue)

Not available in PDAP.

void setLockingKeyState(int keyCode, boolean on)

Not available in PDAP.

abstract void sync()

Available in PDAP

Window

309

Table B.47. Methods of the Class Window

Method

Alternative/Workaround

Window()

Not available in PDAP.

Window(Frame owner)

Available in PDAP.

Window(Window owner)

Available in PDAP.

Window(Window owner, GraphicsConfiguration gc)

Available in PDAP.

void addNotify()

Not available in PDAP.

void addWindowListener(WindowListener 1)

Available in PDAP.

void applyResourceBundle(ResourceBundle rb)

Not available in PDAP.

void applyResourceBundle(String rbName)

Not available in PDAP.

void dispose()

Available in PDAP.

protected void finalize()

Not available in PDAP.

AccessibleContext getAccessibleContext()

Not available in PDAP.

Component getFocusOwner ()

Available in PDAP.

GraphicsConfiguration getGraphicsConfiguration()

Not available in PDAP.

InputContext getlnputContext()

Not available in PDAP.

EventListener[] getListeners(Class listenerType)

Not available in PDAP.

Locale getLocale()

Available in PDAP.

Window[] getOwnedWindows()

Not available in PDAP.

Window getOwner()

Not available in PDAP.

Toolkit getToolkit()

Available in PDAP.

String getWarningString()

Available in PDAP.

void hide()

Not available in PDAP.

boolean isShowing()

Available in PDAP.

void pack()

Available in PDAP.

boolean postEvent(Event e)

Available in PDAP.

protected void processeEvent(AWTEvent e)

Available in PDAP.

protected void processWindowEvent(WindowEvent e)

Available in PDAP.

void removeWindowListener(WindowListener 1)

Available in PDAP.

void setCursor(Cursor cursor)

Available in PDAP.

void show()

Available in PDAP.

void toBack()

Available in PDAP.

void toFront()

Available in PDAP.

310

java.awt.event

Table B.48. Interfaces of the java.awt.event Package

J2SE Interface

Availability in PDAP

ActionListener Available in PDAP.
AdjustmentListener Available in PDAP.
AWTEventListener Available in PDAP.
ComponentListener Available in PDAP.
ContainerListener Available in PDAP.
FocusListener Available in PDAP.
HierarchyBoundsListener Not available in PDAP.
HierarchyListener Not available in PDAP.
InputMethodListener Not available in PDAP.
ItemListener Available in PDAP.
KeyListener Available in PDAP.
MouseListener Available in PDAP.
MouseMotionListener Available in PDAP.
TextListener Available in PDAP.
WindowListener Available in PDAP.

Table B.49. Classes of the java.awt.event Package

J2SE Interface

Availability in PDAP

ActionEvent All J2SE methods are available in PDAP.
AdjustmentEvent All J2SE methods are available in PDAP.
ComponentAdapter All J2SE methods are available in PDAP.
ComponentEvent All J2SE methods are available in PDAP.
ContainerAdapter All J22SE methods are available in PDAP.
ContainerEvent All J2SE methods are available in PDAP.
FocusAdapter All J2SE methods are available in PDAP.
FocusEvent All J2SE methods are available in PDAP.
HierarchyBoundsAdapter Not available in PDAP.

HierarchyEvent Not available in PDAP.

InputEvent All J2SE methods are available in PDAP.
InputMethodEvent Not available in PDAP.

InvocationEvent All J2SE methods are available in PDAP.
ItemEvent All J2SE methods are available in PDAP.
KeyAdapter All J2SE methods are available in PDAP.
KeyEvent All J2SE methods are available in PDAP.
MouseAdapter All J2SE methods are available in PDAP.
MouseEvent All J2SE methods are available in PDAP.
MouseMotionAdapter All J2SE methods are available in PDAP.
PaintEvent All J2SE methods are available in PDAP.
TextEvent All J2SE methods are available in PDAP.
WindowAdapter All J2SE methods are available in PDAP.
WindowEvent All J2SE methods are available in PDAP.

Tea3d¥ lij v

java.awt.image

Table B.50. Interfaces of the java.awt. image Package

J2SE Interface

Availability in PDAP

BufferedlImageOp Not available in PDAP.
ImageConsumer All J2SE methods are available.
ImageObserver All J2SE methods are available.
ImageProducer All J2SE methods are available.
RasterOp Not available in PDAP.
RenderedlImage Not available in PDAP.

TileObserver

Not available in PDAP.

WritableRenderedlImage

Not available in PDAP.

Table B.51. Classes of the java.awt. image Package

J2SE Class Availability in PDAP

AffineTransformOp Not available in PDAP.
AreaAveragingScaleFilter All J2SE methods are available.
BandCombineOp Not available in PDAP.
BandedSampleModel Not available in PDAP.

Bufferedlmage Not available in PDAP.
BufferedlImageFilter Not available in PDAP.

ByteLookupTable Not available in PDAP.

ColorConvertOp Not available in PDAP.

ColorModel Partially contained; see Table B.53 for details.

ComponentColorModel

Not available in PDAP.

ComponentSampleModel

Not available in PDAP.

ConvolveOp Not available in PDAP.
CroplmageFilter All J2SE methods are available.
DataBuffer Not available in PDAP.
DataBufferByte Not available in PDAP.
DataBufferint Not available in PDAP.
DataBufferShort Not available in PDAP.
DataBufferUShort Not available in PDAP.

DirectColorModel

Partially contained; see Table B.54 for details.

FilteredImageSource

All J2SE methods are available.

ImageFilter

Partially contained; see Table B.55 for details.

IndexColorModel Partially contained; see Table B.56 for details.
Kernel Not available in PDAP.

LookupOp Not available in PDAP.

LookupTable Not available in PDAP.
MemoryImageSource All J2SE methods are available.
MultiPixelPackedSampleModel Not available in PDAP.

PackedColorModel Not available in PDAP.

PixelGrabber All J2SE methods are available.

PixelInterleavedSampleModel

Not available in PDAP.

Raster

Not available in PDAP.

ReplicateScaleFilter

All J2SE methods are available.

312

RescaleOp Not available in PDAP.

RGBImageFilter

All J2SE methods are available.

SampleModel Not available in PDAP.
ShortLookupTable Not available in PDAP.
SinglePixelPackedSampleModel Not available in PDAP.
WritableRaster Not available in PDAP.

Table B.52. Exceptions of the java.awt. image Package

J2SE Exception

Availability in PDAP

ImagingOpException

Not available in PDAP.

RasterFormatException

Not available in PDAP.

ColorModel

Table B.53. Methods of the Class ColorModel

Method

Alternative/Workaround

ColorModel (int bits)

Available in PDAP.

protected ColorModel(int pixel_bits, int[] bits,
ColorSpace cspace, boolean hasAlpha, boolean
isAlphaPremultiplied, int transparency, int
transferType)

Not available in PDAP.

ColorModel coerceData(WritableRaster raster,
boolean isAlphaPremultiplied)

Not available in PDAP.

SampleModel createCompatibleSampleModel (int w,
int h)

Not available in PDAP.

WritableRaster createCompatibleWritableRaster
(int w, int h)

Not available in PDAP.

boolean equals(Object obj)

Available in PDAP.

void finalize()

Available in PDAP

abstract int getAlpha(int pixel)

Available in PDAP.

int getAlpha(Object inData)

Not available in PDAP.

WritableRaster getAlphaRaster(WritableRaster
raster)

Not available in PDAP.

abstract int getBlue(int pixel)

Available in PDAP.

int getBlue(Object inData)

Not available in PDAP.

ColorSpace getColorSpace()

Not available in PDAP.

int[] getComponents(int pixel,
int offset)

int[] components,

Not available in PDAP.

int[] getComponents(Object pixel,
components, int offset)

int[]

Not available in PDAP.

int[] getComponentSize()

Not available in PDAP.

int getComponentSize(int componentldx)

Not available in PDAP.

int getDataElement(int[] components, int offset)

Not available in PDAP.

Object getDataElements(int[] components, int
offset, Object obj)

Not available in PDAP.

Object getDataElements(int rgb, Object pixel)

Not available in PDAP.

abstract int getGreen(int pixel)

Available in PDAP

int getGreen(Object inData)

Not available in PDAP.

float[] getNormalizedComponents(int[] components,
int offset, float[] normComponents, int
normOffset)

Not available in PDAP.

313

int getNumColorComponents()

Not available in PDAP.

int getNumComponents()

Not available in PDAP.

int getPixelSize()

Available in PDAP.

abstract int getRed(int pixel)

Available in PDAP

int getRed(Object inData)

Not available in PDAP.

int getRGB(int pixel)

Not available in PDAP.

int getRGB(Object inData)

Not available in PDAP.

static ColorModel getRGBdefault()

Available in PDAP.

int getTransferType()

Not available in PDAP.

int getTransparency()

Not available in PDAP.

int[] getUnnormalizedComponents(float[]
normComponents, int normOffset, int[] components,
int offset)

Not available in PDAP.

boolean hasAlpha()

Available in PDAP

int hashCode()

Available in PDAP.

boolean isAlphaPremultiplied()

Available in PDAP.

boolean isCompatibleRaster(Raster raster)

Not available in PDAP.

boolean isCompatibleSampleModel (SampleModel sm)

Not available in PDAP.

String toString()

Available in PDAP

DirectColorModel

Table B.54. Methods of the Class DirectColorModel

Method Alternative/Workaround
DirectColorModel (ColorSpace space, int bits, int |Notavailable in PDAP.
rmask, int gmask, int bmask, int amask, boolean

isAlphaPremultiplied, int transferType)

DirectColorModel(int bits, iInt rmask, int gmask, [Available in PDAP.
int bmask)

DirectColorModel(int bits, int rmask, int gmask, |Available in PDAP.
int bmask, int amask)

ColorModel coerceData(WritableRaster raster,
boolean isAlphaPremultiplied)

Not available in PDAP.

WritableRaster createCompatibleWritableRaster
(int w, iInt h)

Not available in PDAP.

int getAlpha(int pixel)

Available in PDAP.

int getAlpha(Object inData) Not available in PDAP.
int getAlphaMask() Available in PDAP.
int getBlue(int pixel) Available in PDAP.
int getBlue(Object inData) Not available in PDAP.
int getBlueMask() Available in PDAP.

int[] getComponents(int pixel,
int offset)

int[] components,

Not available in PDAP.

int[] getComponents(Object pixel,
components, int offset)

int[]

Not available in PDAP.

int getDataElement(int[] components, int offset)

Not available in PDAP.

Object getDataElements(int[] components, int
offset, Object obj)

Not available in PDAP.

Object getDataElements(int rgb, Object pixel)

Not available in PDAP.

int getGreen(int pixel)

Available in PDAP.

314

int getGreen(Object inData)

Not available in PDAP.

int getGreenMask()

Available in PDAP

int getRed(int pixel)

Available in PDAP.

int getRed(Object inData)

Not available in PDAP.

int getRedMask()

Available in PDAP.

int getRGB(int pixel)

Available in PDAP.

int getRGB(Object inData)

Not available in PDAP.

boolean isCompatibleRaster(Raster raster)

Not available in PDAP.

