

 Table of
Contents

Java™ 2 Micro Edition Application Development

By Michael Kroll, Stefan Haustein

Publisher : Sams Publishing

Pub Date : June 25, 2002

ISBN : 0-672-32095-9

Pages : 504

The key to Java 2 Micro Edition (J2ME) Application Development is the clear,
concise explanations of the J2ME technology in relation to the existing Java platform.
This book assumes proficiency with Java and presents strategies for understanding
and deploying J2ME applications. The book presents numerous real-world examples,
including health care and financial sector examples from the authors' professional
experience.

TE
AM
FL
Y

Team-Fly®

http://www.informit.com/safari/author_bio.asp?ISBN=0672320959
http://www.informit.com/safari/author_bio.asp?ISBN=0672320959

 ii

Table of Content
Table of Content ..ii
Copyright ...v

Copyright © 2002 by Sams Publishing ..v
Trademarks ..v
Warning and Disclaimer ...v
Credits ...v
Dedication..vi

About the Authors..vii
Acknowledgments..vii
Tell Us What You Think! ..vii
Introduction...ix

Audience ..ix
The Structure of This Book ...ix
Software Development Kits Used to Create the Example Applicationsx
Web Site ..xi

Chapter 1. Java 2 Micro Edition Overview ...12
Historical Evolution..12
Micro Edition–Related Java Specification Requests15
J2ME Configurations and Profiles ..17
Sun J2ME Software Development Kits..19
Tools and Third-Party Products for J2ME Application Development........21
Developing a Simple Application ..27
Summary ..34

Chapter 2. The Connected Limited Device Configuration35
General CLDC Limitations ...35
CLDC Application Design ..37
CLDC APIs ...38
CLDC Profiles ..39
Java Application Deployment ..41
JAM on MIDP...42
JAM for PDAP..44
Summary ..44

Chapter 3. MIDP Programming...45
MIDlets ..45
High-Level API ...48
Low-Level API..64
MIDP 2.0 Additions ...91
Summary ..92

Chapter 4. PDAP Programming...93
PDAP Application Life Cycle ...93
PDA User Interface ...94
Summary ..134

Chapter 5. Data Persistency ...135
RMS Basics..135
Basic Functionality of the Class RecordStore ..136
A Simple Diary Application Using RMS ...139
Record Listeners ...146

 iii

Storing Custom Objects ...146
Ordered Traversal: Comparators and Record Enumerations148
The Search Problem ...150
Summary ..150

Chapter 6. Networking: The Generic Connection Framework..............................151
Creating a Connection—The Connector Class ..152
Connection Types ...153
GCF Examples ..165
MIDP 2.0 Additions to the javax.microedition.io Package187
Summary ..189

Chapter 7. PIM: Accessing the Personal Information Manager190
General PIM API Design ..191
Addressbook API...191
Calendar API..196
ToDo API ..197
Contact Sample Application ..198
Summary ..204

Chapter 8. Size Does Matter: Optimizing J2ME Applications..............................205
Reducing Class File Sizes ...205
Freeing Unused Variables and Resources ...205
Loop Condition Checking ...206
Avoiding Recursion ...206
Using Arrays Instead of Vectors ...207
Using Record Stores Instead of Heap Memory..208
Distributing Functionality over Several Small MIDlets...............................210
Fragmentation Problems..210
User Interface Issues..211
Summary ..212

Chapter 9. Advanced Application: Blood Sugar Log ..213
Requirement Analysis...213
Day Log...214
Persistent Storage: The LogStorage Class...218
The User Interface ..220
Summary ..233

Chapter 10. Third-Party Libraries..234
XML ...234
Simple Object Access Protocol: SOAP..244
MathFP..247
The Bouncy Castle Crypto API ...251
User Interface Extensions..254
Summary ..255

Appendix A. Class Library: CLDC Packages..256
The java.io Package ...256
The java.lang Package ...258
The java.lang.ref Package ...261
The java.util Package ...262
The javax.microedition.io Package...263
MIDP-Specific Packages ...265
PDAP-Specific Packages...268

Appendix B. Comparison Charts ...276

 iv

java.awt ...277
java.awt.event ..311
java.awt.image ...312
java.io ..317
java.lang..324
java.lang.ref..343
java.lang.reflect..344
java.net..345
java.util ..347
java.util.jar ..357
java.util.zip..358
Packages not Available in CLDC..359

 v

Copyright

Copyright © 2002 by Sams Publishing

All rights reserved. No part of this book shall be reproduced, stored in a retrieval system, or
transmitted by any means, electronic, mechanical, photocopying, recording, or otherwise, without
written permission from the publisher. No patent liability is assumed with respect to the use of the
information contained herein. Although every precaution has been taken in the preparation of this
book, the publisher and author assume no responsibility for errors or omissions. Nor is any
liability assumed for damages resulting from the use of the information contained herein.

Library of Congress Catalog Card Number: 2001086073

Printed in the United States of America

First Printing: June 2002

05 04 03 02 4 3 2 1

Trademarks

All terms mentioned in this book that are known to be trademarks or service marks have been
appropriately capitalized. Sams Publishing cannot attest to the accuracy of this information. Use
of a term in this book should not be regarded as affecting the validity of any trademark or service
mark.

Warning and Disclaimer

Every effort has been made to make this book as complete and as accurate as possible, but no
warranty or fitness is implied. The information provided is on an "as is" basis. The authors and the
publisher shall have neither liability nor responsibility to any person or entity with respect to any
loss or damages arising from the information contained in this book.

Credits

Executive Editor

Michael Stephens

Acquisitions Editor

Carol Ackerman

Development Editor

Tiffany Taylor

Managing Editor

Charlotte Clapp

 vi

Project Editor

Matt Purcell

Production Editor

Rhonda Tinch-Mize

Indexer

Ginny Bess

Proofreaders

Chip Gardner

Jody Larsen

Technical Editor

Shiuh-Lin Lee

Team Coordinator

Lynne Williams

Pamalee Nelson

Media Developer

Dan Scherf

Interior Designer

Anne Jones

Cover Designer

Aren Howell

Dedication

To my parents

—Michael Kroll

To Janine

—Stefan Haustein

 vii

About the Authors
Michael Kroll studied Medical Computer Science from winter 1998 to winter 2000 at the
University of Applied Sciences in Dortmund Germany. His diploma thesis with the subject
"Decentral Biosignal Processing—Creating a Concept and an Implementation for Palm Connected
Organizers Using J2ME" was an interdisciplinary work in cooperation with the Department of
Radiology and MicroTherapy of the University of Witten/Herdecke Germany. Starting in
November 2000, he became a doctoral student at the University of Applied Sciences Dortmund
Germany in cooperation with the University of Witten/Herdecke Germany.

Both Michael and Stefan are the authors of the kAWT Project, an AWT subset for the KVM and
members of Java PDA profile specification expert group (JSR-000075 PDA Profile for J2ME).

Stefan Haustein studied Computer Science from winter 1990 to the beginning of 1998 at the
University of Dortmund. He wrote his diploma thesis in the Neuros-Project at the "Institut für
Neuroinformatik" at the University of Bochum about graph-based robot navigation.

Since April 1998, he has been working as a Ph.D. student at the AI-Unit of the Computer Science
department of the University of Dortmund.

Acknowledgments
We would like to thank all the professionals at Sams for their efforts helping us create this book.
We would like to thank Carol Ackerman for her support and encouragement as we worked to meet
our deadlines and for the nice meeting in the "beer-research-facility" at Leichlingen/Germany.

Special thanks to Tiffany Taylor for developing the book.

Special thanks to Shiuh-Lin Lee for his technical editing and for testing our demo applications
provided in the book.

We would also like to thank Michael Stephens for giving us the opportunity to write this book

Tell Us What You Think!
As the reader of this book, you are our most important critic and commentator. We value your
opinion and want to know what we're doing right, what we could do better, what areas you'd like
to see us publish in, and any other words of wisdom you're willing to pass our way.

As an executive editor for Sams Publishing, I welcome your comments. You can fax, e-mail, or
write me directly to let me know what you did or didn't like about this book—as well as what we
can do to make our books stronger.

Please note that I cannot help you with technical problems related to the topic of this book, and
that due to the high volume of mail I receive, I might not be able to reply to every message.

When you write, please be sure to include this book's title and authors' names as well as your
name and phone or fax number. I will carefully review your comments and share them with the
authors and editors who worked on the book.

 viii

Fax: 317-581-4770
E-mail: feedback@samspublishing.com
Mail: Michael Stephens

Executive Editor
Sams Publishing
201 West 103rd Street
Indianapolis, IN 46290 USA

For more information about this book or another Sams or Que title, visit our Web site at
www.samspublishing.com or www.quepublishing.com. Type the ISBN (excluding hyphens) or the
title of a book in the Search field to find the page you're looking for.

mailto:feedback@samspublishing.com
http://www.samspublishing.com/
http://www.quepublishing.com/

 ix

Introduction
At the JavaOne conference 1999, the Java 2 Micro Edition (J2ME) was initially introduced. J2ME
is a Java 2 platform, specially designed for embedded devices such as consumer electronics, cell
phones, and PDAs.

This book covers the Connected Limited Device Configuration (CLDC) and the two profiles
available for CLDC, the Mobile Information Device Profile (MIDP) and the Personal Digital
Assistant Profile (PDAP).

Note

Note that the PDAP-related information covered in this book is based on the PDAP
Public Draft Specification, which may slightly differ from the final specification; see
http://www.jcp.org/jsr/detail/75.jsp.

Corresponding updates, including sample applications, can be found at the Web site of
this book—http://www.samspublishing.com; enter the book's ISBN (0672320959).

The intention of this book is to help you to understand the architecture the J2ME technology,
especially CLDC, MIDP, and PDAP, and show you how to use it by creating real-world sample
applications.

Audience

This book is intended for Java developers with general Java experience gained by creating Java 2
Standard Edition applications for the desktop computer. If you aren't yet familiar with Java syntax
and semantics, we recommend that you first start by using Java tutorials available through the
Web or by going to book stores focusing on the Java language. We do not assume that you have
J2ME development experience at this point.

The Structure of This Book

This book is organized in ten chapters and two appendixes. The chapters and appendixes cover the
topics listed as follows:

Chapter 1, "Java 2 Micro Edition Overview," gives a general overview of the Java 2 Micro
Edition (J2ME). Starting from the Green Project, the origin of the J2ME technology, it introduces
the CLDC and its profiles, tells you how to create a small hello world application, and gives an
overview about currently available CLDC based development tools.

Chapter 2, "The Connected Limited Device Configuration," describes the general concepts and
limitations of the CLDC and also takes a closer look at the API packages available in it. The
packages and classes of the Mobile Information Device (MID) and Personal Digital Assistant
(PDA) profiles, including extensions of CLDC classes, are then discussed.

http://www.jcp.org/jsr/detail/75.jsp
http://www.samspublishing.com/

 x

Chapter 3, "MIDP Programming," handles the life cycle and user interface of MIDP applications
and discusses their general design. Then, the high-level user interface API will be explained.
Finally, the low-level user interface API for free graphics and games will be described, and we
will give a short overview of the new MIDP 2.0.

Chapter 4, "PDAP Programming," handles the life cycle and user interface of PDA applications.
First, the general design of PDA applications will be discussed. Then, the AWT subset forming
the PDAP user interface API will be explained.

Chapter 5, "Data Persistency," describes the Record Store Management System (RMS) that is used
in MIDP and PDAP to store data on a cell phone or PDA persistently. We will show the basic use
of Record Stores and tell you how to use iterators in order to access stored records. Finally, we
describe the new RecordStore methods, which are added by MIDP 2.0.

Chapter 6, "Networking: The Generic Connection Framework," describes a framework that is used
in J2ME for network connections. We will describe the structure of this framework, show you
how to establish Socket, Datagram, and HTTP connections, and show their use by implementing a
client/server chat application.

Chapter 7, "PIM: Accessing the Personal Information Manager," describes the Personal
Information Manager that is included in PDAP. Here, we will show you the concepts of the PIM
and also show you how to create a demo application for handling contacts.

Chapter 8, "Size Does Matter: Optimizing J2ME Applications," shows you how to optimize J2ME
applications by describing some essential hints for J2ME application programming.

Chapter 9, "Advanced Application: Blood Sugar Log," shows you how to create an advanced
application by splitting its functionality into two parts; one basic part that can be used in a MIDP
and PDAP application as well and the profile specific GUI part in which a profile specific user
interface is created.

Chapter 10, "Third-Party Libraries," by creating small example applications, this chapter
introduces some third-party libraries such as a substitution for the lack of floating point support,
XML parsers, and a SOAP implementation for J2ME.

Appendix A, "Class Library: CLDC Packages," gives an overview of all packages included in
CLDC, MIDP, and PDAP.

Appendix B, "Comparison Charts," includes a great set of tables where we compare classes of
J2ME with their J2SE counterparts. Each package that is available in J2SE and J2ME is listed in
detail to show you which classes and methods are available in CLDC or CLDC-NG (also known
as CLDC version 1.1). If applicable, we provide workarounds to substitute a particular method of
J2SE by a corresponding set of calls or using other classes to gain the same functionality as in
J2SE.

Software Development Kits Used to Create the Example
Applications

In order to compile and build the MIDP based example applications provided in this book, we
recommend that you use Sun's J2ME Wireless Toolkit v1.0.3 in standalone mode (not the Forte
integration). Follow the installation steps provided by Sun to set up the Wireless Toolkit properly.

 xi

Since a reference implementation for PDAP isn't available at the time of publishing this book, we
recommend that you use the J2SE desktop AWT in order to create PDAP AWT applications. In
order to get emulations of the additional J2ME packages, such as RMS or the Generic Connection
Framework for J2SE, refer to the ME4SE project, available at the Web site http://me4se.org.

If you want to run a PDAP application on a real PDA such as a Palm organizer, you can use the
Jbed VM that is available from the Swiss company esmertec Inc. (http://www.esmertec.com)
together with a kAWT implementation supporting most of the PDAP features at this time. For
PDAs where a Personal Java implementation is available, you can also use Personal Java, together
with some of the ME4SE classes.

Web Site

You can download the source code for the example applications discussed in this book from
www.samspublishing.com. When you reach the page, just enter the book's ISBN (0672320959)
and follow the Source Code link.

TE
AM
FL
Y

Team-Fly®

http://me4se.org/
http://www.esmertec.com/
http://www.samspublishing.com/

 12

Chapter 1. Java 2 Micro Edition Overview
IN THIS CHAPTER

• Historical Evolution
• Micro Edition–Related Java Specification Requests
• J2ME Configurations and Profiles
• Sun J2ME Software Development Kits
• Tools and Third-Party Products for J2ME Application Development
• Developing a Simple Application

This chapter gives a general overview of the Java 2 Micro Edition (J2ME). Starting from the
Green Project, the origin of this fascinating new technology, this chapter gives a short summary of
the evolutionary process leading to the actual configurations and profiles specified in the Java
Community Process (JCP). Then, it discusses the Software Development Kits available from Sun,
including a short programming example. It also describes the additional building steps necessary
for the Connected Limited Device Configuration (CLDC), Mobile Information Device Profile
(MIDP), and the PDA profile (PDAP). Finally, it gives a brief description of some third-party
products relevant for J2ME application development.

Note

If you are already familiar with the history of Java and the Java 2 Micro Edition
technology, you can skip this section and go directly to the description of the J2ME
configurations and profiles.

Historical Evolution

Looking back, several projects have dealt with Java-related programming languages used on
consumer devices. These projects were mostly feasibility studies and they were never standardized;
but, many of the ideas were incorporated into the J2ME standards. It makes sense to look at the
origins of these components to gain a better understanding of why things are as they are in J2ME.

The Green Project

The Green Project began in December 1990. Some people at Sun decided to try to figure out what
the next step would be in the evolution of computing and how they could be part of it. They came
to the conclusion that the next evolutionary step would be the merger of digitally controlled
consumer devices and computers—the kinds of devices we know as Personal Digital Assistants
(PDAs) today.

The Sun engineers developed a new SPARC-based, wireless handheld PDA called Star7 or *7.
This newly created device was equipped with a 5-inch, 16-bit color LCD with touch-screen input
capabilities. In addition, it was capable of communicating with other *7 devices over a built-in
900MHz wireless network. This small device required the development of an OS that would fit in
only one megabyte of RAM.

The original plan was to develop the Star7 operating system using C++. However, one of the
members of the Green Project, James Gosling, became fed up with C++ and decided to develop a
new programming language. The result of his work was a programming language called Oak,

 13

which was especially designed to run on devices with significant resource constraints, just like
Star7. Thus, Oak had to be very small, efficient, and easily portable to other hardware devices.

Oak was the original ancestor of the Java programming language, which has all the properties just
mentioned. (Another byproduct of the Green Project was the Duke, which became the official Java
mascot. The Java Duke is a personification of the agent in the user interface of Star7, similar to
Microsoft's paper clip.) Star7 was finished and officially presented on September 3, 1992.

In only a few years of development, Java grew to be a leading programming language on desktop
computers. However, much of the original focus—to fit a language onto portable computers—was
lost during Java's evolution. The new Java development goal became fast execution on desktop
machines, regardless of the size of the Java Virtual Machine (JVM). In addition, the standard
libraries were extended to several megabytes for developer convenience.

But in 1998, SunLabs got back on the original track and started a new research project, the
Spotless System. The goal of the new project was to create a portable JVM that was suitable for
embedded systems.

The Spotless System

As mentioned, implementors of Java focused on increasing the speed of the JVM, leading to
memory-consuming technologies such as HotSpot. No effort was made to keep those systems
small because for desktop systems, the size was not relevant. Consequently, those Java
implementations were not suitable for embedded systems offering only a small amount of memory
and limited computing power.

This situation changed with the newly created virtual machine of the Spotless System, which was
especially designed to fit the constraints of embedded systems. This project had the following
main goals:

• Build the smallest possible complete JVM that supports the full bytecode set, including
class loading and non-graphical libraries.

• Implement the new JVM in highly readable source code in order to provide the best
portability to available hardware platforms.

The result of the Spotless System project was a small JVM that occupies less than 300 kilobytes of
static memory on a PC system. In order to create an implementation for a real-world embedded
device, the engineers first targeted the Rolodex REX personal organizer developed and distributed
by Franklin Electronic Publishers. However, this device lacked a development kit, so the
engineers switched to the Palm Connected Organizer as a reference platform for their JVM
implementation, where excellent support for developing software solutions is available. In
addition, the Palm PDA is the most popular PDA currently available in the market.

The original Spotless JVM implementation for the Palm PDA included only a small subset of the
class libraries available for desktop Java. As you can see in Table 1.1, the subset is very small
even when compared to the actual J2ME configurations discussed in the section "J2ME
Configurations and Profiles." Although the class libraries were sufficient to show feasibility of
Java development for embedded systems, they still had some major drawbacks. So the GUI
components offered by the spotless package were device-specific to the Palm Connected
Organizer.

Table 1.1. Packages and Classes of the Spotless System
Package
Name

Included Classes

java.lang Class, Error, Exception, IndexOutOfBoundsException,

 14

NullPointerException, Object, Runnable, Runtime,
RuntimeException, String, StringBuffer, Thread, Throwable

java.io InputStream, IOException, OutputStream, Serializable
java.net InetAddress, ProtocolException, Socket, SocketException,

SocketInputStream, SocketOutputStream, UnknownHostException
spotless Beam, Bitmap, Component, Database, Event, External,

ExternalException, ExternalManager, Field, Form, Graphics, IO,
Label, List, Lst, NativeIO, PButton, Spotlet

The JVM developed in the Spotless System consists of a central application that acts as a class
launcher, analogous to the Java command on the desktop. But in contrast to the desktop Java, it
includes a complete list of all available Java classes. It gives the user the ability to run any class
containing a static main method.

The JavaOne99 KVM Preview Version

At the JavaOne99 conference, some results of the Spotless project got their official place in the
Java family. The Java Technology was split into three categories: Java 2 Enterprise Edition (J2EE),
Java 2 Standard Edition, and the new Java 2 Micro Edition (J2ME). The heart of J2ME is a new
virtual machine, which is specially designed for embedded systems, cellular phones, and PDAs.
Because of its low memory footprint of only a few kilobytes, the new virtual machine was named
Kilobyte Virtual Machine (KVM). In fact, Sun did not merely announce the new technology; it
showed a preview version for PalmOS.

The new KVM was, as you may already have guessed, directly derived from the Spotless System
project. However, there are some changes in the supported package names, some classes are
canceled, and other classes are added (see Table 1.2). It's still possible to browse through all
included Java class files, and all runnable Spotlets that include a main method are now listed in
the PalmOS application launcher. The package spotless has been renamed com.sun.kjava;
it now includes an enhanced version of the Palm-specific GUI classes.

Table 1.2. Packages and Classes Included in the JavaOne99 KVM
Package Name Included Classes
java.lang Class, Error, Object, Runtime, String, StringBuffer, Thread,

Throwable, Exception, IllegalAccessException,
IndexOutOfBoundsException, NullPointerException, Runnable,
RuntimeException

java.io InputStream, IOExceptopn, OutputStream, Serializable
java.net Socket, SocketException
com.sun.kjava Bitmap, Button, Caret, CheckBox, Database, Dialog,

DialogOwner, Graphics, HelpDisplay, IntVector, List,
RadioButton, RadioGroup, ScrollOwner, ScrollTextBox, Slider,
Spotlet, TextBox, TextField, Trigonometric, ValueSelector,
VerticalScrollbar

Note

This class overview is not intended to replace an API reference. It simply describes the
formation of the KVM packages and their classes compared with the Spotless System.

Beneath downsized versions of some standard Java packages, the first KVM contained some
Palm-specific GUI classes, mostly derived from the Spotless project. A short look at the size of

 15

the Java standard package set shows the next problem: A small virtual machine is not really useful
without small libraries.

During the months after the JavaOne conference in 1999, some Early Access (EA) versions were
released for registered Java developers only. Between those releases, the APIs somehow
changed—many bugs were fixed between EA version 0.1 and 0.2, including many virtual machine
bugs, and some improvements were made to the com.sun.kjava classes, as well.

Micro Edition–Related Java Specification Requests

After KVM EA version 0.2, a great change took place. KVM EA 0.2 was developed by Sun only;
but after that, the KVM technology began to be specified during the Java Community Process
(JCP) by many companies that participate in a Java Specification Request related expert group.

The Java Community Process (JCP)
The JCP program was initiated by Sun on December 8, 1998, in order to create a fast
and flexible formal system for the development and revision of Java technology
specifications. This process lets the Java community, as well as Sun engineers,
participate in the specification process of creating new Java APIs.

The main goals of JCP are to enable the wide-ranging Java community to participate in
creating proposals, as well as selecting and developing new Java APIs. This process
enables Java community members to advise API development efforts without needing to
involve Sun engineers.

The whole process follows key milestones that enable a new specification to be drafted
in a given period of time. When the Specification is approved, a Reference
implementation and an additional Technology Conformance Kit follow, to enable
licensees to create an implementation that is compliant with the newly specified
technology.

The JCP is described in more detail on the following Web site:

http://jcp.org/

Please take a look at the documents offered by Sun if you are interested in getting more
information about this topic.

Proposals for new Java Specifications are called Java Specification Requests (JSR). Those
requests are not only used to create or develop new Java APIs, but also to renew or modify
existing Java APIs. If developers in the Java community are interested in submitting a JSR, they
must first sign a Java Specification Participation Agreement (JSPA). After they are community
members, they can use a JSR template (available from Sun Microsystems Inc.), in which they
specify the goals of the proposal.

The following list shows the most important J2ME-related JSRs that are currently available. At
the time of this writing, the following three JSRs have been specified and are available as final
releases and reference implementations:

• The Connected Limited Device Configuration (CLDC) JSR000030

http://jcp.org/

 16

URL to the specification:

http://jcp.org/jsr/detail/30.jsp

URL to download the reference implementation:

http://www.sun.com/software/communitysource/j2me/

• The Mobile Information Device Profile (MIDP) JSR000037

URL to the specification:

http://jcp.org/jsr/detail/37.jsp

URL to download the reference implementation:

http://www.sun.com/software/communitysource/midp/

• The Personal Digital Assistant Profile (PDAP) JSR000075

URL to the specification:

http://jcp.org/jsr/detail/075.jsp

At the time of this writing, the reference implementation was not yet available. Refer to
the book's Web site in order to get a valid URL to download the reference implementation
when it becomes available.

• The Connected Limited Device Configuration 1.1 JSR000139

URL to the specification:

http://www.jcp.org/jsr/detail/139.jsp

• The Mobile Information Device Profile 2.0 JSR000118

URL to the specification:

http://www.jcp.org/jsr/detail/118.jsp

These JSRs are discussed in detail in the next section.

As of this writing, other J2ME-related JSRs belonging to the Connected Device Configuration are
in the specification process. Please refer to the following URLs to obtain further information about
these JSRs and their current status:

• The J2ME Platform Specification JSR000068

http://jcp.org/jsr/detail/68.jsp

• The Connected Device Configuration (CDC) JSR000036

http://jcp.org/jsr/detail/36.jsp

http://jcp.org/jsr/detail/30.jsp
http://www.sun.com/software/communitysource/j2me/
http://jcp.org/jsr/detail/37.jsp
http://www.sun.com/software/communitysource/midp/
http://jcp.org/jsr/detail/075.jsp
http://www.jcp.org/jsr/detail/139.jsp
http://www.jcp.org/jsr/detail/118.jsp
http://jcp.org/jsr/detail/68.jsp
http://jcp.org/jsr/detail/36.jsp

 17

• The Foundation Profile JSR000046

http://jcp.org/jsr/detail/36.jsp

• The Personal Profile JSR000062

http://jcp.org/jsr/detail/62.jsp

• The Personal Basis Profile JSR000129

http://jcp.org/jsr/detail/129.jsp

• The RMI Profile JSR000066

http://jcp.org/jsr/detail/66.jsp

Note

Because this book is intended to cover CLDC-based profiles, it gives only a short
overview about the JSRs that are available for CDC and focuses on covering CLDC-
based applications only.

A comparison between CDC and CLDC appears in the next section.

J2ME Configurations and Profiles

Obviously, the standard Java libraries are just too big for the Java 2 Micro Edition. Once the KVM
was available, the next logical step was to define appropriate libraries. But just downsizing the
standard libraries was not sufficient: The target devices have many special requirements that also
must be covered by libraries.

For example, many PDAs and all cellular phones do not have a file system. Instead, data is stored
persistently in simple databases in buffered RAM or flash memory. Obviously, a KVM library
would need to provide access to this kind of storage. Moreover, the specific needs diverge for the
potential KVM devices. A set top box (a device that decodes interactive TV signals) does not have
much in common with a cellular phone except that they both normally provide a small amount of
CPU power.

For these reasons, Sun decided to design several KVM profiles, one for each group of target
devices. Examples of KVM profiles are the Mobile Information Device Profile (MIDP) for
cellular phones and the PDA Profile for PDAs.

Like other official Java libraries, the profiles are designed in the Java Community Process. A
novelty in version 2.0 of the JCP is that not just companies but also individuals can participate.
For example, the authors of this book are participating in the PDAP specification process as
invited experts.

The profiles are designed on top of KVM configurations. Whereas the profiles mainly address
device-type–specific issues, the configurations summarize the available basic KVM functionality
for devices with similar computing power and equipment characteristics. The following sections
describe KVM configurations and profiles in more detail.

http://jcp.org/jsr/detail/36.jsp
http://jcp.org/jsr/detail/62.jsp
http://jcp.org/jsr/detail/129.jsp
http://jcp.org/jsr/detail/66.jsp

 18

Configurations

Currently, just two configurations—CLDC and CDC—exist. The CDC profiles are still in the
specification process, but the CLDC is finished and forms the basis for MIDP and PDAP.

The CLDC was designed especially for the mobile phone and PDA class of devices. It requires
128 to 512KB of memory (RAM and ROM), a battery power supply, and a network connection of
at least 9600bps.

The CLDC API contains simplified versions of java.lang, java.io, java.util, and the
new package javax.microedition.io, described in more detail in Chapter 6, "Networking:
The Generic Connection Framework."

Because CLDC was specified for processors that may not provide floating-point support, float
and double are not supported. However, CLDC 1.1, the next generation of the CLDC profile,
adds support for floating point operations. Support for Java Native Interfaces (JNI) also is not
included in CLDC. The reflection API is very limited; for example, user-defined class loaders are
not available. Finalization is not supported.

Another restriction is that class files need to be preverified before execution with the KVM. The
preverification step inserts hints into the class files that simplify and speed up the actual
verification of the classes on the device. The preverification step includes a check for invalid data
types, so class files containing floats will be rejected in this step for the original CLDC profile.

The second configuration available, CDC, targets more powerful devices like set top boxes, video
phones, and gaming consoles with at least 512KB ROM and 256KB RAM as well as a fast
network connection.

Profiles

In contrast to the configurations, which are independent of the device's purpose, the profiles cover
aspects that are specific to a certain device type. For example, the profiles cover the user interface
and persistent data storage. Currently, two profiles are available: MIDP and PDAP.

The Mobile Information Device Profile (MIDP)

MIDP targets cellular phones and simple pagers. It provides a very simple and abstract user
interface built of simple elements. The user interface is divided into a high-level and a low-level
API. The high-level API provides simple elements such as lists and forms, but it offers only very
limited control over the concrete appearance on the screen. The low-level API provides full
control over the screen, but no widgets; it's mainly intended for games. The UI API is not
compatible with any other Java UI API, such as AWT or SWING.

The Personal Digital Assistant Profile (PDAP)

Just as the name suggests, PDAP targets PDAs. It provides a user interface that is a subset of the
AWT package of the Java 2 Standard Edition and access to the Personal Information Management
databases of the device. In contrast to MIDP, PDAP is based on the newer CLDC-NG
configuration because the AWT classes require floating point support. In order to access existing
MIDP applications, the PDA profile is a complete superset of the MID Profile. Thus, any MIDP
application can run on devices supporting PDAP. However, in contrast to MIDP devices, which
have always a wireless connection, existing PDAs don't necessarily provide permanent network
access.

 19

Because the PDA profile is a superset of the MID profile, applications that do not require a
sophisticated user interface or PIM access should be based on the MID profile. Table 1.3 shows a
short comparison of the profiles.

Table 1.3. MIDP and PDAP Comparison
 MIDP PDAP

Available on phones Yes No[*]
Available on PDAs Yes Yes
Basic UI capabilities Yes Yes
Wireless Internet access Yes Yes[*]
Sophisticated UI capabilities No Yes
Address book access No Yes
Calendar access No Yes

[*] Availability is device-dependent

Sun J2ME Software Development Kits

This section gives a short overview of the J2ME development tools that are currently available.
Unless explicitly stated otherwise, these CLDC and the MIDP SDKs from Sun are used as the
reference SDKs for the examples in this book. The Sun SDKs are basis for several IDE add-ins
and are available for the widest range of operating systems.

Caution

Although the APIs are standardized, parts of the compilation process may change with newer
SDK versions. If you are in doubt or observe problems with the following instructions, please
refer to the documentation provided with your SDK.

Compared to developing for the desktop, targeting the Java 2 Micro Edition requires some
additional tools—a preverifier, at the least. Most SDKs do not bring in their own Java compiler;
they rely on an installed JDK 1.2 or 1.3. Several SDKs contain a device emulation. Of course, it
would also be possible to test the programs on the target devices directly. However, the
emulations normally allow faster installation, and most of them also provide some additional
debugging support.

Sun's J2ME CLDC Reference Implementation 1.0.3

The version 1.0.3 of the CLDC reference implementation (RI) does not contain any GUI classes. It
is available for Windows 98/NT (Win32), Linux, and Solaris. The CLDC RI provides command-
line tools only. For easier development, several integrated development environments provide
CLDC plug-in support.

Note

You can download the Sun CLDC reference implementation from the following URL:

http://www.sun.com/software/communitysource/j2me/

http://www.sun.com/software/communitysource/j2me/

 20

The CLDC reference implementation ships without a Java compiler, so an additional Java
compiler like the one contained in the Java Development Kit for the Java 2 Standard Edition is
needed to actually build KVM programs. Also, the process for compiling J2ME applications is
somewhat different from desktop development. For example, it is necessary to specify the
compiler parameter -bootclasspath, in order to compile the application with the J2ME
libraries instead of the standard desktop environment. These additional steps are described in
detail in the section "Developing a Simple Application."

Sun's MIDP Reference Implementation v1.0.3

In addition to the CLDC RI, Sun offers an implementation of the MIDP as well. Similar to the
CLDC RI, the MIDP implementation is distributed under the Sun Community Source License and
ships without a Java compiler.

The MIDP Development Kit includes the complete source for its supported target platforms—
Win32, Linux, and Solaris—available in separate files which are available for download. The
MIDP SDK includes several example applications, ranging from simple demos showing how to
use common MIDP widgets to complete games, such as the TitlePuzzle game (see Figure 1.1).
Moreover, it includes a description of how the included development tools are used.

Figure 1.1. The MIDP Emulator on the Windows32 platform, running a Sokoban
game.

 21

Note

You can download the Sun MIDP reference implementation from the following URL:

http://www.sun.com/software/communitysource/midp/

Tools and Third-Party Products for J2ME Application
Development

In addition to the Sun SDKs, several other J2ME SDKs, IDEs, and related products from other
vendors are available. We'll discuss a number of these tools and products in this section.

Sun's J2ME Wireless Toolkit 1.0.3

The J2ME Wireless Toolkit is a project management tool intended to simplify MIDP development.
It can perform the compile and preverification steps automatically, including the generation of the
JAR and JAD files. It is not a complete Integrated Development Environment (IDE), so it does not
offer an editor. The MIDP SDK is included in the Wireless Toolkit, but the JDK version 1.3 is
also required.

In addition to the MIDP SDK, the Wireless Toolkit contains some additional skins for the device
emulation (see Figure 1.2). The additional skins are a pager with a complete keyboard and cell
phone emulation with a thumbwheel, as well as support for the Palm OS Emulator, RIM pagers,
and Motorola cell phones.

Figure 1.2. The Wireless Toolkit running the HelloMidp MIDlet in different device
emulations.

TE
AM
FL
Y

Team-Fly®

http://www.sun.com/software/communitysource/midp/

 22

The main window of the toolkit, shown in Figure 1.3, consists of some buttons for creating a new
project, opening existing projects, and building and running the project in the specified device
emulation.

Figure 1.3. The main window of the J2ME Wireless Toolkit, showing the project
HelloMidp.

To edit the source code of the project files, you can use your favorite editor, such as Emacs or
Windows' simple NotePad. Another option is to use Forte with the plug-in contained in the
Wireless Toolkit. Together with Forte and JDK 1.3, the Wireless Toolkit forms a complete IDE
for MIDP.

Note

The J2ME Wireless Toolkit is available from the following URL:

 23

http://java.sun.com/products/j2mewtoolkit/

Sun's MIDP for Palm OS

The MIDP for Palm OS is the first Mobile Information Device Profile implementation from SUN,
running on a real mobile device. It consists of a set of executables in Palm prc-format and a
converter capable of converting MIDP JAD/JAR file pairs (generated, for example, using the
J2ME Wireless Toolkit) to the Palm MIDP format. Figure 1.4 shows the PRC Converter Tool
included in the MIDP for Palm OS distribution.

Figure 1.4. The PRC Converter Tool of MIDP4Palm.

The MIDP for Palm OS implementation can be used in conjunction with the J2ME Wireless
Toolkit to create and convert MIDlets in order to run them on a Palm or on the Palm OS
Emulator without additional tools (except an editor to create the source). Figure 1.5 shows the
UIDemo application that is included in the J2ME Wireless Toolkit on a Palm Pilot.

Figure 1.5. The UIDemo MIDlet that is included in the J2ME Wireless Toolkit
running on a Palm Pilot.

http://java.sun.com/products/j2mewtoolkit/

 24

Note

You can download the Mobile Information Device Profile implementation for PalmOS from the
following URL:

http://java.sun.com/products/midp4palm/index.html

esmertec's Jbed Micro Edition CLDC and Jbed Profile for MID

The Swiss company esmertec Inc. offers a CLDC-compatible JVM and the MID profile. The
CLDC and the MID version of Jbed come with the Jbed Integrated Development Environment
(IDE), shown in Figure 1.6, in order to simplify application development.

Figure 1.6. The Jbed IDE showing the development of a MIDletSuite.

http://java.sun.com/products/midp4palm/index.html

 25

Figure 1.7 shows the sample MIDPTestSuite, which is bundled with the Jbed Profile for MID. The
main advantage of Jbed is that it is the fastest JVM for embedded devices currently available on
the market.

Figure 1.7. The MIDPTestSuite running on a Palm Pilot.

Jbed obtains its high speed by compiling Java programs to native code. The compilation can be
performed on the device itself or in advance on the desktop. Applications running on Jbed run
incredibly quickly compared to other KVMs.

 26

It is amazing that it is possible to get a complete class-to-native compiler on a constrained device
like the Palm Pilot. Moreover, Jbed provides real-time capabilities. So if you are planning to
create software for embedded systems, and Jbed is available for that platform, Jbed is probably the
optimal choice. However, for devices with a build in JVM, such as MIDP- powered cell phones, in
most cases it will not be possible to use Jbed.

Jbed does not include a device emulation, but a Palm Operating System Emulator (POSE) is
available directly from Palm Inc. without charge.

Note

Use the following link to get more information about Jbed CLDC and the Jbed Profile for MID
from esmertec:

http://www.esmertec.com/

Borland's JBuilder MobileSet, Nokia Edition

The JBuilder MobileSet is a J2ME CLDC- and MIDP-compliant development environment. It is
fully integrated with JBuilder 5 in order to simplify development of Java applications for mobile
devices.

The MobileSet includes the following features:

• Wizards for creating MIDP Projects and single MIDlets
• Debugging MIDlets in NOKIA device emulators
• Designer for Rapid Application Development of MIDlets
• Deployment tools for creating JAR/JAD file pairs

Note

Use the following link to get more information about Borland's JBuilder MobileSet, Nokia Edition:

http://www.borland.com/jbuilder/mobileset/

Metrowerks Codewarrior for Java, Version 6.0

The Codewarrior for Java Version 6.0 offers a fully integrated development environment for Java
applications and supports J2ME CLDC and MIDP application development as well. It supports a
set of tools for J2ME application similar to those supported by JBuilder's MobileSet:

• Project management for J2ME applications
• MIDlet debugging in emulators
• Deployment tools for creating JAR/JAD file pairs

Note

Use the following link to get more information about Metrowerks Codewarrior for Java:

http://www.metrowerks.com/desktop/java/

http://www.esmertec.com/
http://www.borland.com/jbuilder/mobileset/
http://www.metrowerks.com/desktop/java/

 27

Developing a Simple Application

This book would not be a true programming book if the "Hello World" example was missing.
Actually, we need three different "Hello World" examples to cover the CLDC reference
implementation from Sun as well as the MIDP and PDAP CLDC profiles. The following sections
describe the steps necessary to compile and run a simple KVM program for each target platform.

Setting Up the System Environment Variables

If you are using one of the integrated development environments, you can probably skip the
installation parts of this section. Just type the example and click Build or Compile and then Run,
depending on the type of IDE you are using.

For command-line operation, it is helpful to insert the bin/win32 directory located in your
J2ME installation into the system search path. For the MIDP SDK, you need to add the
build/win32/tools directory to the system path as well. For Windows 95/98, this is
performed by adding the corresponding directory to the path command in the file
c:\autoexec.bat. If you're running Windows NT 4.0 or Windows 2000, open the Properties
dialog box by right-clicking on My Computer on your desktop and selecting Properties. The path
information is located in the Extended tab.

The kvm and preverify utilities are also available for Solaris and Linux. However, the
executables are located in different directories or download packages. Please refer to the
corresponding documentation for installation on Unix systems.

Testing the Setup

In order to work with the command-line oriented SDKs, the first step is to open a command line.
Windows users just need to click the Start button and choose Programs, followed by MS-DOS
Command Line. For Unix, the way a command shell window is opened differs, depending on the
Desktop Manager and the exact system setup. For many installations, you just need to click on the
shell symbol in the start bar.

Before beginning, it makes sense to perform a short test to see whether the environment is set up
correctly. Please do not skip the test: It will probably save you from spending time searching for
simple and avoidable problems.

To test whether the preverify command is in the system search path, type in the following
command:

C:\> preverify

The command should generate the following output (or similar):

Usage: preverify [options] classnames|dirnames ...

where options include:
 -classpath <directories separated by ';'>
 Directories in which to look for classes
 -d <directory> Directory in which output is written (default
is ./output/)
 @<filename> Read command line arguments from a text file

 28

If you get a "command or file name not found" error message, the PATH environment variable
probably is not set correctly. Include the bin directory of the KVM installation in your system
search path.

Now perform the same test for the javac command:

C:\> javac

Again, if the system returns a "command or file name not found" error message, ensure that a JDK
is installed and also that the JDK bin directory is in the system search path, as described in the
previous section.

Now that you are sure your system is set up properly, you're ready for real programming. You can
go directly to the subsection of the target profile for which you are planning to program, or you
can go through all three if you want to get an overview of the profiles.

CLDC KVM Reference Implementation

Begin by setting an environment variable that points to the CLDC and Kjava classes:

Windows:

set CLDC_BCP=c:\j2me_cldc \bin \common \api \classes

Unix/Csh:

setenv CLDC_BCP ~/j2me_cldc/bin/common/api/classes

Unix/Bash:

export CLDC_BCP=~/j2me_cldc/bin/common/api/classes

Note that the actual directory containing the CLDC and Kjava classes depends on the exact
installation and version number; it may differ from this example. If so, set the CLDC_BCP variable
accordingly.

On Windows 98, you can add the previous line to the file c:\autoexec.bat. On Unix systems,
add the line to the corresponding startup or login script. The changes will then affect all command
lines automatically. If you're running Windows NT 4.0 or Windows 2000 Professional, the system
environment variables are set in the same place as the system search path. Open the system
properties dialog by right-clicking My Computer on your desktop and selecting Properties. Then,
choose the Extended tab and select Environment Variables to set the CLDC_BCP variable
permanently. Select New for User Variables to open a dialog box in which you can set the name
(for example, CLDC_BCP) and the value (c:\j2me_cldc\bin\api\classes) of the variable.
When you click OK, the new variable will be stored permanently and will be available in all new
command shells. Shells already started are not affected, so they must be closed and restarted.

Finally, check whether the environment variable pointing to the CLDC and Kjava classes is set
properly:

Windows: echo %CLDC_BCP%
Unix: echo $CLDC_BCP

 29

Now that you have made sure the compiling environment is set up properly, you can start with the
sample application. Listing 1.1 contains the complete source code of the HelloCldc.java file.

Listing 1.1 Hello Cldc.java—The HelloCldc Sample Source Code

public class HelloCldc {

 public static void main (String [] args) {
 System.out.println("Hello CLDC.");

 System.out.println("This application is running on a "
 + System.getProperty("microedition.configuration")
 + " JVM");
 }
}

You now can compile the sample program using the following command:

Windows: javac bootclasspath %CLDC_BCP% HelloCldc.java
Unix: javac bootclasspath $CLDC_BCP HelloCldc.java

The bootclasspath parameter is necessary because the program cannot be compiled with the
standard Java desktop libraries; it must access the CLDC and Kjava libraries.

If the compile command line does not produce any error message, you can perform the preverify
step:

Windows: preverify -classpath .;%CLDC_BCP% HelloCldc
Unix: preverify -classpath .:$CLDC_BCP HelloCldc

This step is necessary to include verification hints in the class file, simplifying the class
verification on the target device. Future javac versions may have a switch to perform
preverification at compilation time, simplifying J2ME application development.

The preverify step creates a new subdirectory named output, where the preverified classes are
placed.

If the preverify step is successful, you can test the application with the command line kvm:

cd output
kvm HelloCldc

These commands change the current directory to the output directory containing the preverified
files and start the kvm with the new verified HelloCldc class. The following output will be
generated:

Hello CLDC.
This application is running on a CLDC-1.0 JVM

Hello MIDP

Similar to using the CLDC RI, the first step is to set up an environment variable pointing to the
MIDP library classes. The environment variable simplifies the following compilation steps and
helps avoid annoying problems resulting from typos in long path names:

 30

Windows: set MIDP_BCP=c:\midp-fcs\classes
Unix/Csh: setenv MIDP_BCP ~\midp-fcs\classes
Unix/Bash: export MIDP_BCP=~\midp-fcs\classes

You can make sure that the system path is set properly by typing MIDP on the command line. If
the cell phone emulation appears, and the current directory is not the MIDP bin directory, the
system path is set correctly. Please refer to the previous section if the path is not set or if you
would like to set the variable(s) permanently.

Note

The steps to create a runnable MIDP application from compiling through preverification and so on
are very confusing for J2ME beginners. We will explain MIDP development using the low-level
command-line tools. We recommend that you use the Wireless Toolkit or another IDE for actual
development.

Again, we will compile a simple "Hello World" program. The corresponding Java program for the
MIDP API is contained in Listing 1.2. Programming with the MIDP API is described in Chapter 3,
"MIDP Programming." Here, we will focus on the compilation steps.

Listing 1.2 HelloMidp.java—The Source Code of the MIDP Sample

import javax.microedition.midlet.*;
import javax.microedition.lcdui.*;

public class HelloMidp extends MIDlet {

 public void startApp() {
 Form form = new Form ("HelloMidp");
 Display.getDisplay (this).setCurrent (form);
 }

 public void pauseApp() {
 }

 public void destroyApp(boolean unconditional) {
 }
}

Change to the directory containing the Java file and compile the program using this command:

Windows: javac bootclasspath %MIDP_BCP% HelloMidp.java
Unix: javac bootclasspath $MIDP_BCP HelloMidp.java

Now, preverify the program:

Windows: preverify classpath .;%MIDP_BCP% HelloMidp
Unix: preverify classpath .:$MIDP_BCP HelloMidp

The preverification command creates a new output directory where it stores the preverified
classes. You can test the MIDlet by typing the following commands:

 31

cd output
midp HelloMidp

These commands change the current directory to the output directory containing the preverified
files and start the MIDP emulator with the new verified HelloMidp class, as shown in Figure 1.8.

Figure 1.8. The running HelloMidp MIDlet.

In order to deploy programs that consist of multiple classes, JAR files from the desktop are used to
bundle all necessary application classes together. Fortunately, you can just jar the complete
output directory generated by the preverifier—you do not need to specify the filenames again for
jar:

jar –cf hellomidp.jar output

After you successfully create the JAR file, you need to create a Java Application Descriptor (JAD)
file. The JAD file encapsulates the information about the contents of the JAR file. In contrast to
the manifest file, the JAD file is not included in the archive. It is intended to support automatic
download of MIDlets. Listing 1.3 shows the JAD file for the HelloMidp example MIDlet.