String toString()

Available in PDAP

ImageFilter

Table B.55. Methods of the Class ImageFilter

Method

Alternative/Workaround

ImageFilter()

Available in PDAP.

Object clone()

Not available in PDAP.

ImageFilter getFilterinstance(lmageConsumer ic)

Available in PDAP.

void imageComplete(int status)

Available in PDAP

Void resendTopDownLeftRight(ImageProducer ip)

Available in PDAP.

void setColorModel (ColorModel model)

Available in PDAP.

void setDimensions(int width, int height)

Available in PDAP

void setHints(int hints)

Available in PDAP.

void setPixels(int x, int vy, int w, int h,
ColorModel model, byte[] pixels, int off, int
scansize)

Available in PDAP

void setPixels(int x, int y, int w, int h,
ColorModel model, int[] pixels, int off, int
scansize)

Available in PDAP

void setProperties(Hashtable props)

Available in PDAP

IndexColorModel

Table B.56. Methods of the Class IndexColorModel

Method

Alternative/Workaround

IndexColorModel (int bits, int size, byte[] r,
byte[] g, byte[] b)

Available in PDAP

IndexColorModel (int bits, int size, byte[] r,
byte[] g, byte[] b, byte[] a)

Available in PDAP

IndexColorModel (int bits, int size, byte[] r,
byte[] g, byte[] b, int trans)

Available in PDAP.

IndexColorModel (int bits, int size, byte[] cmap,
int start, boolean hasalpha)

Available in PDAP.

IndexColorModel (int bits, int size, byte[] cmap,
int start, boolean hasalpha, int trans)

Available in PDAP.

IndexColorModel (int bits, int size, int[] cmap,
int start, boolean hasalpha, int trans, int
transferType)

Not available in PDAP.

IndexColorModel (int bits, int size, int[] cmap,
int start, int transferType, Biglnteger
validBits)

Not available in PDAP.

Bufferedlmage convertTolntDiscrete (Raster

Not available in PDAP.

315

raster, boolean forceARGB)

SampleModel createCompatibleSampleModel (int w,
int h)

Not available in PDAP.

WritableRaster createCompatibleWritableRaster
(int w, iInt h)

Not available in PDAP.

void finalize()

Available in PDAP

int getAlpha(int pixel)

Available in PDAP.

void getAlphas(byte[] a)

Available in PDAP

int getBlue(int pixel)

Available in PDAP.

void getBlues(byte[] b)

Available in PDAP

int[] getComponents (int pixel,
int offset)

int[] components,

Not available in PDAP.

int[] getComponents (Object pixel,
components, int offset)

int[]

Not available in PDAP.

int[] getComponentSize()

Not available in PDAP.

int getDataElement(int[] components, int offset)

Not available in PDAP.

Object getDataElements (int[] components, int

offset, Object pixel)

Not available in PDAP.

Object getDataElements(int rgb, Object pixel)

Not available in PDAP.

int getGreen(int pixel)

Available in PDAP

void getGreens(byte[] 9)

Available in PDAP.

int getMapSize()

Available in PDAP

int getRed(int pixel)

Available in PDAP.

void getReds(byte[] r)

Available in PDAP

int getRGB(int pixel)

Available in PDAP

void getRGBs(int[] rgb)

Available in PDAP.

int getTransparency()

Not available in PDAP.

int getTransparentPixel()

Available in PDAP.

Biglnteger getvValidPixels()

Not available in PDAP.

boolean isCompatibleRaster(Raster raster)

Not available in PDAP.

boolean isCompatibleSampleModel (SampleModel sm)

Not available in PDAP.

boolean isvalid()

Not available in PDAP.

boolean isvValid(int pixel)

Not available in PDAP.

String toString()

Available in PDAP

316

java.io

Table B.57. Interfaces of the java. 1o Package

J2SE Interface Availability in CLDC

Datalnput Partially contained; see Table B.60 for details.
DataOutput Partially contained; see Table B.61 for details.
Externalizable Not available in CLDC.

FileFilter Not available in CLDC.

FilenameFilter Not available in CLDC.

Objectlinput Not available in CLDC.
ObjectlnputValidation Not available in CLDC.

ObjectOutput Not available in CLDC.
ObjectStreamConstants Not available in CLDC.

Serializable Not available in CLDC.

Table B.58. Classes of the java. io Package

J2SE Class Availability in CLDC
BufferedlnputStream, Not available in CLDC.
BufferedOutputStream

BufferedReader, BufferedWriter

Not availablein CLDC.

Workaround for readLine() using PC and UNIX
encoding:

static String readLine (Reader
reader) throws I10Exception {
StringBuffer buf = new
StringBuffer();
while (true) {
int ¢ = reader.read();

if (c == -1) {
if (buf.length() == 0) return
null;
break;
}

if (c == "\n") break;
if (c = °"\r") buf.append ((char)
c);
}
return buf._toString(Q);

}

ByteArraylnputStream

All J2SE methods are available in CLDC.

ByteArrayOutputStream

Partially contained; see Table B.62 for details.

CharArrayReader, Not available in CLDC.

CharArrayWriter

DatalnputStreanm, Partially contained; see Table B.63 and B.64 for
DataOutputStream details.

File, FileDescriptor,
FilelnputStream,

FilePermission, FileReader
FileWriter

Files not available in CLDC. Use the classes of the
Javax.microedition.rms as an alternative. For
accessing files on memory cards, some devices
may provide a file:// protocol implementation in the
generic connection framework (see Chapter 6,

"Networking: The Generic Connection Framework").

317

FilterInputStream,
FilterOutputStream

Not available in CLDC.

FilterReader, FilterWriter

Not available in CLDC.

InputStream All J2SE methods are available in CLDC.
InputStreamReader Partially contained; see Table B.65 for details.
LineNumber InputStream Not available in CLDC.

LineNumberReader Not available in CLDC.
ObjectlnputStream Not available in CLDC.
ObjectlnputStream.GetField Not available in CLDC.
ObjectOutputStream Not available in CLDC.
ObjectOutputStream.PutField Not available in CLDC.
ObjectStreamClass Not available in CLDC.
ObjectStreamField Not available in CLDC.

OutputStream All J2SE methods are available in CLDC.
OutputStreamWriter Partially contained; see Table B.66 details.
PipedInputStream, Not available in CLDC.
PipedOutputStream

PipedReader Not available in CLDC.

PipedWriter Not available in CLDC.

PrintStream Partially contained; see Table B.67 for details.
PrintWriter Not available in CLDC.
PushbackInputStream Not available in CLDC.

PushbackReader Not available in CLDC. kXML contains a

LookAheadReader that is comparable to some
extent.

RandomAccessFile

Files are not available in CLDC. Use the classes of
the javax.microedition.rms as an alternative.
For accessing files on memory cards, some devices
may provide a file:// protocol implementation in
the generic connection framework (see Chapter 6).

Reader Fully available in CLDC.
SequencelnputStream Not available in CLDC.
SerializablePermission Not available in CLDC.
StreamTokenizer Not available in CLDC.

StringBufferInputStream

Not available in CLDC. See StringReader for a
workaround.

StringReader

Not availablein CLDC.
Use

new InputStreamReader
(new ByteArraylnputStream

(s-getBytes()));
instead of

new StringReader (s);

StringWriter

Not availablein CLDC.

Use

318

ByteArrayOutputStream bos = new
ByteArrayOutputStream();

OutputStreamWriter sw = new
OutputStreamWriter (bos);

// .. write to sw

String s = new String
(bos.getByteArray
0);

instead of

StringWriter sw = new StringWriter();
// ... write to sw
String s = sw.toString(Q);

Writer

Fully available in CLDC.

Table B.59. Exceptions of the java. io Package

J2SE Exception

Availability in CLDC

CharConversionException

Not available in CLDC.

EOFException

Available in CLDC.

FileNotFoundException

Not available in CLDC.

InterruptedlOException

Available in CLDC.

InvalidClassException

Not available in CLDC.

InvalidObjectException

Not available in CLDC.

10Exception

Available in CLDC.

NotActiveException

Not available in CLDC.

NotSerializableException

Not available in CLDC.

ObjectStreamkxception

Not available in CLDC.

OptionalDataException

Not available in CLDC.

StreamCorruptedException

Not available in CLDC.

SyncFai ledException

Not available in CLDC.

UnsupportedEncodingException

Available in CLDC.

UTFDataFormatException

Available in CLDC.

WriteAbortedException

Not available in CLDC.

Datalnput

Table B.60. Methods of the Class Datalnput

Method

Alternative/Workaround

DatalnputStream(InputStream in)

Available in CLDC.

boolean readBoolean()

Available in CLDC.

byte readByte()

Available in CLDC.

char readChar()

Available in CLDC.

double readDouble()

Available in CLDC-NG.

float readFloat()

Available in CLDC-NG.

void readFully(byte[] b)

Available in CLDC.

void readFully(byte[] b,

int off,

int len) Available in CLDC.

int readlnt()

Available in CLDC.

String readLine()

Not available in CLDC.

long readLong(Q)

Available in CLDC.

short readShort()

Available in CLDC.

319

int readUnsignedByte()

Available in CLDC.

int readUnsignedShort()

Available in CLDC.

String readUTFQ)

Available in CLDC.

int skipBytes(int n)

Available in CLDC.

DataOutput

Table B.61. Methods of the Class DataOutput

Method

Alternative/Workaround

void write(byte[] b)

Available in CLDC.

void write(byte[] b, int off,

int len)

Available in CLDC.

void write(int b)

Available in CLDC.

void writeBoolean(boolean v)

Available in CLDC.

void writeByte(int v)

Available in CLDC.

void writeBytes(String s)

Not available in CLDC.

void writeChar(int v)

Available in CLDC.

void writeChars(String s)

Available in CLDC.

void writeDouble(double v)

Available in CLDC-NG.

void writeFloat(float v)

Available in CLDC-NG.

void writelnt(int v)

Available in CLDC.

void writeLong(long V)

Available in CLDC.

void writeShort(int v)

Available in CLDC.

void writeUTF(String str)

classesAvailable in CLDC.

Table B.62. Methods of the Class ByteArrayOutputStream

Method

Alternative/Workaround

ByteArrayOutputStream()

Available in CLDC.

ByteArrayOutputStream(int size)

Available in CLDC.

void close()

Available in CLDC.

void reset()

Available in CLDC.

void flushQ

Available in CLDC.

int size()

Available in CLDC.

byte [] toByteArray()

Available in CLDC.

String toString()

Available in CLDC.

String toString(int hibyte)

Not available in CLDC (deprecated J2SE
method).

String toString(String enc)

Not available in CLDC.

void write(byte[] b)

Available in CLDC.

void write(byte[] b,
int len)

int off,

Available in CLDC.

void write(int b)

Available in CLDC.

void writeTo(OutputStream out)

Not availablein CLDC.
Workaround:

new DataOutputStream (out).write

(byteOutputStream. toByteArray());

DatalnputStream

320

Table B.63. Methods of the Class DatalnputStream

Method

Alternative/Workaround

DatalnputStream(InputStream in)

Available in CLDC.

int available()

Available in CLDC.

void close()

Available in CLDC.

void mark(int readlimit)

Available in CLDC.