Listing 1.3 HelloMidp.jad—The JAD File for the HelloMidp MIDlet

MIDlet-Name: HelloMidp
MIDlet-Version: 1.0

TE
AM
FL
Y

Team-Fly®

 32

MIDlet-Vendor: Michael Kroll & Stefan Haustein
MIDlet-Jar-Size: 908
MIDlet-Jar-URL: hellomidp.jar
MIDlet-1: HelloMidp, , HelloMidp

The first five entries are self-explanatory (the jar size may differ depending on compiler options
and jar compression). The last entry, MIDlet-1, determines the first and only MIDlet that is
available in the JAR file. By adding similar entries, it is possible to put more than one MIDlet into
a single JAD file and its respective JAR file.

The value of the MIDlet-<Number> attribute consists of three parameters:

MIDlet-<Number>: <name>, <icon>, <class>

<Number> is just an enumeration of the MIDlets in the JAR file. Our example contains only a
single MIDlet, so there is only a single entry named MIDlet-1. If more MIDlets were stored in
the JAR file, the entries would be named MIDlet-2, MIDlet-3, and so on.

The parameter <name> describes the name of the MIDlet that is displayed on the device after the
descriptor file is loaded. The <icon> parameter specifies an icon that can be displayed in the list.
The last parameter, <class>, specifies the name of the actual subclass of MIDlet implemented
by the application.

In order to start the HelloMidp sample application, place the JAD file contained in Listing 1.3 in
the same directory as the JAR file. Change to that directory and type the following command:

midp –descriptor hellomidp.jad

When executing this command, the MID emulation will show a selection menu (see Figure 1.9).
Select the HelloMidp entry. The screen will show the output of the HelloMidp example
(shown in Figure 1.8).

Figure 1.9. The information gained from the JAD file. In this case, only one entry
(HelloMidp) is listed.

 33

Note

It is not necessary for the JAR and JAD files to be in the same directory. The MIDlet-jar-url
can point to any valid HTTP URL that references the corresponding JAR file.

Hello PDAP

Unfortunately, at the time this book was printed, no official PDAP implementation was available.
However, we expect the compilation steps to be similar to compiling MIDP programs, except
from using a different bootclasspath.

Actually, because PDAP is a complete superset of MIDP, the MIDP example contained in Listing
1.2 is a valid PDAP example as well. However, a "true" PDAP application will take advantage of
the more sophisticated AWT-based user interface capabilities of PDAP. In order to sketch the
differences, Listing 1.4 contains a PDAP example with the corresponding modifications.

Listing 1.4 HelloPdap.java—The HelloPdap Sample Source Code

import java.awt.*;
import java.awt.event.*;

import javax.microedition.midlet.*;

 34

public class HelloPdap extends MIDlet {

 private Frame frame;

 HelloPdap() {
 frame = new Frame("HelloPdap");
 frame.pack();
 }

 public void startApp() {
 frame.show();
 }

 public void pauseApp() {
 }

 public void destroyApp(boolean unconditional) {
 frame.dispose();
 }
}

Besides the application itself, the JAD files also need a slight modification. Again, any valid
MIDP JAD file is also a valid PDAP JAD file. However, for "true" PDAP applications, using the
advanced capabilities of the PDA profile, a new entry type PDAlet-<Number> must be used. If
a MIDlet-<Number> entry with the same number <Number> is included, the PDAlet entry
overrides the corresponding MIDlet entry. This allows you to include both MIDP and PDAP
versions of the same application in a single pair of JAD and JAR files. The syntax of the PDAlet
entries is identical to the syntax of the MIDlet entries. For our example, a corresponding JAD file
including the MIDP version of the sample is shown in Listing 1.5.

Listing 1.5 HelloPdap.jad—The JAD File for the HelloPdap Application, and the
HelloMidp MIDlet as a Fallback Option

MIDlet-Name: Hello
MIDlet-Version: 1.0
MIDlet-Vendor: Michael Kroll & Stefan Haustein
MIDlet-Jar-Size: ???
MIDlet-Jar-URL: hello.jar
MIDlet-1: HelloMidp, , HelloMidp
PDAlet-1: HelloPdap, , HelloPdap

Summary

In this chapter, you learned the history and background of J2ME and the CLDC configuration. We
covered the MID and PDA profiles and gave you an overview of some existing software
development kits. You should be able to set up the Sun development kits, to compile actual MID
and PDA programs, and to run them in the corresponding device emulation.

The following chapters will first describe the Connected Limited Device Configuration (CLDC).
Then, we'll revisit the MIDP and PDAP "Hello World" applications from an API point of view
and explain the lifecycle of a MIDlet. We will also explain the user interface of MID and PDA
applications in depth.

 35

Chapter 2. The Connected Limited Device
Configuration
IN THIS CHAPTER

• General CLDC Limitations
• CLDC Application Design
• CLDC APIs
• CLDC Profiles
• Java Application Deployment
• JAM on MIDP
• JAM for PDAP

This chapter describes the general concepts and limitations of the Connected Limited Device
Configuration (CLDC). You already saw some of the limitations in Chapter 1, "Java 2 Micro
Edition Overview." Here, you'll see a complete list, and also take a closer look at the API
packages available in the CLDC. This chapter also discusses the packages and classes of the
Mobile Information Device (MID) and Personal Digital Assistant (PDA) profiles including
extensions of CLDC classes. Finally, it describes the special steps involved in J2ME application
deployment.

General CLDC Limitations

In order to make the Java feature set suitable for very limited devices such as cellular phones or
PDAs, CLDC's developers had to limit the feature set in several ways. This section first describes
the general language and virtual machine limitations and some consequences of the missing
reflection capabilities. It then discusses the simplified security and highlights some general
limitations resulting directly from the limited hardware capabilities of CLDC devices.

General Java Language Limitations

For CLDC, the Java language itself was simplified slightly. The following restrictions hold for the
Java language in CLDC:

• No floating-point support (CLDC 1.0 only)
• No reflection
• No thread groups and daemon threads
• No weak references (CLDC 1.0 only)
• Error handling may be limited
• No finalization; CLDC does not support the finalize() method
• No Java Native Interface (JNI)
• No user-defined class loaders

The missing floating-point support is perhaps the most significant limitation because it makes
development of calculation or spreadsheet programs very difficult. The MathFP API from Onno
Honnes (www.jscience.net) provides fixed-point calculations as a substitute, but fixed-point
arithmetic is not a complete replacement for floating-point support.

CLDC supports full exception handling, but limitations may apply to the Error exception classes.
The problem is that it is very difficult to handle errors like those that arise from heap exceptions,

http://www.jscience.net/

 36

which may be resolved only by a soft reset of the whole device. Thus, the device may handle
errors differently in a manner appropriate to the device without reporting a corresponding
exception to Java.

The restrictions concerning user-defined class loaders and the JNI are addressed in the upcoming
section "Simplified Security Model."

Note

Due to a bug in the original CLDC specification, the .class directive (for example,
String.class) does not work in CLDC 1.0. However, this issue is fixed in CLDC 1.1 by
adding the NoClassDefFoundError class, required for the compilation process.

Consequences of the Missing Reflection Support

The reflection capabilities of the CLD configuration are very limited. Class.forName() and
newInstance() are supported, but you can't work with methods, variables, or constructors at
the reflection level.

As a consequence, several other APIs are not available and cannot be implemented for CLDC:

• No class loaders. CLDC supports only the built-in class loader. You can't add custom
class loaders.

• No Remote Method Invocation (RMI). RMI relies on full reflection capabilities, so RMI
is not possible in CLDC.

• No Jini. Jini depends on RMI, so you can't use it with the CLDC.
• No serialization. Serialization depends on reflection, so serialization is not available in

CLDC.

For Jini, a solution could be the surrogate architecture, allowing simple devices to be integrated in
a Jini environment. For the missing RMI and serialization capabilities, the explicit serialization of
the kSOAP API, described in Chapter 10, "Third Party Libraries," can provide a replacement,
even if it is limited in several ways.

Simplified Security Model

As in J2SE, the Java byte code is verified by the VM before execution in order to prevent security
violations resulting from side effects of illegal byte code. In CLDC, the verification process is
slightly different from that used in J2SE. CLDC introduces an additional preverification step that
simplifies verification of the byte code on the device. The preverification process and its
motivation are described in the next section.

For application-level security, J2SE provides security managers for fine-grained access control.
Unfortunately, security managers consume too much memory to be included in CLDC devices.
For this reason, CLDC provides the simpler sandbox model for application security. The sandbox
model means that Java applications run in a closed environment where only APIs known to be
safe can be accessed.

The sandbox model means that the following additional restrictions apply:

• The Java Native Interface (JNI) is not available, in order to prevent backdoor access to
native functionality that is not exposed through the Java APIs provided with the device.

 37

• User-defined class loaders cannot be created, in order to prevent programmers from
overriding the class loading mechanism provided by the VM.

For PDAP, an additional security layer allows the user to grant applications access permissions
such as network and personal information management access. By default, PDAP applications are
not allowed to establish network connections or access information stored in the device address
database or calendar. However, such access can be allowed via the application manager.

Off-Device Preverification

The preverification step was discussed in Chapter 1. This additional step is applied to Java class
files after they are generated from the corresponding Java source files. The reason for introducing
this additional step, which leads to much confusion for developers, was that the original class file
verification performed by the JVM was very expensive in terms of memory and computational
power. Basically, the preverification step enriches the class file with hints for the on-device
verifier. Thus, the final verification can be performed more efficiently.

Please note that preverification does not mean less security. If you think of the verification process
as confirming that a way exists through a labyrinth, then the preverification step marks the way.
The way can still be verified in the device, and if the way is not valid, verification will detect that;
but preverification lets you avoid the much greater effort involved in finding the way.

General Device Hardware Limitations

General hardware limitations of CLDC devices are

• Limited computing capabilities
• Limited memory
• Limited heap space

The computing power of processors used for mobile phones is usually very limited when
compared to desktop systems. Also the memory provided by CLDC devices is very limited. Even
worse, for many devices, there is a distinction between persistent (flash) memory and the heap
space available, and the heap space usually is only a small fraction of the total memory (32–
512KB). So the memory available at runtime may be even more restricted than the memory
available in the device.

CLDC 1.1

CLDC 1.1, the "next generation" of the CLDC configuration, which is used in the PDA profile,
lifts some of the original CLDC limitations. Namely, CLDC-NG no longer explicitly forbids
floating point operations, and weak references are added.

CLDC Application Design

The design rules for CLDC applications are quite simple: Keep everything as small and as simple
as possible. CLDC applications should be designed to consume as few resources as possible, and
the user should be allowed to exit at any time without losing data. Design rules concerning the
user interface will be covered in more detail in Chapters 3, "MIDP Programming," and 4, "PDAP
Programming."

 38

CLDC APIs

Packages included in CLDC are java.io, java.lang, java.util, and
javax.microedition.io, where javax.microedition.io is mainly a replacement for
the missing java.net package. Here, we will give only a short overview of the classes available.
Please note that most classes do not provide all the methods of their J2SE counterparts. For
detailed information, please consult the CLDC API documentation.

In Appendix B, "Comparison Charts," you can find a table with hints for mapping functionality of
J2SE classes and methods omitted in CLDC. The following classes are available in CLDC 1.1
only: Float, Double, java.lang.ref.Reference, java.lang.ref.Reference, and java.lang.ref.
WeakReference.

The java.lang Package

Supported classes from java.lang are Object, the wrapper classes for the built-in data types,
Math, Runtime, String, StringBuffer, System, Thread, and Throwable.

Depending on the CLDC version java.lang.Math might not contain operations for floating
point numbers. java.lang.Class provides only very limited support for reflection.

The following classes are available in CLDC 1.1 only: Float, Double, java.lang.ref.
Reference, java.lang.ref.Reference, and java.lang.ref.WeakReference.

The java.util Package

Supported classes from java.util are Calendar, Date, Hashtable, Random, Stack,
TimeZone, and Vector.

The Java 2 collection framework is not supported at all. The Vector class contains only the old
access methods elementAt(), setElementAt(), and addElement(), instead of the get(),
set(), and add() methods introduced with the Java 2 collection framework. The only time
zone required is GMT.

The java.io Package

Supported classes from java.io are ByteArrayInputStream, ByteArrayOutputStream,
DataInputStream, DataOutputStream, InputStream, InputStreamReader,
OutputStream, OutputStreamWriter, PrintStream, Reader, and Writer. As you can
infer from the list, all file-related classes are missing. The CLDC does not provide any
replacement, but MIDP provides the package javax.microedition.rms for persistent storage,
and PDAP adds a FileConnection interface to the javax.microedition.io package.

The javax.microedition.io Package

The package javax.microedition.io is mainly a compact replacement for the java.net
package, the so-called Generic Connection Framework (described in detail in Chapter 6,
"Networking: The Generic Connection Framework"). It provides a set of classes and interfaces
that let you establish different kinds of network connections.

 39

CLDC Profiles

CLDC itself provides only a basic set of classes for a J2ME profile. In Chapter 1, you were given
an overview of the two profiles available for CLDC: the Mobile Information Device Profile
(MIDP) and the PDA Profile (PDAP). Now, we will present the additional functionality the
profiles add to CLDC. We will start with MIDP and then give an overview of PDAP. Figure 2.1
shows an overview of the J2ME CLDC packages and their intersections with J2SE.

Figure 2.1. J2ME CLDC packages including the MID and PDA profiles and
intersections with J2SE.

MID Profile

As described in Chapter 1, MIDP is designed for mobile information devices such as cellular
phones and two-way pagers. MIDP adds several new packages and classes to CLDC. The
following sections list the additions per package.

Additions to java.util

MIDP adds the classes Timer and TimerTask in the package java.lang to the set of
supported classes. Timer and TimerTask allow simplified scheduling of tasks for a point of
time in the future, including repeated tasks.

Additions to java.lang

MIDP adds the IllegalStateException in the package java.lang. The
IllegalStateException is thrown when a method is called in a state of the application

 40

where doing so is not allowed. For example, you can't access the display of a MIDlet before the
corresponding startApp() method is invoked by the system.

Additions to javax.microedition.io

MIDP adds an HttpConnection for HTTP connections to the generic connection framework.
The HttpConnection class is described in detail in Chapter 6.

Package javax.microedition.midlet

The javax.microedition.midlet package is a completely new package of MIDP. It mainly
contains the class MIDlet, encapsulating the life cycle of an MIDP application. The MIDlet
class can be compared to an applet to some extent, except that it is not related to the display. The
life cycle of MIDP applications—including the MIDlet class—is described in detail in Chapter 3.

Package javax.microedition.lcdui

The javax.microedition.lcdui package contains the graphical user interface (GUI) classes
for MIDP. These classes are not compatible to J2SE and provide only very basic elements
adequate to the limited display of a mobile information device. The MIDP GUI classes are
described in detail in Chapter 3, together with the MIDP application life cycle.

Package javax.microedition.rms

MIDP does not contain a file system, but instead uses a record management API for persistent
storage. The record system is more adequate to the persistent memory of mobile devices, where
data is usually stored persistently in random access memory instead of sequential files. The record
management system is described in detail in Chapter 5, "Data Persistency."

PDA Profile

Like the MID Profile, the PDA Profile makes many additions to the CLD Configuration required
for the targeted class of devices. Because PDAP is a superset of MIDP, all MIDP packages and
CLDC additions are available in PDAP. Please note that PDAP 1.0 is based on CLDC 1.1, in
contrast to MIDP 1.0, which is based on CLDC 1.0.

In addition to the MIDP additions to CLDC, PDAP provides a more sophisticated user interface
based on a subset of the Abstract Window Toolkit (AWT) and access to the device address and
calendar databases.

Package java.awt and Subpackages

In contrast to MIDP, PDAP does not provide a user interface API designed from scratch. The
PDAP user interface is a subset of the J2SE AWT classes.

Package javax.microedition.pim

The personal information management classes provide access to the built-in calendar and address
book databases of the PDA. The pim classes are described in detail in Chapter 7, "PIM: Accessing
the Personal Information Manager."

Additions to javax.microedition.io

 41

PDAP adds a CommConnection and a FileConnection for serial port and file access to the
generic connection framework, which are described in detail in Chapter 6.

Java Application Deployment

For desktop computers, there are different ways to install an application. In order to install new
software properly, the user needs to insert the medium containing the software into the computer
system and start the installation. It is common practice for a wizard to guide the user through a
predefined procedure for installing the software. Software or software updates can be downloaded
from the Internet using a Web browser as well. When the software is downloaded, the installation
usually needs to be initiated by the user or system administrator.

For limited devices, software installation is different. PDA software is usually installed through a
connection to the desktop computer; for example, a serial cable or an Infrared Data Association
(IrDA) connection. The installation is initiated on the desktop computer.

Using devices that provide a wireless Internet connection, it seems quite straightforward to
download applications from the Internet directly to the device without going through a desktop PC.

A downloaded application must be saved in the device's storage, installed, and inspected by the
platform. Applications of that kind can be launched and later deleted from the device when the
user no longer needs it. A mechanism covering these issues is called Java Application Manager
(JAM).

JAM Implementation

The JAM reference implementation is generally described in the CLDC reference implementation
(RI) by SUN. In the RI documentation, the JAM is divided into the following steps:

• Installing the application to the device
• Executing the application
• Updating the installed application
• Deleting the application from the target device

In order to use the JAM mechanism, the KVM version that is used should support this feature. The
RI does not state how the implementation platform has to support browsing of descriptor files in
the Internet, for example, but describes all the information that needs to be included in a descriptor
file. A complete specification of how JAM should be implemented is given in the J2ME profiles.

The Descriptor File

The Java Application Descriptor (JAD) file is downloaded into the device and analyzed by the
platform. According to the information that is stored in the descriptor file, the platform decides
whether the related JAR file containing the application classes should be downloaded or rejected.
The association between the descriptor file and the JAR file is shown in Figure 2.2.

Figure 2.2. The association between JAD and JAR file including a KVM application.

TE
AM
FL
Y

Team-Fly®

 42

A JAD descriptor file consists of readable text including name-value pairs describing properties of
its associated Java application. Each line of the descriptor file holds one attribute, where an
attribute consists of a name and a value, separated by a colon. The following attribute describes
the file size of the application JAR file:

Jar-File-Size: 2123

The application developer is responsible for maintaining the JAD and JAR files. Additionally, the
descriptor file and the associated JAR file must be placed on the same Web site.

JAM on MIDP

Whereas the CLDC JAM specification is relatively vague, MIDP contains a concrete definition of
the JAD files for MIDP applications. This section first takes a closer look at the contents of a JAD
file, and then describes the actual transfer of an MIDP application to the target device. However,
before we go into details of the JAD files, we need to explain the MIDP concept of MIDlet suites.

MIDlet Suites

A MIDlet suite is a set of Java applications distributed together. A group of MIDlets inside a
MIDlet suite can share their persistent databases. For example, a database might consist of user
logins that are used by all network-related MIDlets in one suite.

Since MIDP devices offer only a limited amount of heap space for the Java Runtime Environment,
it may make sense to split application functionality into two or more MIDlets. For instance, one
MIDlet of a suite could be responsible for providing a user interface for entering application data.
A second MIDlet in the same suite could be responsible for synchronizing the data with a remote
server over the Internet. Both MIDlets would access the same data stored in a persistent database
accessible from all MIDlets of the suite.

MIDP JAD Files

JAD files have already been defined in general CLDC terms. MIDP extends the specification with
respect to the special requirements of mobile information devices. The JAD file in MIDP consists
of mandatory and optional attributes. The application provider must fill the mandatory attributes

 43

that are listed in Table 2.1. The syntax is the same as described in the section "Java Application
Deployment." Table 2.2 shows additional optional entries.

Table 2.1. Mandatory JAD File Attributes in MIDP
Attribute Name Description
MIDlet-Name The name of the MIDlet suite.
MIDlet-Version The version number of the MIDlet suite.
MIDlet-Vendor The vendor of the given MIDlet suite.
MIDlet-Jar-URL The URL from which the JAR file can be downloaded.
MIDlet-Jar-Size The size of the JAR file in bytes.
MicroEdition-
Profile

The J2ME profile that is required to run the MIDlet.

MicroEdition-
Configuration

The J2ME configuration that is needed to run the MIDlet.

MIDlet-<Number> For each midlet contained in a midlet suit, a separate MIDlet-<number>
entry is required, where <number> must be replaced by a number ranging
from 1 to the number of MIDlets contained in the suite. The value of the
MIDlet-<Number> attribute consists of three parameters:

MIDlet-<Number>: <name>, <icon>, <class>

<Number> is an enumeration of the MIDlets in the JAR file. The first MIDlet
is MIDlet-1. If more MIDlets are stored in the JAR file, the entries are
named MIDlet-2, MIDlet-3, and so on.

The parameter <name> describes the name of the MIDlet that is displayed on
the device after the descriptor file is loaded. The <icon> parameter specifies
an icon that can be displayed in the list. The last parameter, <class>,
specifies the name of the actual subclass of MIDlet implemented by the
application.

Table 2.2. Optional JAD File Attributes in MIDP

Attribute Name Description
MIDlet-
Description

The description of the MIDlet suite.

MIDlet-Icon The name of the PNG file representing the MIDlet suite that is
contained in the JAR file.

MIDlet-Info-URL The URL providing further information about the MIDlet suite.
MIDlet-Data-Size The minimum number of bytes of persistent data that is needed to run

the MIDlet.

Specialized development tools for J2ME applications might provide support for setting the JAD
file properties. For example, the SUN Wireless Toolkit provides a Settings button where the JAD
options can be entered in a dialog box. Moreover, some options such as the file size of the JAR
file are filled in automatically.

MIDP JAR Manifest Entries

The JAR manifest file of a MIDlet suite must contain the same attributes as the JAD file, except
from the JAR URL and JAR size attributes. Note that some devices access the JAD file only for
transmission, but do not store the information contained in it. Thus, application-specific attributes
should be duplicated in both files for safety.

 44

Over the Air User Initiated Provisioning for MIDP

Although the JAD file format is specified completely in the MIDP specification, questions
concerning the concrete details of downloading and discovering MIDlets are left open by the
specification. For that reason, the three specification leads have released a document titled "Over
the Air User Initiated Provisioning Best Practice" (OTA), covering the HTTP transfer steps and
application installation in detail. This can be downloaded using the following URL:
http://java.sun.com/products/midp/OTAProvisioning-1.0.pdf

For MIDP developers, it is important to know that the installation is initiated when the user selects
the link to a file of the MIME type text/vnd.sun.j2me.app-descriptor or with the
suffix .jad.

The OTA document further specifies the recommended behavior and user interaction of the
application manager. It also specifies how the device identifies itself in additional HTTP header
fields. However, these technical details of the application deployment protocol are mainly
important for implementers of the device application manager software and specialized Internet
servers. If you are interested, the whole OTA document is available for download on the SUN
Internet pages. For convenience, it is directly linked from the Web page of this book.

JAM for PDAP

Because PDAP is a superset of MIDP, a MIDP JAR file is also a valid PDAP JAR file. However,
PDAP provides one extension of the JAR file format. PDA applications using PDA capabilities
beyond MIDP must use PDAlet-<Number> entries. The syntax of the PDAlet-<Number>
entries is identical to the MIDlet-<Number> entries. A PDAlet entry with the same number as a
MIDlet entry overrides the corresponding MIDlet entry. Thus, different versions of the same
applications for both profiles can be included in the same JAD and JAR files. If the device
supports PDAP, the PDA applications will be loaded; otherwise the application manager
automatically falls back to the MIDlet entry because PDAlet entries have no meaning for the
MIDP application manager. The HelloPdap example (Listing 1.5) in the first chapter shows a
corresponding dual-profile JAD file.

Summary

In this chapter, you have learned the limitations of the CLD configuration. You have had an
overview of the CLDC API packages and the PDAP and MIDP additions. You also know about
the Java Application Management mechanism for deploying J2ME applications and the JAD
entries for PDAP and MIDP applications.