Boolean markSupported()

Available in CLDC.

int read()

Available in CLDC.

int read(byte[] b)

Available in CLDC.

int read(byte[] b, int off, int len) |Available in CLDC.
boolean readBoolean() Available in CLDC.
byte readByte() Available in CLDC.
char readChar() Available in CLDC.
double readDouble() Available in CLDC-NG.
float readFloat() Available in CLDC-NG.
void readFully(byte[] b) Available in CLDC.
void readFully(byte[] b, int off, int|Available in CLDC.

len)

int readlnt()

Available in CLDC.

String readLine()

Not available in CLDC (deprecated J2SE
method).

long readLong()

Available in CLDC.

short readShort()

Availabie in CLDC.

int readUnsignedByte()

Available in CLDC.

int readUnsignedShort()

Available in CLDC.

String readUTFQ)

Available in CLDC.

static String readUTF(Datalnputin)

Not availablein CLDC.
Workaround:

in.readUTFQ)

void reset()

Available in CLDC.

long skip(long n)

Available in CLDC.

int skipBytes(int n)

Available in CLDC.

DataOutputStream

Table B.64. Methods of the Class DataOutputStream

Method

Alternative/Workaround

DataOutputStream(OutputStream
out)

Available in CLDC.

void close()

Available in CLDC.

void flushQ

Available in CLDC.

int size()

Not available in CLDC.

void write(byte[] b)

Available in CLDC.

void write(byte[] b,
int len)

int off,

Available in CLDC.

void write(int b)

Available in CLDC.

void writeBoolean(boolean v)

Available in CLDC.

TkaBZIﬁf”

writeByte(int v) Available in CLDC.

writeBytes(String s)

Not available in CLDC. Please note: This method
writes 8-bit chars only and differs from

write (s.getBytes());

writeChar(int v) Available in CLDC.

void writeChars(String s) Available in CLDC.
void writeDouble(double v) Available in CLDC-NG.
void writeFloat(float v) Available in CLDC-NG.

void writelnt(int v) Available in CLDC.
void writeLong(long v) Available in CLDC.
void writeShort(int v) Available in CLDC.

writeUTF(String str) Available in CLDC.

InputStreamReader

Table B.65. Methods of the Class InputStreamReader

Method

Alternative/Workaround

InputStreamReader (InputStream in)

Available in CLDC.

InputStreamReader(InputStream in, String enc)

Available in CLDC.

void close()

Available in CLDC.

String getEncoding()

Not available in CLDC.

void mark(int readAheadLimit)

Available in CLDC.

boolean markSupported()

Available in CLDC.

int read(char[] cbuf)

Available in CLDC.

int read()

Available in CLDC.

int read(char[] cbuf, int off, int len)

Available in CLDC.

boolean ready()

Available in CLDC.

void reset()

Available in CLDC.

long skip(long n)

Available in CLDC.

OutputStreamWriter

Table B.66. Methods of the Class OutputStreamWriter

Method

Alternative/Workaround

OutputStreamWriter(OutputStream out)

Available in CLDC.

OutputStreamWriter(OutputStream out, String enc)

Available in CLDC.

void close()

Available in CLDC.

void Flush(Q)

Available in CLDC.

String getEncoding()

Not available in CLDC.

void write(char[] cbuf) Available in CLDC.
void write(String str) Available in CLDC.
void write(char[] cbuf, int off, int len) Available in CLDC.
void write(int c¢) Available in CLDC.
void write(String str, int off, int len) Available in CLDC.

PrintStream

322

Table B.67. Methods of the Class PrintStream

Method

Alternative/Workaround

PrintStream(OutputStream out)

Available in CLDC.

PrintStream(OutputStream out, boolean autoFlush)

Not available in CLDC.

boolean checkError()

Available in CLDC.

void close() Available in CLDC.
void flush() Available in CLDC.
void print(boolean b) Available in CLDC.
void print(char c) Available in CLDC.
void print(char[] s) Available in CLDC.
void print(double d) Not available in CLDC.
void print(float T) Not available in CLDC.
void print(int i) Available in CLDC.
void print(long 1) Available in CLDC.
void print(Object obj) Available in CLDC.
void print(String s) Available in CLDC.
void printInQ) Available in CLDC.
void printIn(boolean x) Available in CLDC.
void printIn(char x) Available in CLDC.
void printIn(char[] x) Available in CLDC.
void printIn(double %) Not available in CLDC.
void printIn(float x) Not available in CLDC.
void printIn(int x) Available in CLDC.
void printin(long x) Available in CLDC.
void printIn(Object x) Available in CLDC.
void printIn(String x) Available in CLDC.

protected void setError()

Available in CLDC.

void

write(byte[] buf,

int off,

int len)

Available in CLDC.

void

write(int b)

Available in CLDC.

323

java.lang

Table B.68. Interfaces of the java. lang Package

J2SE Interface

Availability in CLDC

Clonable Not available in CLDC.
Comparable Not available in CLDC.
Runnable Fully available in CLDC.

Table B.69. Classes of the java. lang Package
J2SE Class Availability in CLDC
Boolean Partially contained; see Table B.72 for details.
Byte Partially contained; see Table B.73 for details.
Character Partially contained; see Table B.74 for details.

Character.Subset

Not available in CLDC.

Character .UnicodeBlock

Not available in CLDC.

Class

Partially contained; see Table B.75 for details.

ClassLoader Not available in CLDC.

Compiler Not available in CLDC.

Double Partially contained in CLDC-NG; see Table B.76 for details.

Float Partially contained in CLDC-NG; see Table B.77 for details.

InheritableThreadlLocal |Not available in CLDC.

Integer Partially contained; see Table B.78 for details.

Long Partially contained; see Table B.79 for details.

Math Partially contained; see Table B.80 for details.

Number Not available in CLDC.

Object Partially contained. The CLDC version lacks the clone() and
finalize() methods that are provided in J2SE.

Package Not available in CLDC.

Process Not available in CLDC.

Runtime Partially contained; see the section "Runtime" for details.

RuntimePermission Not available in CLDC.

SecurityManager Not available in CLDC.

Short Partially contained; see Table B.81 for details.

StrictMath Not available in CLDC.

String Partially contained; see Table B.82 for details.

StringBuffer Partially contained; see Table B.83 for details.

System Partially contained; see Table B.84 for details.

Thread Partially contained; see Table B.85 for details.

ThreadGroup Not available in CLDC.

ThreadLocal Not available in CLDC.

Throwable Partially contained; see Table B.86 for details.

Void Not available in CLDC.

Table B.70. Exceptions of the java. lang Package

J2SE Exception

Availability in CLDC

ArithmeticException

Fully available in CLDC, except the missing
methods of the Throwabl e class.

Array IndexOutOfBoundsException |Fully available in CLDC, except the missing

324

methods of the Throwabl e class.

ArrayStoreException

Fully available in CLDC, except the missing
methods of the Throwabl e class.

ClassCastException

Fully available in CLDC, except the missing
methods of the Throwabl e class.

ClassNotFoundException

Fully available in CLDC, except the missing
methods of the Throwabl e class.

CloneNotSupportedException

Not available in CLDC.

Exception

Fully available in CLDC, except the missing
methods of the Throwable class.

I1legalAccessException

Fully available in CLDC, except the missing
methods of the Throwable class.

11 legalArgumentException

Fully available in CLDC, except the missing
methods of the Throwable class.

I1legalMonitorStateException

Fully available in CLDC, except the missing
methods of the Throwable class.

I1legalStateException

Fully available in CLDC, except the missing
methods of the Throwable class.

I1legal ThreadStateException

Fully available in CLDC, except the missing
methods of the Throwable class.

IndexOutOfBoundsException

Fully available in CLDC, except the missing
methods of the Throwable class.

InstantiationException

Fully available in CLDC, except the missing
methods of the Throwable class.

InterruptedException

Fully available in CLDC, except the missing
methods of the Throwable class.

NegativeArraySizeException

Fully available in CLDC, except the missing
methods of the Throwable class.

NoSuchFieldException

Fully available in CLDC, except the missing
methods of the Throwable class.

NoSuchMethodException

Fully available in CLDC, except the missing
methods of the Throwable class.

Nul IPointerException

Fully available in CLDC, except the missing
methods of the Throwable class.

NumberFormatException

Fully available in CLDC, except the missing
methods of the Throwable class.

RuntimeException Fully available in CLDC, except the missing
methods of the Throwable class.
SecurityException Fully available in CLDC, except the missing

methods of the Throwabl e class.

StringlndexOutOfBoundsException

Fully available in CLDC, except the missing
methods of the Throwable class.

UnsupportedOperationException

Not available in CLDC.

Table B.71. Errors of the java. lang Package

J2SE Error Availability in CLDC

AbstractMethodError Not available in CLDC.

ClassCircularityError Not available in CLDC.

ClassFormatError Not available in CLDC.

Error Fully available in CLDC, except the missing methods
of the Throwable class.

325

ExceptioninlnitializerError

Not available in CLDC.

I11legalAccessError

Not available in CLDC.

IncompatibleClassChangeError

Not available in CLDC.

InstantiationError Not available in CLDC.
InternalError Not available in CLDC.
LinkageError Not available in CLDC.
NoClassDefFoundError Available in CLDC-NG.
NoSuchFieldError Not available in CLDC.
NoSuchMethodError Not available in CLDC.
OutOfMemoryError Fully available in CLDC, except the missing methods
of the Throwable class.
StackOverflowError Not available in CLDC.
ThreadDeath Not available in CLDC.
UnknownError Not available in CLDC.

UnsatisfTiedLinkError

Not available in CLDC.

UnsupportedClassVersionError

Not available in CLDC.

VerifyError

Not available in CLDC.

VirtualMachineError

Fully available in CLDC, except the missing methods
of the Throwable class.

Boolean

Table B.72. Methods of the Class Boolean

Method

Availability in CLDC

Boolean(boolean value)

Available in CLDC.

Boolean(String s)

Not availablein CLDC.
Workaround:

Boolean (s != null &&
s.toLowerCase() .-
equals ("true™));

Boolean booleanValue()

Available in CLDC.

Boolean equals(Object obj)

Available in CLDC.

static boolean getBoolean(String |Notavailablein CLDC.

name)

Workaround:

(name 1= null &&
name . toLowerCase() .
equals (“"true™));

int hashCode()

Available in CLDC.

String toString()

Available in CLDC.

static Boolean valueOf(String s) |Notavailablein CLDC.

Workaround:

new Boolean (s '= null && s.
toLowerCase() -equals ('true'™));

Byte

326

Table B.73. Methods of the Class Byte

Method

Availability in CLDC

Byte(byte value)

Available in CLDC.