The next chapters will first revisit the MIDP and PDAP "Hello World" applications from an API
point of view and explain the application lifecycle. Then the user interfaces of MID and PDA
applications are explained in depth.

http://java.sun.com/products/midp/OTAProvisioning-1.0.pdf

 45

Chapter 3. MIDP Programming
IN THIS CHAPTER

• MIDlets
• High-Level API
• Low-Level API
• MIDP 2.0 Additions

This chapter handles the life cycle and user interface of Mobile Information Device Profile (MIDP)
applications. First, the general design of MIDP applications will be discussed. Then, the high-level
user interface API will be explained. Finally, the low-level user interface API for free graphics
and games will be described.

MIDlets

All applications for the MID Profile must be derived from a special class, MIDlet. The MIDlet
class manages the life cycle of the application. It is located in the package
javax.microedition.midlet.

MIDlets can be compared to J2SE applets, except that their state is more independent from the
display state. A MIDlet can exist in four different states: loaded, active, paused, and destroyed.
Figure 3.1 gives an overview of the MIDlet lifecycle. When a MIDlet is loaded into the device and
the constructor is called, it is in the loaded state. This can happen at any time before the program
manager starts the application by calling the startApp() method. After startApp() is called,
the MIDlet is in the active state until the program manager calls pauseApp() or
destroyApp(); pauseApp() pauses the MIDlet, and desroyApp() terminates the MIDlet. All
state change callback methods should terminate quickly, because the state is not changed
completely before the method returns.

Figure 3.1. The life cycle of a MIDlet.

In the pauseApp() method, applications should stop animations and release resources that are
not needed while the application is paused. This behavior avoids resource conflicts with the

 46

application running in the foreground and unnecessary battery consumption. The destroyApp()
method provides an unconditional parameter; if it is set to false, the MIDlet is allowed to refuse its
termination by throwing a MIDletStateChangeException. MIDlets can request to resume
activity by calling resumeRequest(). If a MIDlet decides to go to the paused state, it should
notify the application manager by calling notifyPaused(). In order to terminate, a MIDlet can
call notifyDestroyed(). Note that System.exit() is not supported in MIDP and will
throw an exception instead of terminating the application.

Note

Some devices might terminate a MIDlet under some circumstances without calling
destroyApp(), for example on incoming phone calls or when the batteries are exhausted. Thus,
it might be dangerous to rely on destroyApp() for saving data entered or modified by the user.

Display and Displayable

MIDlets can be pure background applications or applications interacting with the user. Interactive
applications can get access to the display by obtaining an instance of the Display class. A
MIDlet can get its Display instance by calling Display.getDisplay(MIDlet midlet),
where the MIDlet itself is given as parameter.

The Display class and all other user interface classes of MIDP are located in the package
javax.microedition.lcdui. The Display class provides a setCurrent() method that
sets the current display content of the MIDlet. The actual device screen is not required to reflect
the MIDlet display immediately—the setCurrent() method just influences the internal state of
the MIDlet display and notifies the application manager that the MIDlet would like to have the
given Displayable object displayed. The difference between Display and Displayable is
that the Display class represents the display hardware, whereas Displayable is something
that can be shown on the display. The MIDlet can call the isShown() method of Displayable
in order to determine whether the content is really shown on the screen.

HelloMidp Revisited

The HelloMidp example from Chapter 1, "Java 2 Micro Edition Overview," is already a
complete MIDlet. Now that you have the necessary foundation, you can revisit HelloMidp from
an API point of view.

First, you import the necessary midlet and lcdui packages:

import javax.microedition.midlet.*;
import javax.microedition.lcdui.*;

Like all MIDP applications, the HelloMidp example is required to extend the MIDlet class:

public class HelloMidp extends MIDlet {

In the constructor, you obtain the Display and create a Form:

Display display;
Form mainForm;

public HelloMidp() {

 47

 mainForm = new Form ("HelloMidp");
}

A Form is a specialized Displayable class. The Form has a title that is given in the constructor.
You do not add content to the form yet, so only the title will be displayed. (A detailed description of
the Form class is contained in the next section.)

When your MIDlet is started the first time, or when the MIDlet resumes from a paused state, the
startApp() method is called by the program manager. Here, you set the display to your form, thus
requesting the form to be displayed:

public void startApp() {
 display = Displayable.getDisplay (this);
 display.setCurrent (mainForm);
}

When the application is paused, you do nothing because you do not have any allocated resources to free.
However, you need to provide an empty implementation because implementation of pauseApp() is
mandatory:

public void pauseApp() {
}

Like pauseApp(), implementation of destroyApp() is mandatory. Again, you don't need to do
anything here for this simple application:

 public void destroyApp(boolean unconditional) {
 }
}

Note

The HelloMidp Midlet does not provide a command to exit the MIDlet, assuming that the device
provides a general method of terminating MIDlets. For real MIDP applications, we recommend that
you add a command to terminate the MIDlet because the MIDP specification does not explicitly
support this assumption. More information about commands can be found in the section "Using
Commands for User Interaction."

MIDP User Interface APIs

The MIDP user interface API is divided into a high- and low-level API. The high-level API provides
input elements such as text fields, choices, and gauges. In contrast to the Abstract Window Toolkit
(AWT), the high-level components cannot be positioned or nested freely. There are only two fixed
levels: Screens and Items. The Items can be placed in a Form, which is a specialized Screen.

The high-level Screens and the low-level class Canvas have the common base class
Displayable. All subclasses of Displayable fill the whole screen of the device. Subclasses of
Displayable can be shown on the device using the setCurrent() method of the Display
object. The display hardware of a MIDlet can be accessed by calling the static method
getDisplay(), where the MIDlet itself is given as parameter. In the HelloMidp example, this
step is performed in the following two lines:

Display display = Display.getDisplay (this);
...
display.setCurrent (mainForm);

 48

Figure 3.2 shows an overview of the MIDP GUI classes and their inheritance structure.

Figure 3.2. The MIDP GUI classes.

The following sections first describe the high-level API and then the low-level API. A more complex
sample application that uses both levels of the lcdui package together is shown in Chapter 9,
"Advanced Application: Blood Sugar Log."

High-Level API
Now that you know the basics of the MIDlet's life cycle and general display model, we can start to look
deeper into the lcdui package. We will start with another subclass of Screen: Alert. Then we will
discuss some simple Items like StringItem and ImageItem. We will explain the use of more
advanced Items such as TextField and ChoiceGroup by creating a simple TeleTransfer
example application. As we introduce new MIDP high-level UI capabilities like other Screen
subclasses, we will extend the TeleTransfer sample step by step.

Alerts

You already know the Form class from the first example. The simplest subclass of Screen is Alert.
Alert provides a mechanism to show a dialog for a limited period of time. It consists of a label, text,
and an optional Image. Furthermore, it is possible to set a period of time the Alert will be displayed
before another Screen is shown. Alternatively, an Alert can be shown until the user confirms it. If
the Alert does not fit on the screen and scrolling is necessary to view it entire contents, the time limit
is disabled automatically.

The following code snippet creates an Alert with the title "HelloAlert" and displays it until it is
confirmed by the user:

Alert alert = new Alert ("HelloAlert");
alert.setTimeout (Alert.FOREVER);
display.setCurrent (alert);

 49

Forms and Items

The most important subclass of Screen is the class Form. A Form can hold any number of Items
such as StringItems, TextFields, and ChoiceGroups. Items can be added to the Form using
the append() method.

The Item class itself is an abstract base class that cannot be instantiated. It provides a label that is a
common property of all subclasses. The label can be set and queried using the setLabel()and
getLabel() methods, respectively. The label is optional, and a null value indicates that the item
does not have a label. However, several widgets switch to separate screens for user interaction, where
the label is used as the title of the screen. In order to allow the user to keep track of the program state, it
is recommended that you provide a label at least for interactive items.

Items can neither be placed freely nor can their size be set explicitly. Unfortunately, it is not possible
to implement Item subclasses with a custom appearance. The Form handles layout and scrolling
automatically. Table 3.1 provides an overview of all Items available in MIDP.

Table 3.1. All Subclasses of Item
Item Description
ChoiceGroup Enables the selection of elements in group.
DateField Used for editing date and time information.
Gauge Displays a bar graph for integer values.
ImageItem Used to control the layout of an Image.
StringItem Used for read-only text elements.
TextField Holds a single-line input field.

StringItem

StringItems are simple read-only text elements that are initialized with the label and a text
String parameter only. The following code snippet shows the creation of a simple version label.
After creation, the label is added to the main form in the constructor of the HelloMidp application:

public HelloMidp() {
 mainForm = new Form ("HelloMidp");
 StringItem versionItem = new StringItem ("Version: ", "1.0");
 mainForm.append (versionItem);
}

The label of the StringItem can be accessed using the setLabel() and getLabel() methods
inherited from Item. To access the text, you can use the methods setText() and getText().

ImageItem

Similar to the StringItem, the ImageItem is a plain non-interactive Item. In addition to the label,
the ImageItem constructor takes an Image object, a layout parameter, and an alternative text string
that is displayed when the device is not able to display the image. The image given to the constructor
must be non-mutable. All images loaded from the MIDlet suite's JAR file are not mutable.

The difference between mutable and non-mutable Images is described in more detail in the section
about Images in this chapter. For now, we will treat the Image class as a "black box" that has a string
constructor that denotes the location of the image in the JAR file. Please note that Image construction
from a JAR file throws an IOException if the image cannot be loaded for some reason. The layout
parameter is one of the integer constants listed in Table 3.2, where the newline constants can be
combined with the horizontal alignment constants.

 50

Table 3.2. ImageItem Layout Constants
Constant Value
LAYOUT_CENTER The image is centered horizontally.
LAYOUT_DEFAULT A device-dependent default formatting is applied to the image.
LAYOUT_LEFT The image is left-aligned.
LAYOUT_NEWLINE_AFTER A new line will be started after the image is drawn.
LAYOUT_NEWLINE_BEFORE A new line will be started before the image is drawn.
LAYOUT_RIGHT The image is aligned to the right.

The following code snippet shows how a center aligned ImageItem is added to the HelloMidp
sample MIDlet:

public HelloMidp() {
 display = Display.getDisplay (this);
 mainForm = new Form ("HelloMidp");
 try {
 ImageItem logo = new ImageItem
 ("Copyright: ", Image.createImage ("/mcp.png"),
 ImageItem.LAYOUT_CENTER | mageItem.LAYOUT_NEWLINE_BEFORE
 | ImageItem.LAYOUT_NEWLINE_AFTER, "Macmillian USA");

 mainForm.append (logo);
 } catch (IOException e) {
 mainForm.append (new StringItem ("Copyright", "Sams
Publishing; Image not available:" + e));
 }
}

By forcing a new line before and after the image, you ensure that the image is centered in its own line.
Figure 3.3 shows the corresponding display on the device. If the image cannot be loaded and an
exception is thrown, a simple StringItem is appended to the form instead of the image.

Figure 3.3. The HelloMidp application showing an ImageItem.

Handling Textual Input in TextFields

As shown in Table 3.1, textual input is handled by the class TextField. The constructor of
TextField takes four values: a label, initial text, a maximum text size, and constraints that indicate
the type of input allowed. In addition to avoiding input of illegal characters, the constraints may also
influence the keyboard mode. Several MIDP devices have a numeric keyboard only, and the constraints
allow the application manager to switch the key assignments accordingly. The constants listed in Table
3.3, declared in the class TextField, are valid constraint values.

Table 3.3. TextField Constraint Constant Values
Constant Value

 51

ANY Allows any text to be added.
EMAILADDR Adds a valid e-mail address, for instance myemail@mydomain.com.
NUMERIC Allows integer values.
PASSWORD Lets the user enter a password, where the entered text is masked.
PHONENUMBER Lets the user enter a phone number.
URL Allows a valid URL.

We will now show the usage of TextFields by creating a simple example Form for bank transfers.
A bank transfer form contains at least the amount of money to be transferred and the name of the
receiver.

To start the implementation of the TeleTransfer MIDlet, you first need to import the two packages
containing the midlet and lcdui classes:

import javax.microedition.midlet.*;
import javax.microedition.lcdui.*;

Every MID application is derived from MIDlet, so you need to extend the MIDlet class, too:

public class TeleTransfer extends MIDlet {

Because you want to create a Form that contains Items for entering the transfer information, you need
a corresponding member variable mainForm. You can already initialize the variable at its declaration
because it has no dependencies from constructor parameters:

Form mainForm = new Form ("TeleTransfer");

In order to let the user enter the transfer information, add TextFields for the name of the receiver
for entering the amount to be transferred. Because of the lack of floating-point values in the CLDC, the
numeric TextFields in MIDP can hold integer values only. So you need to split the amount into
separate fields for dollars and cents. An alternative would be to use an alphanumeric field and parse the
string into two separate values. However, this may result in switching the keyboard to alpha mode on
cell phones, making numeric input unnecessarily complicated. In this case, you'll limit the size of
possible values to five digits for the whole dollar part and two digits for the fractional cent part. Again,
you initialize the variables where they are declared:

TextField receiverName = new TextField
 ("Receiver Name", "", 20, TextField.ANY);
TextField receiverAccount = new TextField
 ("Receiver Account#", "", 12, TextField.NUMERIC);
TextField amountWhole = new TextField ("Dollar", "", 6,
TextField.NUMERIC);
TextField amountFraction = new TextField ("Cent", "", 2,
TextField.NUMERIC);

Finally, you add a variable storing the Display instance for your application:

Display display = Display.getDisplay (this);

Now you can add the constructor to your application where you added the previous TextFields to
the main form:

public TeleTransfer() {
 mainForm.append (receiverName);
 mainForm.append (receiverAccount);

TE
AM
FL
Y

Team-Fly®

mailto:myemail@mydomain.com

 52

 mainForm.append (amountWhole);
 mainForm.append (amountFraction);
}

When the application is started, you request the display to show your money transfer form by calling
setCurrent(). As explained in the "MIDlets" section, the application manager notifies you about
the application start by calling the startApp() method. So you implement this method accordingly:

public void startApp() {
 display.setCurrent (mainForm);
}

Please note that startApp() is called also when the MIDlet resumes from the paused state, so you
cannot move the initialization code from the constructor to this method.

Both pauseApp() and destroyApp() are declared as abstract in the MIDlet class, so you need
to implement these methods in your application, even if you do not have real content for them. You just
provide empty implementations, like in the HelloMidp example in the first section:

public void pauseApp() {
}

public void destroyApp (boolean unconditional) {
}

Selecting Elements Using ChoiceGroups

In the previous section, you created a simple to enter information for transferring money between two
accounts. Now you will extend the application to allow the user to select different currencies. For this
purpose, you will now add a ChoiceGroup to your application.

The ChoiceGroup is an MIDP UI widget enabling the user to choose between different elements in a
Form. These elements consist of simple Strings, but can display an optional image per element as
well. ChoiceGroups can be of two different types. Corresponding type constants are defined in the
Choice interface. These constants are used in the List class as well; the List class allows an
additional third type. The three type constants are listed in Table 3.4.

Table 3.4. Choice Type Constants
Constant Value
EXCLUSIVE Specifies a ChoiceGroup or List having only one element selected at the

same time.
IMPLICIT Valid for Lists only. It lets the List send Commands to indicate state changes.
MULTIPLE In contrast to EXPLICIT, MULTIPLE allows the selection of multiple elements.

The ChoiceGroup constructor requires at least a label and a type value. Additionally, a String
array and an Image array containing the elements can be passed to the constructor. Elements can also
be added dynamically using the append() method. The append() method has two parameters, a
String for the label and an Image. In both cases, the image parameter may be null if no images
are desired.

In order to add a ChoiceGroup to the TeleTransfer application, you introduce a new variable
currency of type ChoiceGroup. By setting the type to EXCLUSIVE, you get a ChoiceGroup
where only one item can be selected at a time. You directly add elements for the United States (USD),
the European Union (EUR), and Japan (JPY) by passing a String array created inline. The
ChoiceGroup enables the user to choose between three currencies that are represented textually by

 53

the abbreviations specified in the String array. The last parameter of the constructor is set to null
because you do not want Images to be displayed at this time:

ChoiceGroup currency = new ChoiceGroup
 ("Currency", Choice.EXCLUSIVE,
new String[] {"USD", "EUR", "JPY"} , null);

You still need to add the currency ChoiceGroup to your main Form. As for the text fields, this is
done via the append() method of Form:

mainForm.append (currency);

Figure 3.4 shows the TeleTransfer application extended to choose a currency using a
ChoiceGroup.

Figure 3.4. The TeleTransfer MIDlet extended to enable the user to choose a
currency.

Receiving Changes from Interactive UI Items

If you run the new version of the TeleTransfer MIDlet, you can change the currency using the
ChoiceGroup, but the TextField labels for Dollar and Cent are not changed accordingly. You
need a way to notify the application if a selection is made in the currency ChoiceGroup.

Receiving changes of interactive high-level UI items in MIDP is based on a listener model similar to
AWT. Classes implementing the ItemStateListener interface are able to receive notifications for
the following events:

• State changes of a ChoiceGroup
• Value adjustments of an interactive Gauge
• TextField value changes
• DateField changes

The events are sent to the method itemStateChanged() of the ItemStateListener, where
the item that has changed is given as a parameter. In order to actually receive these events, the
ItemStateChangeListener must be registered using the setItemStateListener()
method of the corresponding Form.

Now that you know about item state change events, you can add the desired functionality to your
TeleTransfer MIDlet. First, you need to add the ItemStateListener interface to the class
declaration:

public class TeleTransfer extends MIDlet implements ItemStateListener
{

 54

You also need to implement a corresponding itemStateChanged() method. Since the
itemStateChanged() method is called for changes of all Items in the Form, you need to check
the item parameter indicating the event source first. If the source of the event is the currency
ChoiceGroup, you set the labels of the amount and fraction TextFields correspondingly:

public void itemStateChanged (Item item) {
 if (item == currency) {
 int index = currency.getSelectedIndex();
 switch (index) {
 case 0: amountWhole.setLabel ("Dollar");
 amountFraction.setLabel ("Cent");
 break;
 case 1: amountWhole.setLabel ("Euro");
 amountFraction.setLabel ("Cent");
 break;
 case 2: amountWhole.setLabel ("Yen");
 amountFraction.setLabel ("Sen");
 }
 }
 }

Just adding the interface and implementing the corresponding methods is not sufficient to enable the
MIDlet to receive state changes. Additionally, you need to register your ItemStateListener at
the Form containing the currency item. You do so by calling the setItemStateListener()
method in the TeleTransfer constructor:

public TeleTransfer() {
 mainForm.append (senderAccount);
 ...
 mainForm.append (currency);
 mainForm.setItemStateListener(this);
}

Figure 3.5 shows the new version of the TeleTransfer example, where the labels are changed
depending on the state of the currency ChoiceGroup.

Figure 3.5. The TeleTransfer MIDlet extended to change the labels depending on the
state of the currency ChoiceGroup.

Using Commands for User Interaction

Now you can enter all the information required for a telegraphic transfer, but you have no means to
initiate the actual transfer.

In contrast to desktop computers, which have plenty of screen space for displaying buttons or menus, a
different approach is necessary for mobile devices. Some devices provide so-called soft buttons, which
are buttons without fixed functionality that are assigned dynamically depending on the application
context. The number of soft buttons may vary if they are available. Other mobile devices do not even

 55

have space for soft buttons, but provide scrolling menus. MIDP needs to abstract from the concrete
device and to provide a mechanism that is suitable for all devices, independent of the availability and
number of soft buttons. Thus, the lcdui package does not provide buttons or menus, but an
abstraction called Command.

Commands can be added to all classes derived from the Displayable class. These classes are
Screen and its subclasses such as Form, List, and TextBox for the high-level API and Canvas
for the low-level API.

No positioning or layout information is passed to the Command—the Displayable class itself is
completely responsible for arranging the visible components corresponding to Commands on a
concrete device. The only layout and display information that can be assigned to a Command except
from the command label is semantic information. The semantic information consists of a type and a
priority. The priority allows the device to decide which commands are displayed as soft buttons if the
number of commands exceeds the number of soft buttons available. For additional commands not
displayed as soft buttons, a separate menu is created automatically. The type information is an
additional hint for the device about how to display the command. For example, if the Exit command is
always assigned to the leftmost soft button in native applications of a certain device type, the MIDP
implementation is able to make the same assignment. Thus, a consistent look and feel can be
accomplished for a device.

The available command type constants are listed in Table 3.5.

Table 3.5. Command Type Constants
Constant Value
Command.BACK Used for navigation commands that are used to return the user to the

previous Screen.
Command.CANCEL Needed to notify the screen that a negative answer occurred.
Command.EXIT Used to specify a Command for exiting the application.
Command.HELP Passed when the application requests a help screen.
Command.ITEM A command type to tell the application that it is appended to an explicit

item on the screen.
Command.OK Needed to notify the screen that a positive answer occurred.
Command.SCREEN A type that specifies a screen-specific Command of the application.
Command.STOP Interrupts a procedure that is currently running.

The Command constructor takes the label, the command type and the priority as input. The Command
class provides read() methods for all these fields, but it is not possible to change the parameters after
creation. Using the addCommand() method, commands can be added to a Form or any other
subclass of Displayable.

As in the case of receiving state changes of UI widgets, the MIDP uses a listener model for detecting
command actions. For this purpose, the lcdui package contains the interface CommandListener.
A CommandListener can be registered to any Displayable class using the
setCommandListener method. After registration, the method commandAction() of the
Commandlistener is invoked whenever the user issues a Command. In contrast to AWT, only one
listener is allowed for each Displayable class. The commandAction() callback method
provides the Displayable class where the command was issued and the corresponding Command
object as parameters.

With this information, you can extend your TeleTransfer application with the desired Commands.
But before going into actual command implementation, you need to add some corresponding
functionality. You'll add three commands: a Send command, a Clear command, and an Exit command.
For Clear, you just add a method setting the content of the fields of your form to empty strings:

 56

public void clear() {
 receiverName.setString ("");
 receiverAccount.setString ("");
 amountWhole.setString ("");
 amountFraction.setString ("");
}

The Send command is a bit more difficult since you do not yet have the background to really submit
information over the network. (Network connections will be handled in Chapter 6, "Networking: The
Generic Connection Framework.") So you just display the content to be transmitted in an alert screen as
a temporary replacement:

public void send() {
 Alert alert = new Alert ("Send");
 alert.setString ("transfer " + amountWhole.getString()
 + "." + amountFraction.getString() + " "
 + amountWhole.getLabel()
 + "\nto Acc#" + receiverAccount.getString()
 + "\nof " + receiverName.getString());
 alert.setTimeout (2000);
 display.setCurrent (alert);
 clear();
}

For leaving the application, the MIDlet already provides the notifyDestroyed() method, so you
do not need to add anything here.

Now that you have implemented the corresponding functionality, the next step is to add the actual
Command objects to your application class:

static final Command sendCommand = new Command ("Send",
Command.SCREEN, 1);
static final Command clearCommand = new Command ("Clear",
Command.SCREEN, 2);
static final Command exitCommand = new Command ("Exit", Command.EXIT,
2);

In order to enable the MIDlet to receive command actions, you need to implement the
CommandListener interface, and the corresponding commandAction() method. Depending on
the command received, you call send(), clear(), or notifyDestroyed():

public class TeleTransfer extends MIDlet
 implements ItemStateListener, CommandListener {

public void commandAction (Command c, Displayable d) {
 if (c == exitCommand) {
 notifyDestroyed();
 }
 else if (c == sendCommand) {
 send();
 }
 else if (c == clearCommand) {
 clear();
 }
}

 57

With these modifications, your TeleTransfer MIDlet is able to handle the desired commands. You
still need to add the Commands to the Form, and register the TeleTransfer MIDlet as a
CommandListener in order to actually receive the commands:

public TeleTransfer() {
 ...
 mainForm.addCommand (sendCommand);
 mainForm.addCommand (clearCommand);
 mainForm.addCommand (exitCommand);
 mainForm.setCommandListener(this);
}

Figure 3.6 shows the Send Alert of the new version of your TeleTransfer application.