Byte(String s)

Not available in CLDC.

byte bytevalue()

Available in CLDC.

int compareTo(Byte
anotherByte)

Not available in CLDC. Workaround: compare the return
values of byteValue()

int compareTo(Object 0)

Not available in CLDC.

static Byte decode(String
nm)

Not availablein CLDC.

Workaround: Determine radix using
String.startsWith(), then apply parseByte() with
the corresponding radix.

double doublevalue()

Not available in CLDC.

boolean equals(Object
obj)

Available in CLDC.

float floatValue()

Not available in CLDC.

int hashCode()

Available in CLDC.

int intvalue(Q)

Not availablein CLDC.
Workaround:

(int) bytevalue()

long longvalue()

Not availablein CLDC.
Workaround:

(long) bytevValue()

static byte
parseByte(String s)

Available in CLDC.

static byte
parseByte(String s,
radix)

int

Available in CLDC.

Short shortvValue()

Not availablein CLDC.
Workaround:

(short) bytevalue()

String toString()

Available in CLDC.

static String
toString(byte b)

Not availablein CLDC.
Workaround:

TN

or

new Byte (b).toString()

static Byte
valueOf(String s)

Not availablein CLDC.

Workaround:

327

new Byte (Byte.parseByte (S));

static Byte valueOf
(String s, intradix)
Workaround:

Not availablein CLDC.

new Byte (Byte.parseByte (s, radix);

Character

Table B.74. Methods of the Class Character

Method

Availability in CLDC

Character(char value)

Available in CLDC.

Char charValue()

Available in CLDC.

int compareTo(Character
anotherCharacter)

Not availablein CLDC.

Workaround: Compare the return values of

charvValue(Q)

int compareTo(Object 0)

Not available in CLDC.

static int digit(char ch, int radix)

Available in CLDC.

boolean equals(Object obj)

Available in CLDC.

static char forDigit(int digit, int
radix)

Not availablein CLDC.
Workaround:
(char) (digit >

9
2 ((int) "a") + digi
+

- ((int) "0") + digit)

static int getNumericValue (char ch)

Not availablein CLDC.
Incomplete workaround:

((int) ch) — ((int) "0%)

static int getType(char ch)

Not availablein CLDC.

Workaround: For limited cases,
isDigit() may help.

int hashCode()

Available in CLDC.

static boolean isDefined(char ch)

Not available in CLDC.

static boolean isDigit (char ch)

Available in CLDC.

static boolean
isldentifierlgnorable(char ch)

Not available in CLDC.

static boolean islISOControl (char ch)

Not available in CLDC.

static boolean
isJavaldentifierPart(char ch)

Not available in CLDC.

static boolean
isJavaldentifierStart(char ch)

Not available in CLDC.

static boolean isJavalLetter (char ch)

Not available in CLDC(deprecated
J2SE method).

static boolean isJavalLetterOrDigit
(char ch)

Not available in CLDC (deprecated
J2SE method).

static boolean isLetter(char ch)

Not available in CLDC.

static boolean isLetterOrDigit (char

Not available in CLDC.

328

- 10

ch)

static boolean isLowerCase (char ch)

Available in CLDC.

static boolean isSpace(char ch)

Not available in CLDC (deprecated

J2SE method).

static boolean isSpaceChar(char ch)

Not available in CLDC.

static boolean isTitleCase(char ch)

Not available in CLDC.

static boolean
isUnicodeldentifierPart(char ch)

Not available in CLDC.

static boolean
isUnicodeldentifierStart(char ch)

Not available in CLDC.

static boolean isUpperCase(char ch)

Available in CLDC.

static boolean isWhitespace (char ch)

Not availablein CLDC.
Incompl ete workaround:

ch <=

static char tolLowerCase(char ch)

Available in CLDC.

String toString()

Available in CLDC.

static char toTitleCase(char ch)

Not available in CLDC.

static char toUpperCase(char ch)

Available in CLDC.

Class
Table B.75. Methods of the Class Class
Method Availability in
CLDC
static Class forName(String className) Available in
CLDC.

static Class forName(String name, boolean initialize,
ClassLoaderloader)

Not available in
CLDC.

Class[] getClasses()

Not available in
CLDC.

ClassLoader getClasslLoader()

Not available in
CLDC.

Class getComponentType()

Not available in
CLDC.

Constructor getConstructor(Class[] parameterTypes)

Not available in
CLDC.

Constructor[] getConstructors()

Not available in
CLDC.

Class[] getDeclaredClasses()

Not available in
CLDC.

Constructor getDeclaredConstructor (Class[]
parameterTypes)

Not available in
CLDC.

Constructor[] getDeclaredConstructors()

Not available in
CLDC.

Field getDeclaredField(String name)

Not available in
CLDC.

Field[] getDeclaredFields(Q)

Not available in
CLDC.

Method getDeclaredMethod(String name, Class[]
parameterTypes)

Not available in
CLDC.

329

Method[] getDeclaredMethods() Not available in
CLDC.

Class getDeclaringClass() Not available in
CLDC.

Field getField(String name) Not available in
CLDC.

Field[] getFields() Not available in
CLDC.

Class[] getinterfaces() Not available in
CLDC.

Method getMethod(String name, Class[] parameterTypes) |Not available in
CLDC.

Method[] getMethods() Not available in
CLDC.

int getModifiers() Not available in
CLDC.

String getName() Available in
CLDC.

Package getPackage() Not available in
CLDC.

ProtectionDomain getProtectionDomain() Not available in
CLDC.

URL getResource(String name) Not available in
CLDC.

InputStream getResourceAsStream(String name) Available in
CLDC.

Object[] getSigners() Not available in
CLDC.

Class getSuperclass() Not available in
CLDC.

boolean isArray() Available in
CLDC.

boolean isAssignableFrom(Class cls) Available in
CLDC.

boolean islInstance(Object obj) Available in
CLDC.

boolean islInterface() Available in
CLDC.

boolean isPrimitive() Not available in
CLDC.

Object newlnstance() Available in
CLDC.

String toString() Available in
CLDC.

Double

Table B.76. Methods of the Class Double
Method Availability in CLDC-NG

Double(double value)

Available in CLDC-NG.

Double(String s)

Not available in CLDC-NG.

byte bytevalue()

Available in CLDC-NG.

330

int compareTo(Double anotherDouble)

Not available in CLDC-NG.

int compareTo(Object 0)

Not available in CLDC-NG.

static long doubleToLongBits(double value)

Available in CLDC-NG.

static long doubleToRawLongBits(double value)

Not available in CLDC-NG.

double doublevalue()

Available in CLDC-NG.

boolean equals(Object obj)

Available in CLDC-NG.

float floatValue()

Available in CLDC-NG.

int hashCode()

Available in CLDC-NG.

int intvalue(Q)

Available in CLDC-NG.

boolean isInfinite()

Available in CLDC-NG.

static boolean isInfinite(double v)

Available in CLDC-NG.

boolean isNaN(Q)

Available in CLDC-NG.

static boolean isNaN(double v)

Available in CLDC-NG.

static double longBitsToDouble(long bits)

Available in CLDC-NG.

long longvalue()

Available in CLDC-NG.

static double parseDouble(String s)

Available in CLDC-NG.

short shortvalue()

Available in CLDC-NG.

String toString()

Available in CLDC-NG.

static String toString(double d)

Available in CLDC-NG.

static Double valueOf(String s)

Available in CLDC-NG.

Float

Table B.77. Methods Class Float

Method

Availability in CLDC-NG

Float(double value)

Available in CLDC-NG.

Float(float value)

Available in CLDC-NG.

Float(String s)

Not available in CLDC-NG.

byte bytevalue()

Available in CLDC-NG.

int compareTo(Float anotherFloat)

Not available in CLDC-NG.

int compareTo(Object 0)

Not available in CLDC-NG.

double doublevalue()

Available in CLDC-NG.

boolean equals(Object obj)

Available in CLDC-NG.

static int floatTolntBits(float value)

Available in CLDC-NG.

static int floatToRawIntBits(float value)

Not available in CLDC-NG.

float floatValue()

Available in CLDC-NG.

int hashCode()

Available in CLDC-NG.

static float intBitsToFloat(int bits)

Available in CLDC-NG.

int intvalue(Q)

Available in CLDC-NG.

boolean isInfinite()

Available in CLDC-NG.

static boolean isInfinite(float v)

Available in CLDC-NG.

boolean isNaN(Q)

Available in CLDC-NG.

static boolean isNaN(float v)

Available in CLDC-NG.

long longvalue()

Available in CLDC-NG.

static float parseFloat(String s)

Available in CLDC-NG.

short shortvalue()

Available in CLDC-NG.

String toString()

Available in CLDC-NG.

static String toString(float T)

Available in CLDC-NG.

Tea33F lij v

]static Float valueOf(String s)

\Available in CLDC-NG.

Integer

Table B.78. Methods of the Class Integer

Method

Availability in CLDC

Integer(int value)

Available in CLDC.

Integer(String s)

Not availablein CLDC.
Workaround:

new Integer (Integer.parselnt (s));

byte bytevalue()

Available in CLDC.

int compareTo(lnteger
anotherlinteger)

Not available in CLDC. Workaround:

Comparethe values of intvValue()

int compareTo(Object 0)

Not available in CLDC.

static Integer
decode(String nm)

Not availablein CLDC.

Workaround: Determine sign and radix using
String.startsWith(), then apply
Integer.parselnt using the corresponding radix.

double doublevalue()

Available in CLDC-NG.

boolean equals(Object obj)

Available in CLDC.

float floatValue()

Available in CLDC-NG.

static Integer getlnteger
(String nm)

Not availablein CLDC.

Workaround:

Integer.parselnt (System.getProperty(nm));

static Integer getlnteger
(String nm, int val)

Not available in CLDC.

static Integer getlnteger
(String nm, Integer val)

Not available in CLDC.

Int hashCode()

Available in CLDC.

int intvalue()

Available in CLDC.

long longvalue()

Available in CLDC.

static int parselnt(String
s)

Available in CLDC.

static int parselnt
(String s, int radix)

Available in CLDC.

short shortvalue()

Available in CLDC.

static String
toBinaryString(int i)

Available in CLDC.

static String
toHexString(int 1)

Available in CLDC.

static String
toOctalString(int 1)

Available in CLDC.

String toString()

Available in CLDC.

static String toString(int
i)

Available in CLDC.

332

static String toString
(int 1, int radix)

Available in CLDC.

static Integer
valueOf(String s)

Available in CLDC.

static Integer valueOf
(String s, int radix)

Available in CLDC.

Long

Table B.79. Methods of the Class Long

Method

Availability in CLDC

Long(long value)

Available in CLDC.

Long(String s)

Not availablein CLDC.
Workaround:

Long (Long.parseLong (value);

byte bytevalue()

Not availablein CLDC.
Workaround:

(byte) longValue(Q);

int compareTo(Long
anotherlLong)

Not available in CLDC. Workaround: Compare the values
of longValue().

int compareTo(Object 0)

Not available in CLDC.

static Long
decode(String nm)

Not availablein CLDC.