Figure 3.6. The TeleTransfer MIDlet showing an alert that displays the transfer
information as a summary before sending.

Further Item Classes: Gauge and DateField

Now you have used all the Item subclasses except Gauge and DateField. Both classes are
specialized input elements, where the Gauge may also make sense as a pure read-only information
item.

The Gauge item visualizes an integer value by displaying a horizontal bar. It is initialized with a label,
a flag indicating whether it is interactive, and a maximum and an initial value. If a Gauge is interactive,
the user is allowed to change the value using a device-dependent input method. Changes to the gauge
value will cause ItemEvents if a corresponding listener is registered to the form.

The following code snippet shows the construction of a non-interactive Gauge labeled Progress that is
initialized with a value of 0 and a maximum of 100:

Gauge gauge = new Gauge ("Progress", false, 0, 100);

If a Gauge is used to display progress of a process that takes a longer amount of time, you should also
add a corresponding Stop command to the form to abort the progress.

The current value of the Gauge can be set using the method setValue() and read using the method
getValue(). Analogous setMaxValue() and getMaxValue() methods let you access the
maximum value of the Gauge.

The DateField is a specialized widget for entering date and time information in a simple way. It can
be used to enter a date, a time, or both types of information at once. The appearance of the
DateField is specified using three possible input mode constants in the constructor. Possible
DateField mode constants are listed in Table 3.6.

Table 3.6. DateField Mode Constants

 58

Constant Value
DATE Passed if the DateField should be used for entering a date only.
DATE_TIME Used for creating a DateField to enter both date and time information.
TIME Used to enter time information only.

The DateField has two constructors in which a label and the mode can be specified. Using the
second constructor, an additional TimeZone can be passed. The following code snippet shows how a
DateField for entering the date of birth can be initialized:

DateField dateOfBirth = new DateField ("Date of birth:",
DateField.DATE);

After you enter the date into the DateField, it can be accessed using the getDate() method. The
DateField offers some additional methods for getting information about the input mode and
methods for setting the date and the input mode as well. The concrete usage of the DateField is
shown in Chapter 9 in the Blood Sugar Log application.

Further Screen Classes: List and TextBox

The current version of the TeleTransfer MIDlet shows how to use the Form and the
corresponding items available in the lcdui package. The application consists of one main form that
holds all application widgets. However, your main form is rather long now, so the question arises how
to improve the usability of the application. This section shows how to structure the user interface by
using multiple screens and introduces the List and TextBox classes.

The List Class

One possibility to clean up the user interface is to move the currency selection to a separate screen. It
takes a lot of space and may need even more room if additional options are added. Also, you can
assume that the currency is not changed very often.

You could create a new Form and just move the ChoiceGroup there. However, lcdui provides a
special List class inherited from Screen for this purpose. The advantage of the List class is that it
provides the IMPLICIT mode that was already mentioned in the section "Selecting Elements Using
ChoiceGroups." Using the IMPLICIT mode, the application gets immediate notification when an item
is selected. Whenever an element in the List is selected, a Command of the type
List.SELECT_COMMAND is issued. As in the ChoiceGroup, the elements consist of Strings
and optional Images.

For initializing the List, the lcdui packages offers constructors. The constructors work like the
ChoiceGroup constructors. The first one creates an empty List with a given title and type only.
The second one takes the title, the type, an array of Strings as initial amount of List elements, and
an optional array of Images for each List element. In the implementation of the TeleTransfer
application, you implement a new class CurrencyList extending List that will be used as your
new currency selector. Since you will use the IMPLICIT mode, you need to implement a command
listener, so you can already add the corresponding declaration:

public class CurrencyList extends List implements CommandListener {

To set the labels of the main form TextFields according to the index of the selected element in the
CurrencyList, you create two String arrays, CURRENCY_NAMES and
CURRENCY_FRACTIONS:

static final String [] CURRENCY_NAMES = {"Dollar", "Euro", "Yen"} ;

 59

static final String [] CURRENCY_FRACTIONS = {"Cent", "Cent", "Sen"} ;

In order to set the labels of the main forms TextFields for the whole and the fractional amount
according to the selected currency in the CurrencyList, you need a reference back to the main
TeleTransfer MIDlet. For this reason, you store the TeleTransfer reference in a variable
called teleTransfer. The reference is set in the constructor of your CurrencyList:

TeleTransfer teleTransfer;

In the constructor, you also add currency symbol images to the list. You need to load them, but the call
to the super constructor must be the first statement in a constructor. So you call the constructor of the
super class by specifying the title and type only. Then you create the Images needed for each list
element, which are stored in the MIDlet suite's JAR file. You also call setCommandListener() to
register the currency list for handling commands that are issued:

public CurrencyList (TeleTransfer teletransfer) {
 super ("Select Currency", Choice.IMPLICIT);

 this.teleTransfer = teletransfer;

 try {
 append ("USD", Image.createImage ("/Dollar.png"));
 append ("EUR", Image.createImage ("/Euro.png"));
 append ("JPY", Image.createImage ("/Yen.png"));
 }
 catch (java.io.IOException x) {
 throw new RuntimeException ("Images not found");
 }
 setCommandListener(this);
}

The final step in creating the CurrencyList is to implement the commandAction() method of
the CommandListener interface. As you already know, a List of IMPLICIT type issues a
List.SELECT_COMMAND to the registered CommandListener whenever a new element is
selected to indicate the selection change. In case of a selection change, you modify the labels of the
main form TextFields. The actual labels are obtained from the String arrays CURRENCY_NAMES
and CURRENCY_FRACTIONS. Using the teleTransfer reference, you can access the
TextFields. Finally, you call the new method teleTransfer.back(), which sets the screen
back to the main form (the back() method will be given at the end of this section):

 public void commandAction (Command c, Displayable d) {
 if (c == List.SELECT_COMMAND) {
 teleTransfer.amountWhole.setLabel
 (CURRENCY_NAMES [getSelectedIndex()]);
 teleTransfer.amountFraction.setLabel
 (CURRENCY_FRACTIONS [getSelectedIndex()]);
 teleTransfer.back();
 }
 }
}

Figure 3.7 shows currency Images and abbreviations in the CurrencyList.

Figure 3.7. The new CurrencyList.

 60

The TextBox Class

Beneath Alert, List, and Form, there is only one further subclass of Screen: the TextBox. The
TextBox allows the user to enter multi-line text on a separate screen. The constructor parameters and
the constraint constants are identical to those of TextField.

As for the currency list, you can also add a new screen enabling the user to enter a transfer reason if
desired. Similar to the CurrencyList, you implement a new class handling the commands related to
the new screen. However, this time it is derived from the TextBox. Again, you implement the
CommandListener interface:

public class TransferReason extends TextBox implements
CommandListener {

In the TextBox, you provide two commands, okCommand for applying the entered text and
clearCommand for clearing the text:

static final Command okCommand = new Command ("OK", Command.BACK, 1);
static final Command clearCommand = new Command ("Clear",
Command.SCREEN, 2);

Again, you store a reference back to the TeleTransfer MIDlet in the TransferReason
TextBox:

TeleTransfer teleTransfer;

The constructor gets the reference back to TeleTransfer MIDlet and stores it in the variable
declared previously. You also add the commands to the TextBox, and register it as
CommandListener:

public TransferReason (TeleTransfer teleTransfer) {
 super ("Transfer Reason", "", 50, TextField.ANY);
 this.teleTransfer = teleTransfer;

 addCommand (okCommand);
 addCommand (clearCommand);
 setCommandListener(this);
}

Your commandAction() implementation clears the text or returns to the main screen, depending on
the Command selected:

 public void commandAction (Command c, Displayable d) {
 if (c == clearCommand) {
 setString ("");
 }
 else if (c == okCommand) {

 61

 teleTransfer.back();
 }
 }
}

Figure 3.8 shows the TransferReason TextBox.

Figure 3.8. The TransferReason TextBox showing a sample transfer reason text.

TeleTransfer with Multiple Screens

Now you have created two additional screens, but you still need to integrate them in your main
application. To do so, you need to change the TeleTransfer implementation somewhat. Since the
TeleTransfer's ChoiceGroup for selecting the currency is replaced by the CurrencyList,
you do not need the ItemStateListener for detecting item changes any more. So you remove the
listener and also the corresponding callback method itemStateChanged(). To display the two
new Screens CurrencyList and TransferReason, you implement the two commands
currencyCommand and reasonCommand. The new commands are added to the MIDlet in the
constructor using the addCommand() method. In the clear() method, the new TextBox is also
cleared by calling the corresponding setString() method. Finally you add the back() method to
the TeleTransfer application; this method is called from the new Screens to return to the main
form. The commandAction() method is extended to handle the new commands, displaying the new
Screens. Listing 3.1 shows the complete source code of the final version of the TeleTransfer
application.

Listing 3.1 TeleTransfer.java—The Complete TeleTransfer Sample Source Code

import javax.microedition.midlet.*;
import javax.microedition.lcdui.*;

class CurrencyList extends List implements CommandListener {

 TeleTransfer teleTransfer;
 static final String [] CURRENCY_NAMES = {"Dollar", "Euro",
"Yen"} ;
 static final String [] CURRENCY_FRACTIONS = {"Cent", "Cent",
"Sen"} ;

 public CurrencyList (TeleTransfer teletransfer) {
 super ("Select Currency", Choice.IMPLICIT);

 this.teleTransfer = teletransfer;

 try {
 append ("USD", Image.createImage ("/Dollar.png"));
 append ("EUR", Image.createImage ("/Euro.png"));
 append ("JPY", Image.createImage ("/Yen.png"));
 }

TE
AM
FL
Y

Team-Fly®

 62

 catch (java.io.IOException x) {
 throw new RuntimeException ("Images not found");
 }
 setCommandListener(this);
 }

 public void commandAction (Command c, Displayable d) {
 if (c == List.SELECT_COMMAND) {
 teleTransfer.amountWhole.setLabel
 (CURRENCY_NAMES [getSelectedIndex()]);
 teleTransfer.amountFraction.setLabel
 (CURRENCY_FRACTIONS [getSelectedIndex()]);
 teleTransfer.back();
 }
 }
}

class TransferReason extends TextBox implements CommandListener {

 static final Command okCommand = new Command ("OK", Command.BACK,
1);
 static final Command clearCommand = new Command
 ("Clear", Command.SCREEN, 2);

 TeleTransfer teleTransfer;

 public TransferReason (TeleTransfer teleTransfer) {
 super ("Transfer Reason", "", 50, TextField.ANY);
 this.teleTransfer = teleTransfer;

 addCommand (okCommand);
 addCommand (clearCommand);
 setCommandListener(this);
 }

 public void commandAction (Command c, Displayable d) {
 if (c == clearCommand) {
 setString ("");
 }
 else if (c == okCommand) {
 teleTransfer.back();
 }
 }
}

public class TeleTransfer extends MIDlet implements CommandListener {

 static final Command sendCommand = new Command ("Send",
Command.SCREEN, 2);
 static final Command clearCommand = new Command
 ("Clear", Command.SCREEN, 2);
 static final Command exitCommand = new Command ("Exit",
Command.SCREEN, 1);
 static final Command currencyCommand = new Command
 ("Currency", Command.SCREEN, 2);
 static final Command reasonCommand = new Command
 ("Reason", Command.SCREEN, 2);
 Form mainForm = new Form ("TeleTransfer");

 63

 TextField receiverName = new TextField
 ("Receiver Name", "", 20, TextField.ANY);
 TextField receiverAccount = new TextField
 ("Receiver Account#", "", 8, TextField.NUMERIC);
 TextField amountWhole = new TextField ("Dollar", "", 6,
TextField.NUMERIC);
 TextField amountFraction = new TextField
 ("Cent", "", 2,
TextField.NUMERIC);

 CurrencyList currencyList = new CurrencyList (this);
 TransferReason transferReason = new TransferReason (this);
 Display display;

 public TeleTransfer() {
 mainForm.append (receiverName);
 mainForm.append (receiverAccount);
 mainForm.append (amountWhole);
 mainForm.append (amountFraction);

 mainForm.addCommand (currencyCommand);
 mainForm.addCommand (reasonCommand);
 mainForm.addCommand (sendCommand);
 mainForm.addCommand (exitCommand);
 mainForm.setCommandListener(this);
 }

 public void startApp() {
 display = Display.getDisplay (this);
 display.setCurrent (mainForm);
 }

 public void clear() {
 receiverName.setString ("");
 receiverAccount.setString ("");
 amountWhole.setString ("");
 amountFraction.setString ("");
 transferReason.setString ("");
 }

 public void send() {
 Alert alert = new Alert ("Send");
 alert.setString ("transfer " + amountWhole.getString()
 + "." + amountFraction.getString()
 + " " + amountWhole.getLabel()
 + "\nto Acc#" + receiverAccount.getString()
 + "\nof " + receiverName.getString());
 alert.setTimeout (2000);
 display.setCurrent (alert);
 clear();
 }

 public void pauseApp() {
 }

 public void destroyApp (boolean unconditional) {
 }

 public void back() {
 display.setCurrent (mainForm);
 }

 64

 public void commandAction (Command c, Displayable d) {
 if (c == exitCommand) {
 notifyDestroyed();
 }
 else if (c == sendCommand) {
 sendTransferInformation();
 }
 else if (c == clearCommand) {
 resetTransferInformation();
 }
 else if (c == currencyCommand) {
 display.setCurrent (currencyList);
 }
 else if (c == reasonCommand) {
 display.setCurrent (transferReason);
 }
 }
}

Low-Level API
In contrast to the high-level API, the low-level API allows full control of the MID display at pixel level.
For this purpose, the lcdui package contains a special kind of screen called Canvas. The Canvas
itself does not provide any drawing methods, but it does provide a paint() callback method similar
to the paint() method in AWT components. Whenever the program manager determines that it is
necessary to draw the content of the screen, the paint() callback method of Canvas is called. The
only parameter of the paint() method is a Graphics object. In contrast to the lcdui high-level
classes, there are many parallels to AWT in the low-level API.

The Graphics object provides all the methods required for actually drawing the content of the screen,
such as drawLine() for drawing lines, fillRect() for drawing a filled rectangular area or
drawstring() for drawing text strings.

In contrast to AWT, lcdui does not let you mix high-level and low-level graphics. It is not possible to
display high-level and low-level components on the screen simultaneously.

The program manager knows that it must call the paint() method of Canvas when the instance of
Canvas is shown on the screen. However, a repaint can also be triggered by the application at any
time. By calling the repaint() method of Canvas, the system is notified that a repaint is necessary,
and it will call the paint() method. The call of the paint() method is not performed immediately;
it may be delayed until the control flow returns from the current event handling method. The system
may also collect several repaint requests before paint() is actually called. This delay normally is not
a problem, but when you're doing animation, the safest way to trigger repaints is to use
Display.callSerially() or to request the repaint from a separate Thread or TimerTask.
Alternatively, the application can force an immediate repaint by calling serviceRepaints(). (For
more information, see the section "Animation" at the end of this chapter.)

The Canvas class also provides some input callback methods that are called when the user presses or
releases a key or touches the screen with the stylus (if one is supported by the device).

Basic Drawing

Before we go into the details of user input or animation, we will start with a small drawing example
showing the concrete usage of the Canvas and Graphics classes.

 65

The example clears the screen by setting the color to white and filling a rectangle the size of the screen,
determined by calling getWidth() and getHeight(). Then it draws a line from coordinates (0,0)
to (100,200). Finally, it draws a rectangle starting at (20,30), 30 pixels wide and 20 pixels high:

import javax.microedition.lcdui.*;

class DrawingDemoCanvas extends Canvas {

 public void paint (Graphics g) {
 g.setGrayScale (255);
 g.fillRect (0, 0, getWidth(), getHeight());

 g.setGrayScale (0);
 g.drawLine (0, 0, 100, 200);
 g.fillRect (20, 30, 30, 20);
 }
}

As you can see in the example code, you create a custom class DrawingDemoCanvas in order to fill
the paint() method. Actually, it is not possible to draw custom graphics without creating a new class
and implementing the paint() method.

In order to really see your Canvas implementation running, you still need a corresponding MIDlet.
Here's the missing code:

import javax.microedition.midlet.*;
import javax.microedition.lcdui.*;

public class DrawingDemo extends MIDlet {

 public void startApp() {
 Display.getDisplay (this).setCurrent (new
DrawingDemoCanvas());
 }

 public void pauseApp() {}

 public void destroyApp (boolean forced) {}
}

Now you can start your DrawingDemo MIDlet. Depending on the screen size of the device, it will
create output similar to Figure 3.9. In most subsequent examples, you will omit the MIDlet since it is
basically the same as this one, except that the name of your Canvas class will be different.

Figure 3.9. Output of the DrawingDemo MIDlet.

In the example, the screen is cleared before drawing because the system relies on the paint()
method to fill every pixel of the draw region with a valid value. You don't erase the previous content of
the screen automatically because doing so may cause flickering of animations. The application cannot
make any assumptions about the content of the Screen before paint() is called. The screen may be
filled with the content drawn at the last call of paint(), but it may also be filled with an alert box
remaining from an incoming phone call, for example.

 66

Drawing Style and Color

In the DrawingDemoCanvas implementation, you can find two calls to setGrayScale(). The
setGrayScale() method sets the gray scale value for the following drawing operations. Valid
grayscale values range from 0 to 255, where 0 means black and 255 means white. Not all possible
values may actually render to different gray values on the screen. If the device provides fewer than 256
shades of gray, the best fitting value supported by the device is chosen. In the example, the value is first
set to white, and the screen is cleared by the following call to drawRect(). Then, the color is set to
black for the subsequent drawing operations.

The setGrayScale() method is not the only way to influence the color of subsequent drawing.
MIDP also provides a setColor() method. The setColor() method has three parameters
holding the red, green, and blue components of the desired color. Again, the values range from 0 to 255,
where 255 means brightest and 0 means darkest. If all three parameters are set to the same value, the
call is equivalent to a corresponding call of setGrayScale(). If the device is not able to display the
desired color, it chooses the best fitting color or grayscale supported by the device automatically. Some
examples are listed in Table 3.7.

Table 3.7. Example Color Parameter Settings
Parameter Settings Resulting Color
setColor (255, 0, 0) Red
setColor (0, 255, 0) Green
setColor (0, 0, 255) Blue
setColor (128, 0, 0) Dark red
setColor (255, 255, 0) Yellow
setColor (0, 0, 0) Black
setColor (255, 255, 255) White
setColor (128, 128, 128) 50% gray

The only other method that influences the current style of drawing is the setStrokeStyle()
method. The setStrokeStyle() command sets the drawing style of lines to dotted or solid. You
determine the style by setting the parameter to one of the constants DOTTED or SOLID, defined in the
Graphics class.

When the paint() method is entered, the initial drawing color is always set to black and the line
style is SOLID.

Simple Drawing Methods

In the example, you have already seen fillRect() and drawLine(). Table 3.8 shows all drawing
primitives contained in the Graphics class. All operations where the method names begin with draw,
except drawString() and drawImage(), are influenced by the current color and line style. They
draw the outline of a figure, whereas the fill methods fill the corresponding area with the current
color and do not depend on the line style.

Table 3.8. Drawing Methods of the Graphics Class
Method Purpose
drawImage (Image
image,
int x, int y,
int align)

Draws an Image. Explained in detail in the "Images" section.

drawString
(String text,

Draws a text string at the given position in the current color; see "Text
and Fonts."

 67

 int x, int y,
int align)

drawRect (int x,
int y,
int w, int h)

Draws an empty rectangle with the upper-left corner at the given
(x,y)coordinate, with the given width and a height. The next section
explains why the rectangle is one pixel larger than you might expect.

drawRoundRect
(int x, int y,
 int w, int h,
int r)

Like drawRect(), except that an additional radius is given for
rounded corners of the rectangle.

drawLine (int
x0, int y0,
int x1, int y1)

Draws a line from (x0,y0) to (x1,y1).

drawArc (int x,
int y,
 int w, int h,
 int startAng,
int arcArc)

Draws the outline of a circular or elliptical arc covering the specified
rectangle, using the current color and stroke style. The resulting arc
begins at startAng and extends for arcAng degrees. Angles are
interpreted such that 0 degrees is at the 3 o'clock position. A positive
value indicates a counter-clockwise rotation while a negative value
indicates a clockwise rotation.

fillRect (int x,
int y, int w,
int h)

Similar to drawRect(), but fills the given area with the current color.

fillRoundRect
(int x, int y,
 int w, int h,
int startAng,
int endAng);

Related to fillRect() as drawRoundRect() is related to
drawRect().

fillArc (int x,
int y,
 int w, int h,
 int startAng,
int endAng);

Like drawArc(), but fills the corresponding region.

Coordinate System and Clipping

In the drawing example, we already have used screen coordinates without explaining what they
actually mean. You might know that the device display consists of little picture elements (pixels). Each
of these pixels is addressed by its position on the screen, measured from the upper-left corner of the
device, which is the origin of the coordinate system. Figure 3.10 shows the lcdui coordinate system.

Figure 3.10. The lcdui coordinate system.

 68

Actually, in Java the coordinates do not address the pixel itself, but the space between two pixels,
where the "drawing pen" hangs to the lower right. For drawing lines, this does not make any difference,
but for rectangles and filled rectangles this results in a difference of one pixel in width and height: In
contrast to filled rectangles, rectangles become one pixel wider and higher than you might expect.
While this may be confusing at first glance, it respects the mathematical notation that lines are
infinitely thin and avoids problems when extending the coordinate system to real distance measures, as
in the J2SE class Graphics2D.

In all drawing methods, the first coordinate (x) denotes the horizontal distance from the origin and the
second coordinate (y) denotes the vertical distance. Positive coordinates mean a movement down and
to the right. Many drawing methods require additional width and height parameters. An exception is
the drawLine() method, which requires the absolute coordinates of the destination point.

The origin of the coordinate system can be changed using the translate() method. The given
coordinates are added to all subsequent drawing operations automatically. This may make sense if
addressing coordinates relative to the middle of the display is more convenient for some applications,
as shown in the section "Scaling and Fitting," later in the chapter.

The actual size of the accessible display area can be queried using the getWidth() and
getHeight() methods, as performed in the first example that cleared the screen before drawing. The
region of the screen where drawing takes effect can be further limited to a rectangular area by the
clipRect() method. Drawing outside the clip area will have no effect.

The following example demonstrates the effects of the clipRect() method. First, a dotted line is
drawn diagonally over the display. Then a clipping region is set. Finally, the same line as before is
drawn using the SOLID style:

import javax.microedition.lcdui.*;

 69

class ClipDemoCanvas extends Canvas {

 public void paint (Graphics g) {
 g.setGrayScale (255);
 g.fillRect (0, 0, getWidth(), getHeight());

 int m = Math.min (getWidth(), getHeight());
 g.setGrayScale (0);

 g.setStrokeStyle (Graphics.DOTTED);
 g.drawLine (0, 0, m, m);

 g.setClip (m / 4, m / 4, m / 2, m / 2);

 g.setStrokeStyle (Graphics.SOLID);
 g.drawLine (0, 0, m, m);
 }
}

Figure 3.11 shows the resulting image. Although both lines have identical start and end points, only the
part covered by the clipping area is replaced by a solid line.

Figure 3.11. Output of the clipRect() example: Only the part covered by the clipping
area is redrawn solid, although the line coordinates are identical.

When the paint() method is called from the system, a clip area may already be set. This may be the
case if the application just requested repainting of a limited area using the parameterized repaint call, or
if the device just invalidated a limited area of the display, for example if a pop-up dialog indicating an
incoming call was displayed but did not cover the whole display area.

Actually, clipRect() does not set a new clipping area, but instead shrinks the current clip area to
the intersection with the given rectangle. In order to enlarge the clip area, use the setClip() method.

The current clip area can be queried using the getClipX(), getClipY(), getClipWidth(),
and getClipHeight() methods. When drawing is computationally expensive, this information can
be taken into account in order to redraw only the areas of the screen that need an update.

Text and Fonts

 70

For drawing text, lcdui provides the method drawString(). In addition to the basic
drawString() method, several variants let you draw partial strings or single characters. (Details
about the additional methods can be found in the lcdui API documentation.) The simple
drawString() method takes four parameters: The character string to be displayed, the x and y
coordinates, and an integer determining the horizontal and vertical alignment of the text. The alignment
parameter lets you position the text relative to any of the four corners of its invisible surrounding box.
Additionally, the text can be aligned to the text baseline and the horizontal center. The sum or logical
or (|) of a constant for horizontal alignment (LEFT, RIGHT, and HCENTER) and constants for vertical
alignment (TOP, BOTTOM, and BASELINE) determine the actual alignment. Figure 3.12 shows the
anchor points for the valid constant combinations.

Figure 3.12. Valid combinations of the alignment constants and the corresponding
anchor points.

The following example illustrates the usage of the drawString() method. By choosing the anchor
point correspondingly, the text is displayed relative to the upper-left and lower-right corner of the
screen without overlapping the screen border:

import javax.microedition.lcdui.*;

class TextDemoCanvas extends Canvas {

 public void paint (Graphics g) {
 g.setGrayScale (255);
 g.fillRect (0, 0, getWidth(), getHeight());

 g.setGrayScale (0);
 g.drawString ("Top/Left", 0, 0, Graphics.TOP |
Graphics.LEFT);
 g.drawString ("Baseline/Center", getWidth() / 2, getHeight()
/ 2,
 Graphics.HCENTER | Graphics.BASELINE);
 g.drawString ("Bottom/Right", getWidth(), getHeight(),
 Graphics.BOTTOM | Graphics.RIGHT);
 }
}

Figure 3.13 shows the output of the TextDemo example.

Figure 3.13. Output of the TextDemo example.

 71

In addition to the current drawing color, the result of the drawString() method is influenced by the
current font. MIDP provides support for three different fonts in three different sizes and with the three
different attributes: bold, italic, and underlined.

A font is not selected directly, but the setFont() method takes a separate Font object, describing
the desired font, as a parameter. The explicit Font class provides additional information about the font,
such as its width and height in pixels, baseline position, ascent and descent, and so on. Figure 3.14
illustrates the meaning of the corresponding values. This information is important for operations such
as drawing boxes around text strings. In addition, word-wrapping algorithms rely on the actual pixel
width of character strings when rendered to the screen.

Figure 3.14. Font properties and the corresponding query methods.

A Font object is created by calling the static method createFont() of the class Font in the
lcdui package. The createFont() method takes three parameters: the font type, style, and size of
the font. Similar to the text alignment, there are predefined constants for setting the corresponding
value; these constants are listed in Table 3.9.

Table 3.9. createFont() Property Constants
Property Constants
Size SIZE_SMALL, SIZE_MEDIUM, SIZE_LARGE
Style STYLE_PLAIN, STYLE_ITALICS, STYLE_BOLD, STYLE_UNDERLINED
Face FACE_SYSTEM, FACE_MONOSPACE, FACE_PROPORTIONAL

The style constants can be combined—for example, STYLE_ITALICS | STYLE_BOLD will result
in a bold italics font style.

The following example shows a list of all fonts available, as far as the list fits on the screen of the
device:

import javax.microedition.lcdui.*;

class FontDemoCanvas extends Canvas {

 static final int [] styles = {Font.STYLE_PLAIN,
 Font.STYLE_BOLD,
 Font.STYLE_ITALIC} ;
 static final int [] sizes = {Font.SIZE_SMALL,
 Font.SIZE_MEDIUM,
 Font.SIZE_LARGE} ;
 static final int [] faces = {Font.FACE_SYSTEM,
 Font.FACE_MONOSPACE,
 Font.FACE_PROPORTIONAL} ;
 public void paint (Graphics g) {
 Font font = null;

TE
AM
FL
Y

Team-Fly®

 72

 int y = 0;
 g.setGrayScale (255);
 g.fillRect (0, 0, getWidth(), getHeight());
 g.setGrayScale (0);

 for (int size = 0; size < sizes.length; size++) {
 for (int face = 0; face < faces.length; face++) {
 int x = 0;
 for (int style = 0; style < styles.length; style++) {
 font = Font.getFont
 (faces [face], styles [style], sizes
[size]);
 g.setFont (font);
 g.drawString
 ("Test", x+1, y+1, Graphics.TOP |
Graphics.LEFT);
 g.drawRect
 (x, y, font.stringWidth ("Test")+1,
 font.getHeight() + 1);
 x += font.stringWidth ("Test")+1;
 }
 y += font.getHeight() + 1;
 }
 }
 }
}

Figure 3.15 shows the output of the FontDemo example.

Figure 3.15. Output of the FontDemo example.

Images

The Graphics class also provides a method for drawing images. As shown in the final version of
TeleTransfer application, Images can be predefined and contained in the JAR file of the MIDlet.
The only file format that is mandatory for MIDP is the Portable Network Graphics (PNG) file format.
The PNG format has several advantages over other graphics formats; for example, it is license free and
supports true color images, including a full transparency (alpha) channel. PNG images are always
compressed with a loss-less algorithm. The algorithm is identical to the algorithm used for JAR files,
so the MIDP implementation can save space by using the same algorithm for both purposes.

An image can be loaded from the JAR file using the static method Image.create (String
name). The name parameter denotes the filename of the image in the JAR file. Please note that this
create() method may throw an IOException.

The drawImage() method in Graphics requires an Image object, the coordinates, and an integer
denoting the alignment as parameters. The alignment parameter is similar the alignment of
drawString(), except that the BASELINE constant is not supported. An additional alignment
constant available for images only is VCENTER, which forces the image to be vertically centered

 73

relative to the given coordinates. Figure 3.16 shows the valid constant combinations and the
corresponding anchor points.

Figure 3.16. Alignment constant combinations valid for images and the corresponding
anchor points.

The following example first loads the image logo.png from the MIDlet JAR file in the constructor,
and then displays the image three times. One image is drawn in the upper-left corner, one in the lower-
right corner, and one in the center of the display, as shown in Figure 3.17:

import java.io.*;
import javax.microedition.midlet.*;
import javax.microedition.lcdui.*;
class ImageDemoCanvas extends Canvas {

 Image image;

 public ImageDemoCanvas() {
 try {
 image = Image.createImage ("/logo.png");
 }
 catch (IOException e) {
 throw new RuntimeException ("Unable to load Image: "+e);
 }
 }

 public void paint (Graphics g) {
 g.setGrayScale (255);
 g.fillRect (0, 0, getWidth(), getHeight());

 g.drawImage (image, 0, 0, Graphics.TOP | Graphics.LEFT);
 g.drawImage (image, getWidth() / 2, getHeight() / 2,
 Graphics.HCENTER | Graphics.VCENTER);
 g.drawImage (image, getWidth(), getHeight(),
 Graphics.BOTTOM | Graphics.RIGHT);
 }

 74

}

Figure 3.17. Output of the ImageDemo example.

Images can also be created at runtime from scratch. The static method Image.create (int
width, int height) creates a new dynamic image of the given size. In contrast to images loaded
from a JAR file, these images are mutable. Mutable images can be modified by calling
getGraphics(). The Graphics object returned can be used for modifying the image with all the
methods provided by the Graphics class. Please note that images loaded from a JAR file cannot be
modified. However, it is possible to create a mutable image, and then draw any other image in the
mutable image.

By modifying the constructor of the previous example canvas as follows, the image drawn in the
paint() method is created and filled at runtime instead of loading an image from the JAR file:

public ImageDemoCanvas() {
 image = Image.createImage (10,10);
 image.getGraphics().fillArc (0,0,10,10,0, 360);
}

The disadvantage of mutable images is that they cannot be used in high-level GUI elements since it is
possible to modify them at any time, possibly leading to inconsistent display of widgets. For that
reason, another static create method, createImage(Image image), is provided that creates an
immutable image from another image.

Interaction

Because the Canvas class is a subclass of Displayable, it provides the same support for
commands as the high-level screen classes. Here, you will concentrate on the additional interaction
possibilities the Canvas class offers: direct key input and pointer support.

Please note that all input events and command notifications and the paint() method are called
serially. That means that the application manager will call none of the methods until the previous event
handling method has returned. So all these methods should return quickly, or the user will be unable to
interact with the application. For longer tasks, a separate thread can be started.

Key Input

For key input, the Canvas class provides three callback methods: keyPressed(),
keyReleased(), and keyRepeated(). As the names suggest, keyPressed() is called when a
key is pressed, keyRepeated() is called when the user holds down the key for a longer period of
time, and keyReleased() is called when the user releases the key.

All three callback methods provide an integer parameter, denoting the Unicode character code assigned
to the corresponding key. If a key has no Unicode correspondence, the given integer is negative. MIDP
defines the following constant for the keys of a standard ITU-T keypad: KEY_NUM0, KEY_NUM1,
KEY_NUM2, KEY_NUM3, KEY_NUM4, KEY_NUM5, KEY_NUM6, KEY_NUM7, KEY_NUM8,

 75

KEY_NUM9, KEY_POUND, and KEY_STAR. Applications should not rely on the presence of any
additional key codes. In particular, upper- and lowercase or characters generated by pressing a key
multiple times are not supported by low-level key events. A "name" assigned to the key can be queried
using the getKeyName() method.

Some keys may have an additional meaning in games. For this purpose, MIDP provides the constants
UP, DOWN, LEFT, RIGHT, FIRE, GAME_A, GAME_B, GAME_C, and GAME_D. The "game" meaning
of a keypress can be determined by calling the getGameAction() method. The mapping from key
codes to game actions is device dependent, so different keys may map to the same game action on
different devices. For example, some devices may have separate cursor keys; others may map the
number pad to four-way movement. Also, several keys may be mapped to the same game code. The
game code can be translated back to a key code using the getKeyCode() method. This also offers a
way to get the name of the key assigned to a game action. For example, the help screen of an
application may display

"press "+getKeyName (getKeyCode (GAME_A))

instead of "press GAME_A".

The following canvas implementation shows the usage of the key event methods. For each key pressed,
repeated, or released, it shows the event type, character and code, key name, and game action.

The first part of the implementation stores the event type and code in two variables and schedules a
repaint whenever a key event occurs:

import javax.microedition.lcdui.*;

class KeyDemoCanvas extends Canvas {

 String eventType = "- Press any!";
 int keyCode;

 public void keyPressed (int keyCode) {
 eventType = "pressed";
 this.keyCode = keyCode;
 repaint();
 }

 public void keyReleased (int keyCode) {
 eventType = "released";
 this.keyCode = keyCode;
 repaint();
 }

 public void keyRepeated (int keyCode) {
 eventType = "repeated";
 this.keyCode = keyCode;
 repaint();
 }

The second part prints all event properties available to the device screen. For this purpose, you first
implement an additional write() method that helps the paint() method to identify the current y
position on the screen. This is necessary because drawText() does not advance to a new line
automatically. The write() method draws the string at the given y position and returns the y position
plus the line height of the current font, so paint() knows where to draw the next line:

public int write (Graphics g, int y, String s) {
 g.drawString (s, 0, y, Graphics.LEFT|Graphics.TOP);

 76

 return y + g.getFont().getHeight();
}

The paint() method analyzes the keyCode and prints the result by calling the write() method
defined previously, as shown in Figure 3.18:

 public void paint (Graphics g) {
 g.setGrayScale (255);
 g.fillRect (0, 0, getWidth(), getHeight());

 g.setGrayScale (0);

 int y = 0;
 y = write (g, y, "Key "+ eventType);
 if (keyCode == 0) return;

 y = write (g, y, "Char/Code: "+ ((keyCode < 0) ? "N/A" : ""
 +(char) keyCode) + "/" + keyCode);
 y = write (g, y, "Name: "+getKeyName (keyCode));
 String gameAction;
 switch (getGameAction (keyCode)) {
 case LEFT: gameAction = "LEFT"; break;
 case RIGHT: gameAction = "RIGHT"; break;
 case UP: gameAction = "UP"; break;
 case DOWN: gameAction = "DOWN"; break;
 case FIRE: gameAction = "FIRE"; break;
 case GAME_A: gameAction = "GAME_A"; break;
 case GAME_B: gameAction = "GAME_B"; break;
 case GAME_C: gameAction = "GAME_C"; break;
 case GAME_D: gameAction = "GAME_D"; break;
 default: gameAction = "N/A";
 }
 write (g, y, "Action: "+gameAction);
 }
}

Figure 3.18. Output of the KeyDemo example when the "Fire" key was released.

Pointer Events

For devices supporting a pointer device such as a stylus, touch screen, or trackball, the Canvas class
provides three notification methods: pointerPressed(), pointerDragged(), and
pointerReleased(). These methods work similarly to the key event methods, except that they
provide two integer parameters, denoting the x and y position of the pointer when the corresponding
event occurs. (Please note that pointer support is optional in MIDP, so the application should not rely
on the presence of a pointer. Such devices are uncommon for devices such as mobile phones.) The
following sample program demonstrates the usage of the three methods:

import javax.microedition.lcdui.*;

 77

class PointerDemoCanvas extends Canvas {

 String eventType = "Press Pointer!";
 int x;
 int y;

 public void pointerPressed (int x, int y) {
 eventType = "Pointer Pressed";
 this.x = x;
 this.y = y;
 repaint();
 }

 public void pointerReleased (int x, int y) {
 eventType = "Pointer Released";
 this.x = x;
 this.y = y;
 repaint();
 }

 public void pointerDragged (int x, int y) {
 eventType = "Pointer Repeated";
 this.x = x;
 this.y = y;
 repaint();
 }

 public void paint (Graphics g) {
 g.setGrayScale (255);
 g.fillRect (0, 0, getWidth(), getHeight());
 g.setGrayScale (0);
 g.drawString (eventType + " " +x +"/"+y,
 0, 0, Graphics.TOP|Graphics.LEFT);
 g.drawLine (x-4, y, x+4, y);
 g.drawLine (x, y-4, x, y+4);
 }
}

Foreground and Background Notifications

For several reasons, the Canvas may move into the background—for example, if the display is set to
another displayable object or if the device displays a system dialog. In these cases, the Canvas is
notified by the hideNotify() method. When the Canvas becomes visible (again), the
corresponding counterpart, showNotify(), is called.

Javagochi Example

Now that you are familiar with the Canvas object and the basic drawing methods of the Graphics
class, you are ready to develop a small interactive application, the Javagochi.

As you can see in the following code, the MIDlet implementation of Javagochi is already finished,
but the Face class is missing:

import javax.microedition.midlet.*;
import javax.microedition.lcdui.*;

public class Javagochi extends MIDlet {

 78

 static final int IDEAL_WEIGHT = 100;
 Display display = Display.getDisplay (this);
 Face face = new Face (this);
 int weight = IDEAL_WEIGHT;
 Timer consumption;
 int score;

Before you begin development, let us first say a few words about the Javagochi itself. A
Javagochi has a weight that is initialized with its IDEAL_WEIGHT. It also owns an instance of
Display, Face, and Consumption, which will be explained later. Finally, it stores a score value
for the care the owner spends on the Javagochi.

The happiness of the Javagochi is determined by the deviation of its current weight from the ideal
weight, ranging from 10 to 0:

public int getHappiness() {
 return 20 - (weight > IDEAL_WEIGHT
 ? 10 * weight / IDEAL_WEIGHT
 : 10 * IDEAL_WEIGHT / weight);
 if (happiness < 0) happiness = 0;
 if (happiness > 10) happiness = 10;
}

This formula also demonstrates how to circumvent problems with the absence of floating point
arithmetic. In order to avoid loss of significant fractions, the values are scaled up before division.

Like all other known life forms, the Javagochi can die. Javagochies only die from sadness when
their happiness level reaches zero:

public boolean isDead() {
 return getHappiness <= 0;
}

The only other action a Javagochi can perform besides dying is to transform energy to matter and
back. Since a weight change may change the Javagochi's look, a repaint is requested in the
transform() method:

public void transform (int amount) {
 if (!isDead()) {
 weight += amount;
 face.repaint();
 }
}

When the Javagochi MIDlet is started, it displays itself and starts a consumption Timer that keeps
track of the power the Javagochi needs for living:

public void startApp() {
 display.setCurrent (face);
 consumption = new Consumption (this).start();
}

When the MIDlet is paused, the Javagochi goes to sleep by telling the consumption thread to
terminate itself. The destroyApp() method does nothing because the life cycle will enter sleep
anyway, and no further cleanup is needed:

 public void pauseApp() {

 79

 consumption.leave = true;
 }
 public void destroyApp (boolean forced) {
 }
}

The consumption Thread is a separate class that monitors the power the Javagochi needs for
living. In the run() method, every 0.5 seconds the score is updated depending on the Javagochi's
happiness and the small amount of body mass that is transformed back to life energy:

public class Consumption extends Thread {

 Javagochi javagochi;
 boolean leave = false;

 public Consumption (Javagochi javagochi) {
 this.javagochi = javagochi;
 }

 public void run() {
 while (!leave) {
 try {
 sleep (500);
 }
 catch (InterruptedException e) {break;}
 javagochi.score += 10 - javagochi.deviation;
 javagochi.transform (-5);
 }
 }
}

Now that you know how a Javagochi works, it is your job to give the Javagochi an appropriate
appearance by implementing the missing Face class.

Scaling and Fitting

In many cases, it is a good idea to scale displayed graphics depending on the actual screen size.
Otherwise, the display will look nice on one particular device type, but won't fit the screen on devices
with a lower screen resolution or become unnecessarily small on devices with higher screen resolutions.

We will now show how scaling works for the Javagochi example. A picture of a Javagochi is
shown in Figure 3.19. You will start by drawing the shape of the face, a simple ellipse. In this case, the
ellipse will reflect the Javagochi's weight. If the Javagochi is at its ideal weight, the ellipse
becomes a circle.

Figure 3.19. A happy Javagochi at its ideal weight.

 80

In order to leave some space for the Javagochi to grow, the diameter of the ideal circle is half the
minimum of the screen width and height. Thus, the height of the Javagochi is calculated using the
following formula:

int height = Math.min (getHeight(), getWidth()) / 2;

Based on the current weight, the ideal weight, and the calculated height, which is also the diameter of
the "ideal" Javagochi, you can now calculate the width of the Javagochi:

int width = height * javagochi.weight / javagochi.IDEAL_WEIGHT;

Other applications may of course have other dependencies from the actual screen size, but this example
should be sufficient to show the general idea.

The Javagochi's skin color is dependent on its happiness. If the Javagochi feels well, its skin has
a bright yellow color. With decreasing happiness, the Javagochi becomes pale. This is reflected by
the following setColor() command:

setColor (255, 255, 28 * javagochi.happiness);

Using the given width and height, you can now implement your first version of the Javagochi's
Face class:

import javax.microedition.lcdui.*;

class Face extends Canvas implements CommandListener {
 Javagochi javagochi;

 Face (Javagochi javagochi) {
 this.javagochi = javagochi;
 }

 public void paint (Graphics g) {
 g.setColor (255, 255, 255);
 g.fillRect (0, 0, getWidth(), getHeight());

 int height = Math.min (getHeight(), getWidth()) / 2;
 int width = height * javagochi.weight /
javagochi.IDEAL_WEIGHT;

 81

 g.translate (getWidth() / 2, getHeight() / 2);

 g.setColor (255, 255, 255 - javagochi.getHappiness() * 25);
 g.fillArc (- width / 2, - height / 2, width, height, 0, 360);

 g.setColor (0, 0, 0);
 g.drawArc (- width / 2, - height / 2, width, height, 0, 360);
 }
}

In order to simplify the centered display of the Javagochi, you set the origin of the coordinate
system to the center of the screen using the translate() method. The outline of the Javagochi's
face is then drawn using the drawArc() method.

Unfortunately, the outline of the Javagochi looks a bit boring, so you will add a simple face now. In
order to avoid duplicated code, you put the drawing of the eyes in a separate method. The drawEye()
method takes the Graphics object, the coordinates of the eye, and a size parameter:

void drawEye (Graphics g, int x, int y, int size) {
 if (javagochi.isDead()) {
 graphics.drawLine (x - size/2, y, x + size/2, y);
 graphics.drawLine (x, y - size/2, x, y + size/2);
 }
 else
 graphics.drawArc (x-size/2, y-size/2, size, size, 0, 360);
}

Now you can insert the rest of the drawing code into the paint() method, just after drawArc().
You will start with the eyes by calling the drawEye() method defined previously. By using fractions
of the current width and height of the Javagochi, the eyes are positioned and sized correctly:

drawEye (g, - width / 6, - height / 5, height / 15 + 1);
drawEye (g, width / 6, - height / 5, height / 15 + 1);

Now you draw the mouth, depending on the current happiness of the Javagochi. Again, you use
fractions of the Javagochi size for positioning and sizing:

switch (javagochi.getHappiness() / 3) {
case 0:
case 1: g.drawArc (-width/6, height/7, width/3, height/6, 0, 180);
break;
case 2: g.drawLine (-width/6, height/7, width/6, height/7); break;
default: g.drawArc (-width/6, height/7, width/3, height/6, 0, -180);
}

Simple Interaction

When you run the first version of the Javagochi application, the Javagochi starts out happy, but
dies quickly from starvation. Obviously, you need a way to transfer energy from the device's battery to
the Javagochi. One possibility would be to add a corresponding command.

However, in the "High-Level API" section you learned that commands may be delegated to a sub-menu.
When the Javagochi urgently needs feeding, you would like to be able to react quickly.

So you just use the key event corresponding to the game action FIRE for feeding the Javagochi:

TE
AM
FL
Y

Team-Fly®

 82

public void keyPressed (int keyCode) {
 if (getGameAction (keyCode) == FIRE)
 javagochi.transform (10);
}

Now you can save the Javagochi from starvation using the FIRE game key.

Canvas and Text Input

As mentioned in the introduction to interaction, it is not possible to receive composed key events using
the low-level API. But what can you do if you need this kind of input, such as for a text input trainer?

Let's just assume simple feeding is not enough for your Javagochi. Depending on its current state, it
needs special vitamins, denoted by letters ranging from A to Z. On phones providing keys 0 through 9
only, this is a problem. The only solution is to emulate the key input mechanism in software. On
cellular phones, there are also three to four letters printed on the number keys. In text input mode,
pressing a number makes the first letter appear. If the same number is pressed again in a limited period
of time, the second letter appears instead of the first one. This way you can cycle through all the letters
on a number key. When no key is pressed for about three quarters of a second, or another key is pressed,
the letter currently displayed is confirmed as input key.