Workaround: Determine sign and radix using
String.startsWith(), then apply Long.parselLong
using the corresponding radix.

double doublevalue()

Available in CLDC-NG.

boolean equals(Object
obj)

Available in CLDC.

float floatValue()

Available in CLDC-NG.

static Long
getLong(String nm)

Not availablein CLDC.
Workaround:

Long.parseLong (System.getProperty (nm));

static Long getlLong
(String nm, long val)

Not available in CLDC.

static Long getlLong
(String nm, Long val)

Not available in CLDC.

int hashCode()

Available in CLDC.

int intvalue()

Not availablein CLDC.
Workaround:

(int) longvalue()

long longvalue()

Available in CLDC.

Static long
parseLong(String s)

Available in CLDC.

333

Static long
parseLong(String s,
radix)

int

Available in CLDC.

short shortvValue()

Not availablein CLDC.
Workaround:

(short) longvalue()

Static String
toBinaryString (long 1)

Not availablein CLDC.
Workaround:

toString (i, 2);

Static String
toHexString(long 1)

Not availablein CLDC.
Workaround:

toString (i, 16);

Static String
toOctalString (long i)

Not availablein CLDC.
Workaround:

toString (i, 8);

String toString()

Available in CLDC.

Static String
toString(long 1)

Available in CLDC.

Static String toString
(long i, int radix)

Available in CLDC.

Static Long
valueOf(String s)

Not availablein CLDC.
Workaround:

new Long(Long.parseLong (s));

Static Long valueOf

Not availablein CLDC.

(String s, int radix)

Workaround:

new Long(Long.parseLong (s, radix));
Math

Table B.80. Methods of the Class Math

Method Alternative/Workaround
static double abs(double a) Available in CLDC-NG.
static float abs(float a) Available in CLDC-NG.
static int abs(int a) Available in CLDC.
static long abs(long a) Available in CLDC.
static double acos(double a) Not available in CLDC.
static double asin(double a) Not available in CLDC.
static double atan(double a) Not available in CLDC.
static double atan2(double a, double b) Not available in CLDC.
static double ceil(double a) Available in CLDC-NG.

334

static

double cos(double a)

Not available in CLDC.

static

double exp(double a)

Not available in CLDC.

static

double floor(double a)

Available in CLDC-NG.

static
2)

double 1EEEremainder (double f1l, double

Not available in CLDC.

static

double log(double a)

Not available in CLDC.

static

double max(double a, double b)

Available in CLDC-NG.

static float max(float a, float b) Available in CLDC-NG.
static int max(int a, int b) Available in CLDC.
static long max(long a, long b) Available in CLDC.
static double min(double a, double b) Available in CLDC-NG.
static float min(float a, float b) Available in CLDC-NG.
static int min(int a, int b) Available in CLDC.
static long min(long a, long b) Available in CLDC.
static double pow(double a, double b) Not available in CLDC.

static double random() Not available in CLDC.
static double rint(double a) Not available in CLDC.
static long round(double a) Not available in CLDC.
static int round(float a) Not available in CLDC.
static double sin(double a) Not available in CLDC.

static

double sqrt(double a)

Not available in CLDC.

static

double tan(double a)

Not available in CLDC.

static

double toDegrees(double angrad)

Available in CLDC-NG.

static double toRadians(double angdeg)

Available in CLDC-NG.

Runtim

e

Because executing additional processes or finalization is not supported in CLDC, the only methods of

the J2SE

Runtime class are listed as follows:

void exit(int status)

long freeMemory()

void gcQ

static Runtime getRuntime()
long totalMemory()

Short
Table B.81. Methods of the Class Short

Method Availability in CLDC
Short(short value) Available in CLDC.
Short(String s) Not availablein CLDC.

Workaround:

Short (parseShort (s))
byte bytevalue() Not available in CLDC.

Workaround:

335

(byte) shortvalue()

int compareTo(Object 0)

Not available in CLDC.

int compareTo(Short
anotherShort)

Not availablein CLDC.

Workaround: Compare the return values of shortValue()

Static Short decode(String
nm)

Not availablein CLDC.

Workaround: Determine radix using nm.startsWith(),
then apply parseShort() with corresponding radix.

Double doublevValue()

Not available in CLDC.

boolean equals(Object obj)

Available in CLDC.

float floatValue()

Not available in CLDC.

int hashCode()

Available in CLDC.

int intvalue(Q)

Not availablein CLDC.
Workaround:

(int) shortvValue()

long longvalue()

Not availablein CLDC.
Workaround:

(int) shortvalue()

static short
parseShort(String s)

Available in CLDC.

static short parseShort
(Strings, int radix)

Available in CLDC.

short shortvValue()

Available in CLDC.

String toString()

Available in CLDC.

static String
toString(shorts)

Not availablein CLDC.
Workaround:

¢+ s)

or

new Short(s).toString()

static Short valueOf(String
s)

Not availablein CLDC.
Workaround:

new Short(parseShort (s));

static Short valueOf
(Strings, int radix)

Not availablein CLDC.
Workaround:

new Short(parseShort (s, radix));

String

Table B.82.

Methods of the Class String

336

Method

Availability in CLDC

String(Q

Available in CLDC.

String(byte[] bytes)

Available in CLDC.

String(byte[] ascii, int hibyte)

Not available in CLDC (deprecated J2SE
constructor).

String(byte[] bytes, int offset, int |Available in CLDC.

length)

String(byte[] ascii, int hibyte, int |Notavailablein CLDC (deprecated J2SE
offset, int count) method).

String(byte[] bytes, int offset, int |Available in CLDC.

length, String enc)

String(byte[] bytes, String enc) Available in CLDC.

String(char[] value) Available in CLDC.

String(char[] value, int offset, int |Available in CLDC.

count)

String(String value)

Available in CLDC.

String(StringBuffer buffer)

Available in CLDC.

char charAt(int index)

Available in CLDC.

int compareTo(Object 0)

Not available in CLDC.

int compareTo(String anotherString)

Not availablein CLDC.

Workaround: Iterate over characters and
compare them.

int compareTolgnoreCase(String str)

Not available in CLDC.

String concat(String str)

Available in CLDC.

static String copyValueOf (char[]
data)

Not available in CLDC.

static String copyValueOf(char[]
data, int offset, int count)

Not available in CLDC.

boolean endsWith(String suffix)

Available in CLDC.

boolean equals(Object anObject)

Available in CLDC.

boolean equalslgnoreCase (String
anotherString)

Not availablein CLDC.
Workaround:

toLower() .equalslgnoreCase
(str.toLower);

byte[] getBytes()

Available in CLDC.

void getBytes(int srcBegin, int
srcEnd, byte[] dst, int dstBegin)

Not available in CLDC (deprecated J2SE
method).

byte[] getBytes(String enc)

Available in CLDC.

void getChars(int srcBegin, int
srcEnd, char[] dst, int dstBegin)

Available in CLDC.

int hashCode()

Available in CLDC.

int indexOf(int ch)

Available in CLDC.

int indexOf(int ch,

int fromlndex)

Available in CLDC.

int indexOf(String str)

Available in CLDC.

int indexOf(String str, int

fromlndex)

Available in CLDC.

String intern()

Not availablein CLDC.

337

A workaround for some purposes of intern
may beto store Stringsin ahashtable.

int lastindexOf(int ch)

Available in CLDC.

int lastindexOf (int ch, int

fromlndex)

Available in CLDC.

int lastindexOf(String str)

Not available in CLDC.

int lastindexOf(String str, int

fromlndex)

Not available in CLDC.

int lengthQ)

Available in CLDC.

boolean regionMatches(Boolean
ignoreCase, int toffset, String
other, int ooffset, int len)

Available in CLDC.

boolean regionMatches(int toffset,
String other, int ooffset, int len)

Not available in CLDC.

String replace (char oldChar, char
newChar)

Available in CLDC.

boolean startsWith(String prefix)

Available in CLDC.

boolean startsWith (String prefix,
int toffset)

Available in CLDC.

String substring(int beginlndex)

Available in CLDC.

String substring (int beginlndex, int

endIndex)

Available in CLDC.

char[]toCharArray() Available in CLDC.
String tolLowerCase() Available in CLDC.
String toLowerCase(Locale locale) Not available in CLDC.
String toString() Available in CLDC.
String toUpperCase() Available in CLDC.
String toUpperCase(Locale locale) Not available in CLDC.
String trimQ) Available in CLDC.
static String valueOf(boolean b) Available in CLDC.

static String valueOf(char c¢)

Available in CLDC.

static String valueOf(char[] data)

Available in CLDC.

static String valueOf(char[] data,
int offset, int count)

Available in CLDC.

static String valueOf(double d)

Available in CLDC-NG.

static String valueOf(float T)

Available in CLDC-NG.

static String valueOf(int 1)

Available in CLDC.

static String valueOf(long I)

Available in CLDC.

static String valueOf(Object obj)

Available in CLDC.

StringBuffer

Table B.83. Methods of the Class StringBuffer
Method Availability in CLDC
StringBuffer() Available in CLDC.

StringBuffer(int length)

Available in CLDC.

StringBuffer(String str)

Available in CLDC.

StringBuffer append(boolean b)

Available in CLDC.

StringBuffer append(char c)

Available in CLDC.

StringBuffer append(char[] str)

Available in CLDC.

338

StringBuffer append(char[] str, int offset,
int len)

Available in CLDC.

StringBuffer append(double d)

Available in CLDC-NG.

StringBuffer append(float f)

Available in CLDC-NG.

StringBuffer append(int i)

Available in CLDC.

StringBuffer append(long 1)

Available in CLDC.

StringBuffer append(Object obj)

Available in CLDC.

StringBuffer append(String str)

Available in CLDC.

int capacity(Q)

Available in CLDC.

char charAt(int index)

Available in CLDC.

StringBuffer delete (int start, int end)

Available in CLDC.

StringBuffer deleteCharAt (int index)

Available in CLDC.

void ensureCapacity (int minimumCapacity)

Available in CLDC.

void getChars(int srcBegin, int srcknd,
char[] dst, int dstBegin)

Available in CLDC.

StringBuffer insert (int offset, boolean b)

Available in CLDC.

StringBuffer insert (int offset, char c)

Available in CLDC.

StringBuffer insert (int offset, char[]
str)

Available in CLDC.

StringBuffer insert(int index, char[] str,
int offset, int len)

Not available in CLDC.

StringBuffer insert (int offset, double d)

Available in CLDC-NG.

StringBuffer insert (int offset, float f)

Available in CLDC-NG.

StringBuffer insert (int offset, int i)

Available in CLDC.

StringBuffer insert (int offset, long 1)

Available in CLDC.

StringBuffer insert (int offset, Object
obj)

Available in CLDC.

StringBuffer insert (int offset, String
str)

Available in CLDC.

int lengthQ)

Available in CLDC.

StringBuffer replace (int start, int end,
String str)

Not availablein CLDC.
Workaround:

delete (start, end);
insert (start, str);

StringBuffer reverse()

Available in CLDC.

void setCharAt(int index, char ch)

Available in CLDC.

void setLength(int newlLength)

Available in CLDC.