For emulation of this mechanism, you define the letters on the keys 2 through 9 in a String array
inside the Face class:

public static final String[] keys = {"abc", "def", "ghi", "jkl",
 "mno", "pqrs", "tuv", "wxyz"} ;

You also need a timer to measure the time until confirmation of the current key. The timer is stored in
keyTimer. The variables keyMajor and keyMinor contain the index in the keys array and the
index inside the corresponding string. The variable needed stores the vitamin currently needed by the
Javagochi:

Timer keyTimer;
int keyMajor = -1;
int keyMinor;
char needed = 'a';

What do you do if a numeric key is pressed? If you already have a timer running, you cancel it since a
key was pressed. Then, you subtract the code of the 2 key from the current key code in order to
calculate the index in your key array. If the given event does not represent a numeric key between 2
and 9, you set keyMajor to the special value –1, denoting that no valid character is being entered.
Otherwise, you check whether the key is identical to the last key. If so, keyMinor is incremented in
order to cycle through the letters assigned to a single numeric key. If another key is pressed,
keyMajor is changed accordingly and keyMinor is set back to 0. A new timer is scheduled for half
a second later:

public synchronized void keyPressed (int keyCode) {

 if (keyTimer != null) keyTimer.cancel();

 int index = keyCode - KEY_NUM2;

 if (index < 0 || index > keys.length)
 keyMajor = -1;
 else {
 if (index != keyMajor) {
 keyMinor = 0;
 keyMajor = index;

 83

 }
 else {
 keyMinor++;
 if (keyMinor >= keys [keyMajor].length())
 keyMinor = 0;
 }

 keyTimer = new Timer();
 keyTimer.schedule (new KeyConfirmer (this), 500);
 }
 repaint();
}

Now you need to implement a timer task that confirms the letter if no other key is pressed for half a
second. In that case, the KeyConfirmer class just calls keyConfirmed() in the original Face
class:

import java.util.*;

public class KeyConfirmer extends TimerTask {

 Face face;

 public KeyConfirmer (Face face) {
 this.face = face;
 }

 public void run() {
 face.keyConfirmed();
 }
}

Back in the Face class, you can now implement the functionality performed when the letter is finally
confirmed. You just compare the letter to the vitamin needed by the Javagochi. If the right vitamin
is fed, the weight of the Javagochi is increased 10 units by calling transform():

synchronized void keyConfirmed() {
 if (keyMajor != -1) {

 if (keys [keyMajor].charAt (keyMinor) == needed) {
 javagochi.score += javagochi.getHappiness();

 if (!javagochi.isDead())
 needed = (char) ('a'
 + ((System.currentTimeMillis() / 10) % 26));

 javagochi.transform (10);
 }

 keyMajor = -1;
 repaint();
 }
}

Finally, you add some status information about the current score and selected key to the
Face.paint() method. Just insert the following code at the end of the previous implementation of
paint():

String keySelect = "";

 84

if (keyMajor != -1) {
 String all = keys [keyMajor];
 keySelect = all.substring (0, keyMinor) + "[" + all.charAt
(keyMinor)
 + "]" + all.substring (keyMinor+1);
}

g.drawString ("Feed: " + needed + " " + keySelect, 0,
 getHeight()/2, Graphics.BOTTOM|Graphics.HCENTER);
g.drawString ("Score: "+javagochi.score, 0,
 -getHeight()/2, Graphics.TOP|Graphics.HCENTER);

Figure 3.20 shows the Javagochi being fed with vitamins. The complete source code is contained in
Listing 3.2.

Figure 3.20. A Javagochi being fed with vitamins.

Listing 3.2 Javagochi.java—The Complete Javagochi Sample Source Code

import java.util.*;
import javax.microedition.midlet.*;
import javax.microedition.lcdui.*;

class Consumption extends TimerTask {

 Javagochi javagochi;

 public Consumption (Javagochi javagochi) {
 this.javagochi = javagochi;
 }
 public void run() {
 javagochi.transform (-1 - javagochi.score/100);
 }
}

class KeyConfirmer extends TimerTask {

 Face face;

 public KeyConfirmer (Face face) {
 this.face = face;
 }

 public void run() {
 face.keyConfirmed();
 }
}

 85

class Face extends Canvas {

 public static final String[] keys = {"abc", "def", "ghi", "jkl",
 "mno", "pqrs", "tuv",
"wxyz"} ;

 Javagochi javagochi;
 Timer keyTimer;

 int keyMajor = -1;
 int keyMinor;
 char needed = 'a';

 Face (Javagochi javagochi) {
 this.javagochi = javagochi;
 }

 public void paint (Graphics g) {
 g.setColor (255, 255, 255);
 g.fillRect (0, 0, getWidth(), getHeight());

 int height = Math.min (getHeight(), getWidth()) / 2;
 int width = height * javagochi.weight
 / javagochi.IDEAL_WEIGHT;

 g.translate (getWidth() / 2, getHeight() / 2);
 g.setColor (255, 255, 255 - javagochi.getHappiness() * 25);
 g.fillArc (- width / 2, - height / 2, width, height, 0, 360);

 g.setColor (0, 0, 0);
 g.drawArc (- width / 2, - height / 2, width, height, 0, 360);

 g.drawString ("Score: "+javagochi.score, 0, -getHeight()/2,
 Graphics.TOP|Graphics.HCENTER);

 String keySelect = "";
 if (keyMajor != -1) {
 String all = keys [keyMajor];
 keySelect = all.substring
 (0, keyMinor) + "[" + all.charAt
(keyMinor)
 + "]" + all.substring (keyMinor+1);
 }

 g.drawString ("Feed: " + needed + " " + keySelect,
 0, getHeight()/2,
Graphics.BOTTOM|Graphics.HCENTER);

 drawEye (g, - width / 6, - height / 5, height / 15 + 1);
 drawEye (g, width / 6, - height / 5, height / 15 + 1);

 switch (javagochi.getHappiness() / 3) {
 case 0:
 case 1:
 g.drawArc (-width/6, height/7, width/3, height/6, 0,
180);
 break;
 case 2:
 g.drawLine (-width/6, height/7, width/6, height/7);
 break;

 86

 default:
 g.drawArc (-width/6, height/7, width/3, height/6, 0, -
180);
 }
 }

 void drawEye (Graphics graphics, int x0, int y0, int w) {
 if (javagochi.isDead()) {
 graphics.drawLine (x0 - w/2, y0, x0 + w/2, y0);
 graphics.drawLine (x0, y0 - w/2, x0, y0 + w/2);
 }
 else
 graphics.fillArc (x0-w/2, y0-w/2, w, w, 0, 360);
 }
 public synchronized void keyPressed (int keyCode) {

 int index = keyCode - KEY_NUM2;

 if (keyTimer != null) keyTimer.cancel();

 if (index < 0 || index > keys.length)
 keyMajor = -1;
 else {
 if (index != keyMajor) {
 keyMinor = 0;
 keyMajor = index;
 }
 else {
 keyMinor++;
 if (keyMinor >= keys [keyMajor].length())
 keyMinor = 0;
 }

 keyTimer = new Timer();
 keyTimer.schedule (new KeyConfirmer (this), 500);
 }
 repaint();
 }

 synchronized void keyConfirmed() {
 if (keyMajor != -1) {

 if (keys [keyMajor].charAt (keyMinor) == needed) {
 javagochi.score += javagochi.getHappiness();

 if (!javagochi.isDead())
 needed = (char) ('a'
 + ((System.currentTimeMillis() / 10) % 26));

 javagochi.transform (10);
 }

 keyMajor = -1;
 repaint();
 }
 }
}
public class Javagochi extends MIDlet {

 static final int IDEAL_WEIGHT = 100;

 87

 Display display;
 Face face = new Face (this);
 int weight = IDEAL_WEIGHT;
 Timer consumption;
 int score;

 public int getHappiness() {
 int happiness = 20 - (weight > IDEAL_WEIGHT
 ? 10 * weight / IDEAL_WEIGHT
 : 10 * IDEAL_WEIGHT / weight);
 if (happiness < 0) happiness = 0;
 else if (happiness > 10) happiness = 10;
 return happiness;
 }

 public boolean isDead() {
 return getHappiness() == 0;
 }

 public void transform (int amount) {
 if (!isDead()) {
 weight += amount;
 face.repaint();
 }
 }

 public void startApp() {
 display = Display.getDisplay (this);
 display.setCurrent (face);
 consumption = new Timer();
 consumption.scheduleAtFixedRate (new Consumption (this), 500,
500);
 }

 public void pauseApp() {
 consumption.cancel();
 }

 public void destroyApp (boolean forced) {
 }
}

Animation

With animation, there are normally two main problems: Display flickering and synchronization of
painting with calculation of new frames. We will first address how to get the actual painting and
application logic in sync, and then solve possible flickering.

Synchronization of Frame Calculation and Drawing

When you perform animations, you can first calculate the display content and then call repaint() in
order to paint the new frame. But how do you know that the call to paint() has finished? One
possibility would be to call serviceRepaints(), which blocks until all pending display updates
are finished. The problem with serviceRepaints() is that paint() may be called from another
thread. If the thread calling serviceRepaints() holds any locks that are required in paint(), a
deadlock may occur. Also, calling serviceRepaints() makes sense only from a thread other than
the event handling thread. Otherwise, key events may be blocked until the animation is over. An
alternative to serviceRepaints() is calling callSerially() at the end of the paint()
method. The callSerially() method lets you put Runnable objects in the event queue. The

 88

run() method of the Runnable object is then executed serially like any other event handling
method. In the run() method, the next frame can be set up, and a new repaint can be requested there.

To demonstrate this execution model, you will build a simple stopwatch that counts down a given
number of seconds by showing a corresponding pie slice using the fillArc() method, as shown in
Figure 3.21.

Figure 3.21. A very simple stopwatch.

The Canvas implementation stores the current slice in degree, the start time, the total amount of
seconds and the MIDlet display in local variables. In order to make use of callSerially(), your
Canvas implements the Runnable interface:

class StopWatchCanvas extends Canvas implements Runnable {
 int degree = 360;
 long startTime;
 int seconds;
 Display display;

When the StopWatchCanvas is created, you store the given display and seconds. Then, the current
time is determined and stored, too:

StopWatchCanvas (Display display, int seconds) {
 this.display = display;
 this.seconds = seconds;
 startTime = System.currentTimeMillis();
}

In the paint() method, you clear the display. If you need to draw more than 0 degrees, you fill a
corresponding arc with red color and request recalculation of the pie slice using callSerially().
Finally, you draw the outline of the stopwatch by setting the color to black and calling drawArc():

public void paint (Graphics g) {
 g.setGrayScale (255);
 g.fillRect (0, 0, getWidth(), getHeight());

 if (degree > 0) {
 g.setColor (255, 0, 0);
 g.fillArc (0,0, getWidth(), getHeight(), 90, degree);
 display.callSerially (this);
 }
 g.setGrayScale (0);
 g.drawArc (0, 0, getWidth()-1, getHeight()-1, 0, 360);
}

This method is invoked by the event handling thread as a result of the previous
display.callSerially(this) statement. In this case, it just calculates a new pie slice and
requests a repaint():

 89

 public void run() {
 int permille = (int) ((System.currentTimeMillis()
 - startTime) / seconds);
 degree = 360 - (permille * 360) / 1000;
 repaint();
 }
}

As always, you need a MIDlet to actually display your StopWatchCanvas implementation. The
following code creates a stopwatch set to 10 seconds when the application is started:

import javax.microedition.midlet.*;
import javax.microedition.lcdui.*;

public class StopWatch extends MIDlet {
 public void startApp() {
 Display display = Display.getDisplay (this);
 display.setCurrent (new StopWatchCanvas (display, 10));
 }

 public void pauseApp() {
 }

 public void destroyApp (boolean forced) {
 }
}

Avoiding Flickering

On some devices, the stopwatch implementation will flicker. This is due to the fact that the display is
cleared completely before a new stopwatch is drawn. However, on some other devices, the stopwatch
will not flicker because those devices provide automated double buffering. Before the screen is updated,
all drawing methods are performed in a hidden buffer area. Then, when the paint() method is
finished, the complete display is updated from the offscreen buffer at once. The method
isDoubleBuffered() in the Canvas class is able to determine whether the device screen is
double buffered.

In order to avoid flickering of your animation in all cases, you can add your own offscreen image,
which is allocated only if the system does not provide double buffering:

Image offscreen = isDoubleBuffered() ? null :
 Image.createImage (getWidth(), getHeight());

In the paint() method, you just check if the offscreen image is not null, and if so, you delegate all
drawing to your offscreen buffer. The offscreen buffer is then drawn immediately at the end of the
paint() method, without first clearing the screen. Clearing the screen is not necessary in that case
since the offscreen buffer was cleared before drawing and it fills every pixel of the display:

public void paint (Graphics g) {
 Graphics g2 = offscreen == null ? g : offscreen.getGraphics();

 g2.setGrayScale (255);
 g2.fillRect (0, 0, getWidth(), getHeight());

 if (degree > 0) {
 g2.setColor (255, 0, 0);
 g2.fillArc (0,0, getWidth(), getHeight(), 90, degree);

 display.callSerially (this);

 90

 }
 g2.setGrayScale (0);
 g2.drawArc (0, 0, getWidth()-1, getHeight()-1, 0, 360);

 if (offscreen != null)
 g.drawImage (offscreen, 0, 0, Graphics.TOP | Graphics.RIGHT);
}

Listing 3.3 gives the complete source code for the buffered stopwatch.

Listing 3.3 BufferedStopWatch.java—The Complete Source Code of the Buffered
Stopwatch

import javax.microedition.midlet.*;
import javax.microedition.lcdui.*;

class BufferedStopWatchCanvas extends Canvas implements Runnable {
 int degree = 360;
 long startTime;
 int seconds;
 Display display;
 Image offscreen;

 BufferedStopWatchCanvas (Display display, int seconds) {
 this.display = display;
 this.seconds = seconds;

 if (!isDoubleBuffered() && false)
 offscreen = Image.createImage (getWidth(), getHeight());

 startTime = System.currentTimeMillis();
 }

 public void paint (Graphics g) {

 Graphics g2 = offscreen == null
 ? g
 : offscreen.getGraphics();

 g2.setGrayScale (255);
 g2.fillRect (0, 0, getWidth(), getHeight());

 if (degree > 0) {
 g2.setColor (255, 0, 0);
 g2.fillArc (0,0, getWidth(), getHeight(), 90, degree);

 display.callSerially (this);
 }
 g2.setGrayScale (0);
 g2.drawArc (0, 0, getWidth()-1, getHeight()-1, 0, 360);

 if (offscreen != null)
 g.drawImage (offscreen, 0, 0, Graphics.TOP |
Graphics.RIGHT);
 }

 public void run() {
 int permille = (int) ((System.currentTimeMillis()
 - startTime) / seconds);
 degree = 360 - (permille * 360) / 1000;

 91

 repaint();
 }
}

public class BufferedStopWatch extends MIDlet {

 public void startApp() {
 Display display = Display.getDisplay (this);
 display.setCurrent (new BufferedStopWatchCanvas (display,
10));
 }

 public void pauseApp() {
 }

 public void destroyApp (boolean forced) {
 }
}

MIDP 2.0 Additions
Version 2.0 of MIDP improves the existing high-level user interface API significantly. Additionally,
there are three new packages packages, javax.microedition.lcdui.game,
javax.microedition.media, and javax.microedition.media.control, especially
for game and multimedia programming.

LCDUI High-Level Improvements

For the high-level part of LCDUI, there are several significant additions and improvements:

• The new Class CustomItem allows user drawn items
• Commands can also be assigned to Items
• All items have a new setLayout() method

The CustomItem class allows you to combine the flexibility of the low-level API directly with the
high-level API on the same screen. The ability to assign commands to items allows context-sensitive
menus, depending on the current focus position. For example, this could be used for nested option
dialogs or to build a hypertext browser based on the high-level API only. The setLayout() method
gives MIDP 2.0 applications better control over the actual layout of the items contained in a form.

The Game Package

The new game package contains graphical objects specially designed for games and animations. The
class Sprite is designed for adding active objects to games. Sprites can consist of a single image or a
sequence of images representing an animated sprite. In contrast to plain images, sprites have status
information such as the current position and animation frame. The Sprite class also contains
methods for detecting collisions with other sprites.

In addition to the Sprite, the game package contains another graphical object, the TiledLayer
class. Tiled layers are large images constructed from equally sized cells and can be used for
implementing a scrolling screen background, for example. The cells are obtained from a single image
that is divided into a number of rows and columns, as defined by the TiledLayer constructor. Each
cell contains an index that points to a tile obtained from the image given to the constructor. When the
TiledLayer is displayed on the screen, the cells are rendered from the tile corresponding to the

TE
AM
FL
Y

Team-Fly®

 92

index. While positive indices are direct pointers to a portion of the source image, negative indices are
indirect pointers and can be remapped for animating a set of cells with the same virtual index at once.
An index of zero represents a transparent cell.

Both classes, Sprite and TiledLayer are derived from the abstract class Layer. While instances
of both classes can be drawn directly using their paint method, the game package also contains a
LayerManager that can manage a set of graphical objects including their Z-Order.

Finally, the game package contains the class GameCanvas, a subclass of Canvas. Each instance of
GameCanvas has its own offscreen buffer. In contrast to the simple Canvas, it is safe to assume that
the GameCanvas offscreen buffer is not obscured. Moreover, the GameCanvas provides access to
the corresponding Graphics object outside of the paint method and a method to flush the offscreen
buffer to the screen.

The Media Packages

The javax.microedition.media package contains audio support and consists of three main
building blocks. The Manager class can be seen as the entry point to media access. It is able to list the
supported media types and create new Player instances. A player can be used to actually play a
media object, such as a midi or mp3 file (depending on the supported media types).

The code snipped below shows an example of how to play a midi file from the Web using a player
object obtained from the Manager.

try {
 Player p = Manager.createPlayer("http://ringtones.org/song.mid");
 p.start();
}
catch (MediaException pe) {
}
catch (IOException ioe) {
}

The javax.microedition.media.control package contains additional components for
controlling the properties of the played media objects such as volume and pitch.

Summary

In this chapter, you learned the general life cycle of MIDP applications. You know how to build a
user interface using the high-level lcdui widgets, and how to interact using the listener
mechanism. You have learned to perform custom graphics using the low-level API, including
device-independent flicker-free animation and coordination of graphics calculation and drawing.

The next chapter gives a corresponding overview of the PDAP life cycle and user interface. The
PDAP introduction focuses on the differences between the J2SE AWT classes and the subset
included in PDAP, but still gives a basic introduction to AWT programming.

 93

Chapter 4. PDAP Programming
IN THIS CHAPTER

• PDAP Application Life Cycle
• PDA User Interface

This chapter discusses the life cycle and user interface of PDA applications. First, we'll talk about
the general design of PDA applications. Then, we'll explain the AWT subset that forms the PDAP
user interface API.

PDAP Application Life Cycle
PDAP is a complete superset of MIDP. As for MIDP, PDAP applications are based on the MIDlet class
and share the MIDlet life cycle, as illustrated in Figure 3.1. However, PDAP contains several additional
packages. For example, the AWT classes allow much more sophisticated user interfaces than lcdui,
giving the programmer fine-grained control over component layout.

In this chapter, we will concentrate on the user interface enhancements of PDAP.

HelloPdap Revisited

The HelloPdap example from Chapter 1, "Java 2 Micro Edition Overview," is already a complete
PDAP application. Now that you have the necessary foundation, you can revisit HelloPdap from an
API point of view.

First, you import the necessary midlet and awt packages:

import java.awt.*;
import javax.microedition.midlet.*;

Like all PDAP applications, the HelloPdap example is required to extend the MIDlet class:

public class HelloPdap extends MIDlet {

In the constructor, you create a Frame titled "HelloPdap":

Frame frame;

public HelloPdap() {
 frame = new Frame ("HelloPdap");
}

You do not add content to the frame yet, so only the title will be displayed. (A description of the awt
classes is contained in the "PDA User Interface" section.)

When your MIDlet is started the first time or when the MIDlet resumes from a paused state, the
startApp() method is called by the program manager. Here, the show() method of the frame is
called, requesting that the frame be displayed. If the frame is already visible, it is brought to the
foreground:

 94

public void startApp() {
 frame.show();
}

When the application is paused, you do nothing because you do not have any allocated resources to free.
However, you need to provide an empty implementation, because implementation of pauseApp() is
mandatory:

public void pauseApp(){
}

Like startApp() and pauseApp(), the implementation of destroyApp() is mandatory. Here,
we dispose of the frame, freeing the associated system resources:

 public void destroyApp(boolean unconditional) {
 frame.dispose();
 }
}

PDA User Interface
The PDA user interface is based on the J2SE Abstract Window Toolkit (AWT). This section of the
chapter is structured as follows: First, we compare the PDA AWT subset with other AWT versions.
Then, a short general introduction to the AWT programming is given. The sections "Custom
Components" and "Custom Layout Managers" cover some aspects with special importance for
programming limited devices. The section "Multiple Threads in the PDAP AWT Subset" shows how
you can build multithreaded AWT programs, although the PDAP AWT subset is limited to a SWING-
like single thread model. Finally, we'll implement an AWT application combining some of the
discussed concepts.

Comparison of the PDAP AWT Subset to Other AWT Versions

The java.awt classes included in PDAP are based on the (CDC-based) Personal Profile AWT
building block. The Personal Profile AWT is a clean subset of Java 2.0 AWT. It covers the complete
Java 1.1 AWT, and contains several additions from Java 2, such as buffered images, support for thread-
safe access and several convenience methods. Thread-safe AWT programming is discussed in more
detail in the section "Multiple Threads in the PDAP AWT Subset." Additionally, some methods
helping to reduce creation of intermediate objects introduced with Java 2.0 were taken over into the
Personal Profile. Examples for this type of methods are getWidth(), which replaces a call to
getSize()returning an intermediate dimension object.

Compared to the Personal Profile AWT, the PDAP AWT is slightly more restricted. The PDAP AWT
subset contains only the packages java.awt, java.awt.event, and java.awt.image.
Moreover, those packages are not complete; several classes and methods are missing. For example,
more Java 2 additions such as buffered images and Graphics2D support were left out. The
Cloneable, Serializable, and Externalizable interfaces are not supported in CLDC. Also,
the AWTPermission was left out because the implied security model is not part of CLDC. A
complete comparison of the PDAP AWT subset to the Java 2 AWT API can be found in Appendix
B,"Comparison Charts." Figure 4.1 illustrates the relations between the different AWT versions.

Figure 4.1. Subset relations among the different AWT versions.

 95

The PDAP AWT subset supports an unlimited number of frames, but the device might show only the
top frame on the screen. The frames may be restricted to a fixed size. When using both LCDUI screens
and AWT frames, the LCDUI display behaves similar to an additional frame. Mixing LCDUI and
AWT isn't recommended, and it isn't possible to mix AWT and LCDUI components in a single Frame
or Screen.

Note

PDA applications that don't rely on special microedition packages other than midlet can run on the
desktop without an emulation environment by implementing a dummy
javax.microedition.midlet.MIDlet class like that shown in the following code snippet:

package javax.microedition.midlet;

public class MIDlet {

 protected abstract void startApp();
 protected abstract void pauseApp();
 protected abstract void destroyApp (boolean unconditional);

 public void notifyDestroyed() {
 System.exit (0);
 }
}

In addition, you need to add a main method to the actual MIDlet implementation that creates a
corresponding instance and calls the startApp() method.

The corresponding main() method for the HelloPdap example is

public static void main (String [] argv) {
 new HelloPdap().startApp();
}

 96

A Short Introduction to AWT Programming

Although this book is targeted at programmers who have some basic Java experience, a short
introduction to AWT programming is included here. The motivation is that modern Java desktop
applications are mostly based on SWING, and servlets are based on an HTML interface, so a large
fraction of Java programmers might not have much experience with AWT. Also, Rapid Application
Development tools contained in several J2SE IDEs might not yet be able to generate PDAP-compatible
code.

For a more detailed explanation of AWT, refer to a general Java book covering AWT or to the online
tutorials provided by Sun http://java.sun.com/docs/books/tutorial/. An overview about AWT is
available from Sun's AWT Web site at http://java.sun.com/products/jdk/awt/.