String substring(int start)

Not available in CLDC.

String substring (int start, int end)

Not available in CLDC.

String toString()

Available in CLDC.

System

Table B.84. Methods of the Class System

Method

Availability in CLDC

static void arraycopy(Object src, int
src_position, Object dst, int dst_position,
int length)

Available in CLDC.

339

static

long currentTimeMillis(Q)

Available in CLDC.

static

void exit(int status)

Available in CLDC.

static

void gcQ

Available in CLDC.

static

String getenv(String name)

Not available in CLDC
(deprecated J2SE method).

static

Properties getProperties()

Not available in CLDC.

static

String getProperty (String key)

Available in CLDC.

static
String

String getProperty (String key,
def)

Not availablein CLDC.
Workaround:

Static String
getProperty (
String key,
String def) {

String val =
System.getProperty (key);
return val null ?

def : val;

3

static SecurityManager getSecurityManager() |Not available in CLDC.
static int identityHashCode (Object x) Available in CLDC.
static void load(String filename) Not available in CLDC.
static void loadLibrary (String libname) Not available in CLDC.
static String mapLibraryName (String Not available in CLDC.
libname)

static void runFinalization() Not available in CLDC.
static void runFinalizersOnExit (boolean Not available in CLDC
value) (deprecated J2SE method).
static void setErr(PrintStream err) Not available in CLDC.
static void setIn(InputStream in) Not available in CLDC.
static void setOut(PrintStream out) Not available in CLDC.
static void setProperties (Properties Not available in CLDC.
props)

static String setProperty (String key, Not available in CLDC.

String

value)

static

void setSecurityManager

(SecurityManager s)

Not available in CLDC.

Thread

Table B.85. Methods of the Class Thread
Method Availability in CLDC
Thread() Available in CLDC.

Thread(Runnable target)

Available in CLDC.

Thread(Runnable target, String name)

Available in CLDC-NG.

Thread(String name)

Available in CLDC-NG.

Thread(ThreadGroup group, Runnable
target)

Not available in CLDC, because
ThreadGroup is not supported.

Thread(ThreadGroup group, Runnable
target, String name)

Not available in CLDC, because
ThreadGroup is not supported.

340

Thread(ThreadGroup group, String name) |Not available in CLDC, because

ThreadGroup is not supported.

static int activeCount()

Available in CLDC.

void checkAccess()

Not available in CLDC.

int countStackFrames()

Not available in CLDC (deprecated
J2SE method).

static Thread currentThread()

Available in CLDC.

void destroy()

Not available in CLDC.

static void dumpStack()

Not available in CLDC.

static int enumerate (Thread[] tarray) |Not available in CLDC.

ClassLoader getContextClassLoader()

Not available in CLDC.

String getName()

Available in CLDC-NG.

int getPriority()

Available in CLDC.

ThreadGroup getThreadGroup()

Not available in CLDC.

void interrupt()

Not available in CLDC.

static boolean interrupted()

Not available in CLDC.

boolean isAlive()

Available in CLDC.

boolean isbDaemon()

Available in CLDC-NG.

boolean islInterrupted()

Not available in CLDC.

void join(Q)

Available in CLDC.

void join(long millis)

Not available in CLDC.

void join(long millis, int nanos)

Not available in CLDC.

void resume()

Not available in CLDC (deprecated
J2SE method).

void run()

Available in CLDC.

void setContextClasslLoader

(ClassLoader cl)

Not available in CLDC.

void setDaemon(boolean on)

Available in CLDC-NG.

void setName(String name)

Not available in CLDC.

void setPriority(int newPriority)

Available in CLDC.

static void sleep(long millis)

Available in CLDC.

static void sleep (long millis, int

nanos)

Not available in CLDC.

void start(Q)

Available in CLDC.

void stop()

Not available in CLDC (deprecated
J2SE method).

void stop(Throwable obj)

Not available in CLDC (deprecated
J2SE method).

void suspend()

Not available in CLDC.

String toString()

Available in CLDC.

static void yield()

Available in CLDC.

Throwable

Table B.86. Methods of the Class Throwable
Method Availability in CLDC
Throwable() Available in CLDC.

Throwable(String message)

Available in CLDC.

Throwable filllnStackTrace()

Not available in CLDC.

Tea34¥ lij v

String getLocalizedMessage() Not available in CLDC.
String getMessage() Available in CLDC.
void printStackTrace() Available in CLDC.
void printStackTrace(PrintStream s) Not available in CLDC.
void printStackTrace(PrintWriter s) Not available in CLDC.
String toString() Available in CLDC.

342

java.lang.ref

Table B.87. Classes of the java.lang.ref Package

J2SE Classes Availability in PDAP

PhantomReference Not available in CLDC.

Reference Partially contained in CLDC-NG; see Table B.88 for details.
ReferenceQueue Not available in CLDC.

SoftReference Not available in CLDC.

WeakReference Partially contained; see Table B.89 for details.

Reference

Table B.88. Methods of the Class Reference

Method Availability in CLDC
void clear() Available in CLDC-NG.
boolean enqueue() Not available in CLDC.
Object get() Available in CLDC-NG.
boolean isEnqueued() Not available in CLDC.
WeakReference

Table B.89. Methods of the Class WeakReference

Method Availability in CLDC
WeakReference(Object referent) Available in CLDC-NG.
WeakReference(Object referent, ReferenceQueue q) Not available in CLDC.

343

java.lang.reflect

The package java.lang.reflect includes the InvocationT argetException in PDAP only. No interfaces or
classes are supported.

java.net

The package java . net supportsthe URL class and the Mal formedURLException only. The
following table shows the methods supported by the URL class.

URL
Table B.90. Methods of the Class URL
Method Availability in
PDAP
URL(String spec) Available in
PDAP.
URL(String protocol, String host, int port, String file) |Availablein
PDAP.
URL(String protocol, String host, int port, String file, [Notavailable
URLStreamHandler handler) in PDAP.
URL(String protocol, String host, String file) Available in
PDAP.
URL(URL context, String spec) Available in
PDAP.
URL(URL context, String spec, URLStreamHandler handler) Not available
in PDAP.
boolean equals(Object obj) Available in
PDAP.
String getAuthority() Available in
PDAP.
Object getContent() Not available
in PDAP.
Object getContent(Class[] classes) Not available
in PDAP.
String getFile(Q) Available in
PDAP.
String getHost() Available in
PDAP.
String getPath() Available in
PDAP.
int getPort() Available in
PDAP.
String getProtocol() Available in
PDAP.
String getQuery() Available in
PDAP.
String getRef() Available in
PDAP.
String getUserinfo() Available in
PDAP.
int hashCode() Available in
PDAP.
URLConnection openConnection() Not available
in PDAP.
InputStream openStream() Not available
in PDAP.

345

boolean sameFile(URL other) Available in
PDAP.
protected void set(String protocol, String host, int Available in
port, String file, String ref) PDAP.
protected void set(String protocol, String host, int Available in
port, String authority, String userinfo, String path, PDAP.
String query, String ref)
static void setURLStreamHandlerFactory Not available
(URLStreamHandlerFactory fac) in PDAP.
String toExternalForm() Available in
PDAP.
String toString() Available in
PDAP.

346

java.util

Table B.91. Interfaces of the java.util Package

J2SE Interface

Availability in CLDC/PDAP

Collection

Not availablein CLDC.

Workaround: Vector

Comparator Not available in CLDC.
Enumeration Fully available in CLDC.
EventListener Fully available in PDAP.
Iterator Not availablein CLDC.
Workaround: Enumeration
List Not availablein CLDC.
Workaround: Vector
Listlterator Not available in CLDC.
Map Not available in CLDC.
Workaround: Hashtable
Map.Entry Not available in CLDC.
Observer Not available in CLDC.
Set Not available in CLDC.
SortedMap Not available in CLDC.
SortedSet Not available in CLDC.
Table B.92. Classes of the java.util Package
J2SE Class Availability in CLDC/PDAP
AbstractCollection Not available in CLDC.
AbstractList Not available in CLDC.
AbstractMap Not available in CLDC.

AbstractSequentialList

Not available in CLDC.

AbstractSet

Not available in CLDC.

ArrayList Not available in CLDC.
Workaround: Vector
Arrays Not available in CLDC.
BitSet Not available in CLDC.
Calendar Partially contained; see Table B.94 for details.
Collections Not available in CLDC.
Date Partially contained; see Table B.95 for details.
Dictionary Not available in CLDC.
Workaround: Hashtable
EventObject Fully available in PDAP.
GregorianCalendar Not available in CLDC.
HashMap Not available in CLDC.

Workaround: Hashtable

347

HashSet

Not available in CLDC.

Hashtable Partially contained; see Table B.96 for details.
LinkedList Not available in CLDC.
Workaround: Vector
ListResourceBundle Not available in CLDC.
Locale Partially contained in PDAP; see Table B.97 for details.
Observable Not available in CLDC.
Properties Not availablein CLDC.
Workaround: Hashtable
PropertyPermission Not available in CLDC.

PropertyResourceBundle

Not available in CLDC.

Random

Partially contained; see Table B.98 for details.

ResourceBundle Not available in CLDC.

SimpleTimeZone Not available in CLDC.

Stack Fully available in CLDC.

StringTokenizer Not available in CLDC.

Timer Partially contained; see Table B.99 for details. This class is an
MIDP-specific addition to CLDC.

TimerTask Fully available in CLDC. This class is an MIDP-specific addition
to CLDC.

TimeZone Partially contained; see Table B.100 for details.

TreeMap Not available in CLDC.
Workaround: Hashtable

TreeSet Not available in CLDC.

Vector Partially contained; see Table B.101 for details.

WeakHashMap Not available in CLDC.

Table B.93. Exceptions of the java.util Package

J2SE Exception

Availability in CLDC

ConcurrentModi ficationException

Not available in CLDC.

EmptyStackException

Available in CLDC.

MissingResourceException

Not available in CLDC.

NoSuchElementException

Available in CLDC.

TooManyL istenersException

Not available in CLDC.

Calendar

Table B.94. Methods of the Class Calendar

Method

Availability in CLDC

protected Calendar()

Available in CLDC.

protected Calendar (TimeZone zone,

Locale alLocale)

Not available in CLDC.

abstract void add(int field,

amount)

int Not available in CLDC.

boolean after(Object when)

Available in CLDC.

boolean before(Object when)

Available in CLDC.

void clear()

Not available in CLDC.

348

void clear(int field)

Not available in CLDC.

Object clone()

Not available in CLDC.

protected void complete()

Not available in CLDC.

protected abstract void computeFields()

Not available in CLDC.

protected abstract void computeTime()

Not available in CLDC.

boolean equals(Object obj)

Available in CLDC.

int get(int field)

Available in CLDC.

int getActualMaximum(int field)

Not availablein CLDC.
Workaround for DAY _OF MONTH:

private static int

daysinMonth[] = {

31, 28, 31, 30, 31, 30,
31, 31, 30, 31, 30, 31} ;

public static int

dayslInMonth (Calendar
calendar) {

int year = calendar.get
(Calendar.YEAR);

int month = calendar.get
(Calenadar .MONTH) ;

int days = dayslInMonth
[month-Callendar .JANUARY];

if (month ==
Calendar .FEBRUARY

&& (year % 4 ==
&& (1(year % 100 == 0)
Il (year % 400 ==
0
days++;

return days;

int getActualMinimum(int field)

Not available in CLDC.

static Locale[] getAvailablelLocales()

Not available in CLDC.

int getFirstDayOfWeek()

Not available in CLDC.

abstract int getGreatestMinimum (int
field)

Not available in CLDC.

static Calendar getlnstance()

Available in CLDC.

static Calendar
aLocale)

getlnstance (Locale

Not available in CLDC.

static Calendar
zone)

getlnstance (TimeZone

Available in CLDC.

static Calendar getlnstance (TimeZone
zone, Locale alocale)

Not available in CLDC.

abstract int getLeastMaximum (int
field)

Not available in CLDC.

abstract int getMaximum(int field)

Not available in CLDC.

int getMinimalDaysInFirstWeek()

Not available in CLDC.

abstract int getMinimum(int field)

Not available in CLDC.

Date getTime()

Available in CLDC.

protected long getTimelnMillis(Q)

Available in CLDC.

TimeZone getTimeZone()

Available in CLDC.

int hashCode()

Not available in CLDC.

349

protected int internalGet (int field)

Not available in CLDC.

boolean isLenient()

Not available in CLDC.

boolean isSet(int field)

Not available in CLDC.

abstract void roll (int field, boolean
up)

Not available in CLDC.

void roll(int field, int amount)

Not available in CLDC.

void set(int field, int value)

Available in CLDC.

void set(int year, int month, int date)

Not available in CLDC.

void set(int year, int month, int date,
int hour, int minute)

Not available in CLDC.

void set(int year, int month, int date,
int hour, int minute, int second)

Not available in CLDC.

void setFirstDayOfWeek(int value)

Not available in CLDC.

void setLenient(boolean lenient)

Not available in CLDC.

void setMinimalDayslnFirstWeek (int
value)

Not available in CLDC.

void setTime(Date date)

Available in CLDC.

protected void setTimelnMillis (long
millis)

Available in CLDC.

void setTimeZone(TimeZone value)

Available in CLDC.

String toString()

Not available in CLDC.

Date

Table B.95. Methods of the Class Date
Method Availability in CLDC
Date() Available in CLDC.

Date(int year, int month, int date)

Not available in CLDC
(deprecated J2SE method).

Date(int year, int month, int date, int hrs,

int min)

Not available in CLDC
(deprecated J2SE method).

Date(int year, int month, intdate, int hrs,

int min, int sec)

Not available in CLDC
(deprecated J2SE method).

Date(long date)

Available in CLDC.

Date(String s)

Not available in CLDC
(deprecated J2SE method).

Boolean after(Date when)

Not available in CLDC.

Boolean before(Date when)

Not available in CLDC.

Object clone()

Not available in CLDC.

int compareTo(Date anotherDate)

Not available in CLDC.

int compareTo(Object 0)

Not available in CLDC.

Boolean equals(Object obj)

Available in CLDC.

int getbDate()

Not available in CLDC
(deprecated J2SE method).

int getDay()

Not available in CLDC
(deprecated J2SE method).

int getHours()

Not available in CLDC
(deprecated J2SE method).

int getMinutes()

Not available in CLDC
(deprecated J2SE method).

350

int getMonth()

Not available in CLDC
(deprecated J2SE method).

int getSeconds()

Not available in CLDC
(deprecated J2SE method).

long getTime()

Available in CLDC.

int getTimezoneOffset()

Not available in CLDC
(deprecated J2SE method).

int getYear()

Not available in CLDC
(deprecated J2SE method).

int hashCode()

Available in CLDC.

static long parse(String s)

Not available in CLDC
(deprecated J2SE method).

void setDate(int date)

Not available in CLDC
(deprecated J2SE method).

setHours(int hours)

Not available in CLDC
(deprecated J2SE method).

setMinutes(int minutes)

Not available in CLDC
(deprecated J2SE method).

setMonth(int month)

Not available in CLDC
(deprecated J2SE method).

setSeconds(int seconds)

Not available in CLDC
(deprecated J2SE method).

setTime(long time)

Available in CLDC.

setYear(int year)

Not available in CLDC
(deprecated J2SE method).

String toGMTString()

Not available in CLDC
(deprecated J2SE method).

String tolLocaleString()

Not available in CLDC
(deprecated J2SE method).

String toString()

Not available in CLDC.

static long UTC(int year,
date, int hrs, int min, Int sec)

int month,

int Not available in CLDC

(deprecated J2SE method).

Hashtable

Table B.96. Methods of the Class Hashtable

Method

Availability in CLDC

Hashtable()

Available in CLDC.

Hashtable(int initialCapacity)

Available in CLDC.

Hashtable(int initialCapacity,
float loadFactor)

Not available in CLDC.

Hashtable(Map t)

Not available in CLDC.

void clear()

Available in CLDC.

Object clone()

Not available in CLDC. Workaround: Copy the
Hashtable using keys() and elements()
enumeration's

boolean contains(Object value)

Available in CLDC.

boolean containsKey(Object key)

Available in CLDC.

boolean containsValue(Object
value)

Not available in CLDC. Workaround: Search for
the value using the elements() enumeration.

Enumeration elements()

Available in CLDC.

Tea3bF lij v

Set entrySet()

Not available in CLDC

boolean equals(Object 0)

Not available in CLDC

Object get(Object key)

Available in CLDC.

int hashCode()

Not available in CLDC

boolean isEmpty()

Available in CLDC.

Enumeration keys()

Available in CLDC.

Set keySet()

Not available in CLDC

Object put(Object key, Object
value)

Available in CLDC.

void putAll(Map t)

Not available in CLDC

protected void rehash()

Available in CLDC.

Object remove(Object key)

Available in CLDC.

int size()

Available in CLDC.

String toString()

Available in CLDC.

Collection values()

Not available in CLDC

Locale

Table B.97. Methods of the class Locale

Method

Availability in PDAP

Locale(String language, String country)

Available in PDAP.

Locale(String language, String country, String

variant)

Available in PDAP

Object clone()

Not available in
PDAP.

boolean equals(Object obj)

Available in PDAP

static Locale[] getAvailablelLocales()

Available in PDAP.

String getCountry()

Available in PDAP

static Locale getDefault()

Available in PDAP.

String getDisplayCountry()

Not available in

PDAP.
String getDisplayCountry(Locale inLocale) Not available in
PDAP.
String getDisplayLanguage() Not available in
PDAP.
String getDisplayLanguage(Locale inLocale) Not available in
PDAP.
String getDisplayName() Not available in
PDAP.
String getDisplayName(Locale inLocale) Not available in
PDAP.
String getDisplayvariant() Not available in
PDAP.
String getDisplayVariant(Locale inLocale) Not available in
PDAP.
String getlSO03Country() Not available in
PDAP.
String getlSO3Language() Not available in
PDAP.
static String[] getlSOCountries() Not available in
PDAP.

352

static String[] getlSOLanguages()

Not available in
PDAP.

String getLanguage()

Available in PDAP

String getvVariant()

Available in PDAP.

int hashCode()

Available in PDAP

static void setDefault(Locale newlLocale)

Not available in
PDAP.

String toString()

Available in PDAP.

Random

Table B.98. Methods of the Class Random
Method Availability in CLDC
Random() Available in CLDC.

Random(long seed)

Available in CLDC.

protected int next(int bits)

Available in CLDC.

boolean nextBoolean()

Not availablein CLDC.
Workaround:

(nextInt() & 1) ==

void nextBytes(byte[] bytes)

Not available in CLDC.

double nextDouble()

Available in CLDC-NG.

float nextFloat()

Available in CLDC-NG.

double nextGaussian()

Not available in CLDC.

int nextint()

Available in CLDC.

int nextInt(int n)

Not available in CLDC.

long nextLong()

Available in CLDC.

void setSeed(long seed)

Available in CLDC.

Timer

Table B.99. Methods of the Class Timer
Method Availability in CLDC
Timer() Available in CLDC.

Timer(boolean isDaemon)

Not available in CLDC because
daemon threads are not
available.

void cancel()

Available in CLDC.

void schedule(TimerTask task,

Date

Available in CLDC.

void schedule(TimerTask task, Date Available in CLDC.
firstTime, long period)

void schedule(TimerTask task, long delay) Available in CLDC.
void schedule(TimerTask task, long delay, Available in CLDC.

long period)

void scheduleAtFixedRate(TimerTask

Date firstTime, long period)

Available in CLDC.

void scheduleAtFixedRate(TimerTask

long delay, long period)

Available in CLDC.

353

TimeZone

Table B.100. Methods of the Class TimeZone

Method Availability in
CLDC

TimeZone() Available in
CLDC.

Object clone() Not available in
CLDC.

static String[] getAvailablelDs() Available in
CLDC.

static String[] getAvailablelDs (int rawOffset)

Not available in
CLDC.

static TimeZone getDefault() Available in
CLDC.
String getDisplayName() Not available in
CLDC.
String getDisplayName (boolean daylight, int style) Not available in
CLDC.
String getDisplayName(boolean daylight, int style, Not available in
Locale locale) CLDC.
String getDisplayName (Locale locale) Not available in
CLDC.
String getiD() Available in
CLDC.
abstract int getOffset(int era, int year, int month, int|Availablein
day, int dayOfWeek, int milliseconds) CLDC.
abstract int getRawOffset() Available in
CLDC.
Static TimeZone getTimeZone (String ID) Available in
CLDC.

boolean hasSameRules (TimeZone other)

Not available in
CLDC.

abstract boolean inDaylightTime (Date date)

Not available in
CLDC.

static void setDefault (TimeZone zone)

Not available in
CLDC.

void setID(String ID)

Not available in
CLDC.

abstract void setRawOffset (int offsetMillis)

Not availablein
CLDC

Availablein
CLDC

abstract boolean useDaylightTime()

Vector

Table B.101. Methods of the Class Vector
Method Availability in CLDC
Vector() Available in CLDC.
Vector(Collection c¢) Not available in CLDC.

354

Vector(int initialCapacity)

Available in CLDC.

Vector(int initialCapacity, int

capacitylncrement)

Available in CLDC.

void add(int index, Object element)

Not availablein CLDC.
Workaround:

insertElementAt (Object element,
int index);

boolean add(Object o)

Not availablein CLDC.
Workaround:

addElement (Object 0);

boolean addAll(Collection c)

Not available in CLDC.

boolean addAll(int index, Collection

©)

Not available in CLDC.

void addElement(Object obj)

Available in CLDC.

int capacity()

Available in CLDC.

void clear()

Not availablein CLDC.

Workaround: removeAl lElements()

Object clone()

Not available in CLDC.

boolean contains(Object elem)

Available in CLDC.

boolean containsAll(Collection c)

Not available in CLDC.

void copylnto(Object[] anArray)

Available in CLDC.

Object elementAt(int index)

Available in CLDC.

Enumeration elements()

Available in CLDC.

void ensureCapacity (int
minCapacity)

Available in CLDC.

boolean equals(Object 0)

Not available in CLDC.

Object firstElement()

Available in CLDC.

Object get(int index)

Not availablein CLDC.

Workaround: elementAt (index)

int hashCode()

Not available in CLDC.

int indexOf(Object elem)

Available in CLDC.

int indexOf(Object elem, int index)

Available in CLDC.

void insertElementAt (Object obj,
int index)

Available in CLDC.

boolean isEmpty()

Available in CLDC.

Object lastElement()

Available in CLDC.

int lastindexOf(Object elem)

Available in CLDC.

int lastindexOf (Object elem, int

index)

Available in CLDC.

Object remove(int index)

Not availablein CLDC.

Workaround: removeElementAt(int
index)

boolean remove(Object 0)

Not available in CLDC. Workaround:
removeElement (Object o)

355

boolean removeAll(Collection c)

Not available in CLDC.

void removeAllElements()

Available in CLDC.

boolean removeElement(Object obj)

Available in CLDC.

void removeElementAt(int index)

Available in CLDC.

protected void removeRange (int
fromlndex, int tolndex)

Not available in CLDC.

boolean retainAll(Collection ¢)

Not available in CLDC.

Object set (int index, Object
element)

Not availablein CLDC.
Workaround:

setElementAt(Object obj,
index)

int

void setElementAt (Object obj, int

index)

Available in CLDC.

void setSize(int newSiz4e)

Available in CLDC.

int size()

Available in CLDC.

List subList (int fromlndex, int
tolndex)

Not available in CLDC.

Object[] toArray(Q)

Not available in CLDC.

Object[] toArray(Object[] a)

Not available in CLDC.

String toString()

Available in CLDC.

void trimToSize()

Available in CLDC.

356

java.util.jar

The package java.util . jar, which provides an API for reading and writing JAR-archives and
additional manifest files, is not supported in CLDC.

357

http://safari.oreilly.com/?xmlid=0-672-32095-9/9071532

java.util.zip

The package java.util .zip, which provides an API for reading and writing standard ZIP and
GZIP archives, is not supported in CLDC.

358

Packages

not Available in CLDC

Table B.102. Unavailable J2SE Packages

J2SE Package

J2ME Alternative

Java.applet

Not available in CLDC. Use the MIDl et class instead.

Javax.swing

For MIDP applications, use LCDUI. For PDAP applications, use AWT.

359

	sample.pdf
	sterling.com
	Welcome to Sterling Software

	Java 2 Micro Edition Application Development.pdf
	Table of Content
	Copyright
	Copyright ? 2002 by Sams Publishing
	Trademarks
	Warning and Disclaimer
	Credits
	Dedication

	About the Authors
	Acknowledgments
	Tell Us What You Think!
	Introduction
	Audience
	The Structure of This Book
	Software Development Kits Used to Create the Example Applications
	Web Site

	Chapter 1. Java 2 Micro Edition Overview
	Historical Evolution
	The Green Project
	The Spotless System
	Table 1.1. Packages and Classes of the Spotless System

	The JavaOne99 KVM Preview Version
	Table 1.2. Packages and Classes Included in the JavaOne99 KVM

	Micro Edition–Related Java Specification Requests
	J2ME Configurations and Profiles
	Configurations
	Profiles
	The Mobile Information Device Profile (MIDP)
	The Personal Digital Assistant Profile (PDAP)
	Table 1.3. MIDP and PDAP Comparison

	Sun J2ME Software Development Kits
	Sun's J2ME CLDC Reference Implementation 1.0.3
	Sun's MIDP Reference Implementation v1.0.3
	Figure 1.1. The MIDP Emulator on the Windows32 platform, running a Sokoban game.

	Tools and Third-Party Products for J2ME Application Development
	Sun's J2ME Wireless Toolkit 1.0.3
	Figure 1.2. The Wireless Toolkit running the HelloMidp MIDlet in different device emulations.
	Figure 1.3. The main window of the J2ME Wireless Toolkit, showing the project HelloMidp.

	Sun's MIDP for Palm OS
	Figure 1.4. The PRC Converter Tool of MIDP4Palm.
	Figure 1.5. The UIDemo MIDlet that is included in the J2ME Wireless Toolkit running on a Palm Pilot.

	esmertec's Jbed Micro Edition CLDC and Jbed Profile for MID
	Figure 1.6. The Jbed IDE showing the development of a MIDletSuite.
	Figure 1.7. The MIDPTestSuite running on a Palm Pilot.

	Borland's JBuilder MobileSet, Nokia Edition
	Metrowerks Codewarrior for Java, Version 6.0

	Developing a Simple Application
	Setting Up the System Environment Variables
	Testing the Setup
	CLDC KVM Reference Implementation
	Listing 1.1 Hello Cldc.java—The HelloCldc Sample

	Hello MIDP
	Listing 1.2 HelloMidp.java—The Source Code of the
	Figure 1.8. The running HelloMidp MIDlet.
	Listing 1.3 HelloMidp.jad—The JAD File for the He
	Figure 1.9. The information gained from the JAD file. In this case, only one entry (HelloMidp) is listed.

	Hello PDAP
	Listing 1.4 HelloPdap.java—The HelloPdap Sample S
	Listing 1.5 HelloPdap.jad—The JAD File for the He

	Summary

	Chapter 2. The Connected Limited Device

Configuration
	General CLDC Limitations
	General Java Language Limitations
	Consequences of the Missing Reflection Support
	Simplified Security Model
	Off-Device Preverification

	General Device Hardware Limitations
	CLDC 1.1

	CLDC Application Design
	CLDC APIs
	The java.lang Package
	The java.util Package
	The java.io Package
	The javax.microedition.io Package

	CLDC Profiles
	
	Figure 2.1. J2ME CLDC packages including the MID and PDA profiles and intersections with J2SE.

	MID Profile
	Additions to java.util
	Additions to java.lang
	Additions to javax.microedition.io
	Package javax.microedition.midlet
	Package javax.microedition.lcdui
	Package javax.microedition.rms

	PDA Profile
	Package java.awt and Subpackages
	Package javax.microedition.pim
	Additions to javax.microedition.io

	Java Application Deployment
	JAM Implementation
	The Descriptor File

	JAM on MIDP
	MIDlet Suites
	MIDP JAD Files
	MIDP JAR Manifest Entries
	Over the Air User Initiated Provisioning for MIDP

	JAM for PDAP
	Summary

	Chapter 3. MIDP Programming
	MIDlets
	Display and Displayable
	HelloMidp Revisited

	High-Level API
	Low-Level API
	MIDP 2.0 Additions
	Summary

	Chapter 4. PDAP Programming
	PDAP Application Life Cycle
	PDA User Interface
	Summary

	Chapter 5. Data Persistency
	RMS Basics
	
	Figure 5.1. The record store's visibility and structure.

	Basic Functionality of the Class RecordStore
	A Simple Diary Application Using RMS
	Record Listeners
	Storing Custom Objects
	Ordered Traversal: Comparators and Record Enumerations
	The Search Problem
	Summary

	Chapter 6. Networking: The Generic Connection

Framework
	Creating a Connection—The Connector Class
	Connection Types
	GCF Examples
	MIDP 2.0 Additions to the javax.microedition.io Package
	Summary

	Chapter 7. PIM: Accessing the Personal Information

Manager
	
	Figure 7.1. The SONY CLIE Emulator showing the built-in address book containing two sample contacts.

	General PIM API Design
	Addressbook API
	Calendar API
	ToDo API
	Contact Sample Application
	Summary

	Chapter 8. Size Does Matter: Optimizing J2ME

Applications
	Reducing Class File Sizes
	Freeing Unused Variables and Resources
	Loop Condition Checking
	Avoiding Recursion
	Using Arrays Instead of Vectors
	Using Record Stores Instead of Heap Memory
	Distributing Functionality over Several Small MIDlets
	Fragmentation Problems
	User Interface Issues
	MIDP
	PDAP

	Summary

	Chapter 9. Advanced Application: Blood Sugar Log
	Requirement Analysis
	
	Figure 9.1. The running BloodSugarMidp application showing the logged blood sugar values of the current day.

	Day Log
	Persistent Storage: The LogStorage Class
	The User Interface
	Summary

	Chapter 10. Third-Party Libraries
	XML
	Simple Object Access Protocol: SOAP
	MathFP
	The Bouncy Castle Crypto API
	User Interface Extensions
	
	Figure 10.5. The OWT Grass Seed example application.
	Figure 10.6. The KawtDemo MIDlet.
	Table 10.6. User Interface APIs Available for MIDP

	Summary

	Appendix A. Class Library: CLDC Packages
	The java.io Package
	Interfaces
	Classes
	Exceptions

	The java.lang Package
	Interface
	Classes
	Exceptions
	Errors

	The java.lang.ref Package
	Classes

	The java.util Package
	Interface
	Classes
	Exceptions

	The javax.microedition.io Package
	Interfaces
	Classes
	Exception

	MIDP-Specific Packages
	The javax.microedition.lcdui Package
	Interfaces
	Classes

	The javax.microedition.midlet Package
	Class
	Exception

	The javax.microedition.rms Package
	Interfaces
	Class
	Exceptions

	PDAP-Specific Packages
	The java.awt Package
	Interfaces
	Classes
	Exceptions
	Error

	The java.awt.event Package
	Interfaces
	Classes

	The java.awt.image Package
	Interfaces
	Classes

	The javax.microedition.pim Package
	Interfaces
	Classes
	Exception

	PDAP Additions to the java.io package
	PDAP Additions to the java.lang.reflect package
	PDAP Additions to the java.net package
	PDAP Additions to the java.util package
	Interface
	Classes
	Exception

	Appendix B. Comparison Charts
	java.awt
	java.awt.event
	
	Table B.48. Interfaces of the java.awt.event Package
	Table B.49. Classes of the java.awt.event Package

	java.awt.image
	
	Table B.50. Interfaces of the java.awt.image Package
	Table B.51. Classes of the java.awt.image Package
	Table B.52. Exceptions of the java.awt.image Package

	ColorModel
	Table B.53. Methods of the Class ColorModel

	DirectColorModel
	Table B.54. Methods of the Class DirectColorModel

	ImageFilter
	Table B.55. Methods of the Class ImageFilter

	IndexColorModel
	Table B.56. Methods of the Class IndexColorModel

	java.io
	java.lang
	java.lang.ref
	
	Table B.87. Classes of the java.lang.ref Package

	Reference
	Table B.88. Methods of the Class Reference

	WeakReference
	Table B.89. Methods of the Class WeakReference

	java.lang.reflect
	java.net
	URL
	Table B.90. Methods of the Class URL

	java.util
	java.util.jar
	java.util.zip
	Packages not Available in CLDC
	
	Table B.102. Unavailable J2SE Packages