Basic Component Model

Graphical user interfaces usually consist of a number of components like buttons, text fields, or check
boxes. In the Abstract Window Toolkit, these elements are represented by Java classes such as
Button, TextField, and Checkbox. These classes handle the drawing of the corresponding
components, as well as basic handling of user interactions. Most elements of the user interface are
derived from the abstract base class Component. The Component class provides access methods for
the common properties of the user interface classes, such as the size and position.

A special subclass of Component is Container, which can contain a set of other components—
including containers. A special example of a container is a Frame. The Frame class represents a
regular screen window. Other containers are Panels, which are used for grouping components, and
dialog windows.

Using a Frame and a Label, you are already able to build an AWT-based "Hello World" program
(see Listing 4.1). In the constructor, a Frame with the title "Hello World" is created and then a
Label showing "Hello World" is added to the Frame.

Listing 4.1 ComponentSample.java

import java.awt.*;
import javax.microedition.midlet.*;

public class ComponentSample extends MIDlet {
 Frame frame;

 public ComponentSample() {
 frame = new Frame ("Hello World");
 frame.add(new Label ("Hello World"));
 }

 public void startApp() {
 frame.show();
 }

 public void pauseApp() {
 }
 public void destroyApp (boolean conditional) {
 frame.dispose();
 }
}

http://java.sun.com/docs/books/tutorial/
http://java.sun.com/products/jdk/awt/

 97

User Interaction and Event Handling

The original ComponentSample MIDlet doesn't allow user interaction. However, some kind of exit
button would be useful. Buttons are represented by the component class Button. The only parameter
of the constructor is the button label text. The following lines add a button to the south area of the
frame (the layout areas will be described in more detail in the next section):

Button b = new Button ("Exit");
frame.add(b, BorderLayout.SOUTH);

When the program is started with the additional lines, a button will appear at the bottom of the Frame,
but nothing will happen when the button is clicked. The button still needs to be linked to the desired
action, in this case leaving the program. In AWT, all kinds of user interface interactions—like clicking
a button—are represented by event objects. In the case of a Button, the corresponding event object is
an instance of ActionEvent. If an application is interested in some kind of event, it must implement
the corresponding listener interface, containing one or more callback methods. For ActionEvents,
the listener interface is

public interface ActionListener {
 public void actionPerformed (ActionEvent e);
}

Both the event classes and listener interfaces are contained in the package java.awt.event.

In order to handle events, an object implementing the listener interface must be registered with the
component that is the source of the events. For registering an action listener, the button class provides
the method addActionListener(ActionListener l).

In order to keep your sample program simple, you can add the actionPerformed() method to the
MIDlet class directly and thus let it implement the ActionListener interface (see Listing 4.2).

Listing 4.2 ComponentSample2.java—Enhanced Version of the ComponentSample
Handling User Interaction

import java.awt.*;
import java.awt.event.*;
import javax.microedition.midlet.*;

public class ComponentSample2 extends MIDlet implements
ActionListener {
 Frame frame;
 public ComponentSample2() {
 frame = new Frame ("Hello World");
 frame.add(new Label ("Hello World"));
 Button b = new Button ("Exit");
 b.addActionListener(this);
 frame.add(b, BorderLayout.SOUTH);
 }

 public void actionPerformed(ActionEvent ae) {
 frame.dispose();
 notifyDestroyed();
 }

 public void startApp() {
 frame.show();
 }

 98

 public void pauseApp() {
 }

 public void destroyApp (boolean conditional) {
 frame.dispose();
 }
}

AWT contains lots of other active components and events. Introducing them all here would exceed the
scope of this book. Table 4.1 gives an overview of the AWT components. Please note that the
component events apply to all other (derived) components, although listed only once in the component
description. Table 4.2 gives an overview of all events that are available in PDAP and the corresponding
listener interfaces that are needed for handling those events.

Table 4.1. AWT Components and Corresponding Events
Component Name Events Description
Button ActionEvent The Button class is a component that is used to

create a labeled button in order to invoke an
action if it is pushed.

Canvas None The Canvas is a component for custom drawing
by overriding the paint method.

Checkbox ItemEvent A Checkbox is a component that can be in either
selected (true) or deselected (false) state. An
ItemEvent is fired, when the CheckBox is
(de)selected.

CheckboxMenuItem ItemEvent A CheckboxMenuItem represents one item of a
menu combining the functionality of a MenuItem
and a Checkbox as well. It can be in either
selected (true) or deselected (false) state. An
ItemEvent is fired, when the CheckBox is
(de)selected.

Choice ItemEvent The Choice class presents a component for
selecting one of a set of possible choices. An An
ItemEvent is fired, when the CheckBox is
(de)selected.

Component FocusEvent

KeyEvent

MouseEvent

The Component class is the abstract superclass
of all nonmenu-related AWT components.
Component can be derived directly to implement
lightweight components.

Container ContainerEvent A Container is a specialized component that is
used to hold other components. A
ContainerEvent is fired if a Component is
added or removed from a Container.

Label None A Label is a component for placing a single read-
only line of text in a container.

List ItemEvent A List represents a scrolling list of text items for
user selection. An ItemEvent is fired if the user
selects an item in the List.

MenuComponent None The class MenuComponent is the superclass of
all menu-related components.

MenuItem ActionEvent The class MenuItem represents one item of a
menu. An ActionEvent is fired if the MenuItem
is selected.

 99

Scrollbar AdjustmentEvent A Scrollbar provides a convenient option to
select a value from a given range. An
AdjustmentEvent is fired if the value of the
Scrollbar component is adjusted.

TextComponent TextEvent The TextComponent class is the superclass of
any component that allows text input. A
TextEvent is fired if text in a Component
derived from TextComponent is changed.

TextArea None The TextArea is a component capable of
displaying a multiline region of text. If the text
inside the TextArea changes, a TextEvent is
fired.

TextField ActionEvent The TextField is a component allowing the user
to edit a single line of text. If the text inside the
TextField changes, a TextEvent is fired. An
ActionEvent is fired if the text is confirmed by a
return keystroke.

Table 4.2. Available AWT Events and Corresponding Listeners
Event Name Listener Description and Interface Methods
ActionEvent ActionListener Invoked by a specific component to indicate that a

component-specific action occurred. Classes
implementing an ActionListener in order to
receive ActionEvents need to implement the
following method:

void actionPerformed(ActionEvent
e)

AdjustmentEvent AdjustmentListener Invoked by components indicating that their value
has been adjusted. Classes implementing an
AdjustmentListener in order to receive
AdjustmentEvents need to implement the
following method:

void adjustmentValueChanged
(AdjustmentEvent e)

ComponentEvent ComponentListener Invoked by componentes in order to indicate
that a component has moved, changed its
size or changed its visibility.

ContainerEvent ContainerListener Invoked in order to indicate that a component
has beed added or removed.

FocusEvent FocusListener Invoked by components in order to indicate that
they have gained or lost the keyboard focus.
Classes implementing a FocusListener in
order to receive FocusEvents need to
implement the following methods:

void focusGained(FocusEvent e)
void focusLost(FocusEvent e)

ItemEvent ItemListener Invoked by ItemSelectable components in
order to indicate that an item is selected or
deselected. Classes implementing an
ItemListener in order to receive
ItemEvents need to implement the following

 100

method:

void itemStateChanged(ItemEvent
e)

KeyEvent KeyListener Indicates that a keystroke has occurred in a
component that is capable of accepting
keystrokes. Classes implementing a
KeyListener in order to receive
KeyEvents need to implement the following
methods:
void keyPressed(KeyEvent e)
void keyReleased(KeyEvent e)
void keyTyped(KeyEvent e)

MouseEvent MouseListener/
MouseMotionListener

Indicates that a mouse action occurred in a
component. The MouseEvent is used both for
mouse events (click, enter, exit) and mouse
motion events (moves and drags). The only
difference is where the events are indicated.

Clicks, presses, and releases are received by a
MouseListener consisting of the the following
methods:

void mouseClicked(MouseEvent e)
void mouseEntered(MouseEvent e)
void mouseExited(MouseEvent e)
void mousePressed(MouseEvent e)
void mouseReleased(MouseEvent e)

Classes that are interested in receiving mouse
drags and moves need to implement the
MouseMotionListener and the following
methods:

void mouseDragged(MouseEvent e)
void mouseMoved(MouseEvent e)

PaintEvent None In contrast to the other events, the paint
event has no corresponding listener or
adapter. The PaintEvent is internally
handled by the event queue when a
component needs to be repainted.
Applications should override the paint/update
methods in order react to repaint events.

TextEvent TextListener Indicates that the text of a component has been
changed. Classes implementing a
TextListener in order to receive
TextEvents need to implement the following
method:

void textValueChanged(TextEvent
e)

WindowEvent WindowListener Indicates that a window has changed its status.
Classes implementing a WindowListener in
order to receive WindowEvents need to
implement the following methods:

 101

void windowActivated(WindowEvent
e)
void windowClosed(WindowEvent e)
void windowClosing(WindowEvent e)
void
windowDeactivated(WindowEvent e)
void
windowDeiconified(WindowEvent e)
void windowIconified(WindowEvent
e)
void windowOpened(WindowEvent e)

Containers and Layout

As soon as the user interface consists of more than one or two components, the screen layout of the
components becomes an issue. For some devices, it would be possible to place the components at fixed
pixel positions. However, for portable Java applications, this approach isn't really suitable. In addition
to the different screen sizes and layouts, the components might also have different sizes on different
PDAs.

Fortunately, Java provides a powerful mechanism to cope with layout problems: Layout Managers.
Layout Managers can be assigned to subclasses of Container such as Frame, Dialog, or Panel
using the setLayoutManager() method. Layout Managers place the components contained in the
assigned Container with respect to special rules determined by the concrete subclass of
LayoutManager used. For example, GridLayout arranges all contained components in a grid
where each component has exactly the same size. BorderLayout divides the Container into five
regions as shown in Figure 4.2. The desired region is given as a parameter to the add() method when
adding components to the container. The border region takes the minimum space that is required for
displaying the contained components, and the remainder goes to the center area. The BorderLayout
is the default layout manager of Dialogs and Frames. The FlowLayout arranges all components
in a horizontal line where the width of the components is minimized and the height is aligned to the
minimal height of the highest component. FlowLayout is the default layout manager of Panel.

Figure 4.2. The five regions of the BorderLayout.

TE
AM
FL
Y

Team-Fly®

 102

Although the layout managers provide basic layout options, quite flexible layouts can be achieved by
nesting containers and thus combining layout managers. For example, in order to show a list of aligned
labels and input elements, two panels with a grid layout can be placed in the west and center areas of a
border layout. If the number of labels in the west grid matches the number of input components in the
center grid, the labels and input components are vertically aligned automatically. Furthermore, the
space for the labels is limited to the minimum, whereas the input components get all the remaining
space. Dialog buttons are usually placed in a panel with flow layout in the south area of the dialog.

As a sample application demonstrating nested Panels (and BorderLayout and FlowLayout),
you will implement a PDA user interface for the British Museum Algorithm. Basically, the idea behind
the British Museum Algorithm is that, given a set of monkeys typing on typewriters, eventually all
existing literature in the world would be generated—you just need to wait long enough. We simulate a
monkey typing a line by randomly generating characters. The user interface should consist of a button
for generating a sentence, an exit button, and a list of sentences generated so far. How can we distribute
the screen space in a way that the buttons are displayed and all the remaining space goes to the list of
sentences? The answer is quite simple: We put the list in the center of a BorderLayout, which gets
all remaining space not taken by the other regions. In the south area, we put a Panel with
FlowLayout, where we add the buttons. Fortunately, BorderLayout is the default layout of
frames and FlowLayout is the default layout of Panels, so we do not need to explicitly set a layout.
(We will do so in an extended example.)

Listing 4.3 shows the implementation of the application. The components are created with the
corresponding variables and arranged in the constructor of the MIDlet. The call of the pack() method
performs the layout of the components and adjustment of the frame size. (Some PDAs might have a
fixed frame size covering the whole screen.) The actionPerformed() method terminates the
application or generates a new sentence by calling generateSentence(), depending on the button
pressed. Figure 4.3 shows the actual layout of the application on a Palm Pilot.

Figure 4.3. The typing monkeys application.

Listing 4.3 GhostWriter.java—The Typing Monkeys Source Code

import java.awt.*;
import java.awt.event.*;
import java.util.Random;
import javax.microedition.midlet.*;

class GhostWriter extends MIDlet implements ActionListener {

 List list = new List();
 Frame frame = new Frame ("The Monkeys type....");

 103

 Button exitButton = new Button ("exit");
 Button generateButton = new Button ("generate");
 Random random = new Random();

 public GhostWriter() {

 Panel buttonPanel = new Panel();

 buttonPanel.add(exitButton);
 buttonPanel.add(generateButton);
 exitButton.addActionListener(this);
 generateButton.addActionListener(this);

 frame.add(list, BorderLayout.CENTER);
 frame.add(buttonPanel, BorderLayout.SOUTH);
 frame.pack();

 frame.addWindowListener(new WindowAdapter() {
 public void windowClosing (WindowEvent ev) {
 notifyDestroyed();
 }
 });
 }

 public void startApp() {
 frame.show();
 }

 public void actionPerformed (ActionEvent ev) {

 if (ev.getSource() == exitButton)
 notifyDestroyed();
 else if (ev.getSource() == generateButton)
 generateNewSentence();
 }

 public void generateNewSentence() {
 StringBuffer buf = new StringBuffer();

 for (int i = 0; i < 60; i++) {
 char c = (char) (((int) 'a') + (random.nextInt() & 31));
 if (c > 'z') c = ' ';
 buf.append (c);
 }

 list.add(buf.toString());
 }

 public void pauseApp() {
 }

 public void destroyApp (boolean forced) {
 }
}

Another common layout is, as we mentioned earlier, a list of labels and corresponding fields, such as
the input mask of an address book. Suppose that we want to log only the good sentences typed by the
simulated monkeys because of the limited memory of a PDA. Additionally, we have two monkeys to
choose from. In order to display these options, we would like to show a label "generated," a

 104

TextField with the generated sentence, a label "monkey," and a choice containing the names of the
monkeys, as shown in Figure 4.4.

Figure 4.4. The nested layouts used in the improved version of the typing monkeys
application.

In order to achieve this layout, we create a new control panel having the layout set to BorderLayout.
In the east area of the new control panel we put a grid-layout label panel, and in the center area we put
a grid-layout field panel. Because both subpanels will contain the same number of components and
GridLayout distributes space equally between the components, the components will be aligned
vertically as desired. The new control panel is then inserted in the north area of the application Frame.

Listing 4.4 shows our enhanced typing monkeys application. The new layout code is marked bold in
order to highlight the interesting additions to the previous example. Figure 4.5 shows the complete user
interface of the extended application.

Figure 4.5. The improved version of the typing monkeys application.

 105

Listing 4.4 GhostWriter2.java—Enhanced Typing Monkeys Source Code

import java.awt.*;
import java.awt.event.*;
import java.util.Random;
import javax.microedition.midlet.*;

public class GhostWriter2 extends MIDlet implements ActionListener {

 List logList = new List();
 Frame frame = new Frame ("The Monkeys type....");
 Button exitButton = new Button ("exit");
 Button generateButton = new Button ("generate");
 Button logButton = new Button ("log");
 TextField generatedField = new TextField();
 Choice monkeyChoice = new Choice();
 Random random = new Random();

 public GhostWriter2() {

 monkeyChoice.add("Dumbo");
 monkeyChoice.add("Sally");

 Panel labelPanel = new Panel (new GridLayout (0, 1));
 labelPanel.add(new Label ("Monkey:"));
 labelPanel.add(new Label ("Generated:"));

 Panel fieldPanel = new Panel (new GridLayout (0, 1));
 fieldPanel.add(monkeyChoice);
 fieldPanel.add(generatedField);

 Panel controlPanel = new Panel (new BorderLayout());
 controlPanel.add(labelPanel, BorderLayout.WEST);
 controlPanel.add(fieldPanel, BorderLayout.CENTER);

 Panel buttonPanel = new Panel (new FlowLayout());
 buttonPanel.add(exitButton);
 buttonPanel.add(generateButton);
 buttonPanel.add(logButton);

 exitButton.addActionListener(this);
 generateButton.addActionListener(this);

 106

 logButton.addActionListener(this);

 frame.add(controlPanel, BorderLayout.NORTH);
 frame.add(logList, BorderLayout.CENTER);
 frame.add(buttonPanel, BorderLayout.SOUTH);
 frame.pack();

 frame.addWindowListener(new WindowAdapter() {
 public void windowClosing (WindowEvent ev) {
 notifyDestroyed();
 }
 });
 }

 public void startApp() {
 frame.show();
 }

 public void actionPerformed (ActionEvent ev) {

 if (ev.getSource() == exitButton)
 notifyDestroyed();
 else if (ev.getSource() == generateButton)
 generateNewSentence();
 else if (ev.getSource() == logButton)
 logList.add(generatedField.getText());
 }

 public void generateNewSentence() {
 StringBuffer buf = new StringBuffer();

 int baseChar = monkeyChoice.getSelectedItem().equals ("Dumbo")
 ? 'A' : 'a';

 for (int i = 0; i < 60; i++) {
 char c = (char) (baseChar + (random.nextInt() & 31));
 if (Character.toUpperCase (c) > (baseChar+26)) c = ' ';
 buf.append (c);
 }
 generatedField.setText (buf.toString());
 }

 public void pauseApp() {
 }

 public void destroyApp (boolean forced) {
 }
}

When you're designing PDA applications, saving the limited screen space is especially important. For
cases in which the screen is too small to hold all the required information, the ScrollPane and
CardLayout classes are provided. The CardLayout class is a layout manager that allows
distribution of components over several cards. The cards are denoted by a String, and only one card
is shown at once. For example, using a Choice component, the user can be allowed to switch between
cards. The ScrollPane can contain an area that is larger than its space on the screen by using
scrollbars for navigation. Both classes are described in more detail in the section "Switching Layouts
Depending on the Screen Resolution Available."

Dialogs and Menus

 107

In larger applications, the user interface might become overloaded with buttons and other widgets for
invoking different program actions. In order to minimize the space that is occupied by those widgets,
pull-down menus can be used instead, especially for less important actions or configuration options.
This approach gives you the opportunity to add many menu items to a menu without wasting the scarce
screen space of a mobile device. An AWT menu consists of at least three classes:

• One MenuBar containing a set of Menus
• Some Menus consisting of multiple Menuitems
• MenuItems sending ActionEvents to registered Listeners

This coherence is illustrated in Figure 4.6.

Figure 4.6. A MenuBar consisting of two Menus where the File menu holds some
MenuItems.

Another opportunity to save screen space is to move widgets to dialogs. Dialog is a class similar to
Frame. Both classes are direct subclasses of the Window class. Like a frame, a dialog represents a
rectangular area of the screen and can hold a set of widgets. In contrast to frames, dialogs can be modal
and are designed as a temporary display for obtaining user input or similar purposes. A dialog needs to
have a frame as a parent.

In order to show how menus and dialogs can be used in a PDAP application, we create a small
shopping chart application, showing a list consisting of Amount and Item columns (see Listing 4.5).

For displaying the list, we use a Panel with GridLayout. In order to get as much space as possible
for the user data, we create a separate dialog class for adding new rows, InsertItemDialog. The
dialog is invoked by selecting the menu item Insert of the Item menu. As already illustrated in Figure
4.6, there is a 1-to-n relation between MenuBar, Menu, and MenuItem. The following code snippet
creates a MenuBar, registers the MenuItem insert with the ActionListener of the Frame, and
finally concatenates the MenuBar with the frame:

MenuBar menuBar = new MenuBar();
Menu menu = new Menu ("Items");
MenuItem insertItem = new MenuItem ("insert");
insertItem.addActionListener(this);
menu.add(insertItem);
menuBar.add(menu);
frame.setMenuBar (menuBar);

 108

If the user selects the menu item insert, the actionPerformed() method of the registered handler
is called, where the generated ActionEvent is handled. In the actionPerformed() method, a
dialog will be shown enabling the user to add text into two columns labeled Amount and Item. The
following code snippet is responsible for creating an instance of our InsertItemDialog, showing
the dialog and adding the results to the main panel:

public void actionPerformed(ActionEvent ae) {
 InsertItemDialog dialog = new InsertItemDialog(frame);
 dialog.show();
 textPanel.add(new Label (dialog.getAmount()));
 textPanel.add(new Label (dialog.getItem()));
 frame.validate();
}

Because the dialog is modal, it will block the event handler of the frame until the dialog is dismissed
using the OK button. In this case, the event handler switches back to the frame. To make sure that the
new content of the grid layout is arranged properly, we call the invalidate() method of the frame.

Listing 4.5 ShoppingChart.java

import java.awt.*;
import java.awt.event.*;
import javax.microedition.midlet.*;

public class ShoppingChart extends MIDlet implements ActionListener {

 class InsertItemDialog extends Dialog implements ActionListener {

 TextField amount = new TextField();
 TextField item = new TextField();

 public InsertItemDialog (Frame owner) {
 super (owner, "Insert Item", true);

 Panel panel = new Panel (new GridLayout (2, 0));
 panel.add(new Label ("Amount"));
 panel.add(amount);
 panel.add(new Label ("Item"));
 panel.add(item);

 add(panel, BorderLayout.CENTER);

 Panel buttonPanel = new Panel (new FlowLayout());
 Button b = new Button ("ok");
 b.addActionListener(this);
 buttonPanel.add(b);
 add(buttonPanel, BorderLayout.SOUTH);
 pack();
 }

 public String getAmount() {
 return amount.getText();
 }

 public String getItem() {
 return item.getText();
 }

 public void actionPerformed (ActionEvent ae) {
 setVisible (false);

 109

 }
 }

 Panel textPanel;
 Frame frame;

 public ShoppingChart() {
 frame = new Frame("Shopping Chart");

 MenuBar menuBar = new MenuBar();
 Menu menu = new Menu ("Items");
 MenuItem insertItem = new MenuItem ("insert");
 insertItem.addActionListener(this);
 menu.add(insertItem);
 menuBar.add(menu);
 frame.setMenuBar (menuBar);

 textPanel = new Panel(new GridLayout (0, 2));
 frame.add(textPanel, BorderLayout.NORTH);

 frame.addWindowListener(new WindowAdapter() {
 public void windowClosing (WindowEvent e) {
 destroyApp(true);
 }
 });

 frame.pack();
 }
 public void actionPerformed(ActionEvent ae) {
 InsertItemDialog dialog = new InsertItemDialog(frame);
 dialog.show();
 textPanel.add(new Label (dialog.getAmount()));
 textPanel.add(new Label (dialog.getItem()));
 frame.validate();
 }

 public void startApp() {
 frame.show();
 }

 public void pauseApp() {
 }

 public void destroyApp(boolean unconditional) {
 notifyDestroyed();
 }
}

Figure 4.7 shows a shopping chart that is displayed using the GridLayout of the java.awt
package.

Figure 4.7. The ShoppingChart application showing a shopping list layout using the
GridLayout.

 110

Note

This introduction gives a rough overview of the PDAP subset of AWT only. Appendix B contains a
general comparison of the J2SE AWT and the AWT subset contained in PDAP.

Custom Components

Compared to SWING, the component set of AWT is quite limited. Most additional third-party AWT
components probably won't fit to the constraints of the subset contained in the PDA Profile in most
cases. In order to close this gap, it is often necessary to create custom components.

In order to be prepared for this task, you need to recall the main functionality that is provided by a
component:

• Displaying the component on the screen
• Handling user events

In this section, we will start with a passive component not handling user events. Implementing a
progress bar component, we describe all steps necessary to display a custom component on the screen.
After we have created the non-interactive progress bar component, we will implement an image button
capable of handling user events.

The Component class is the abstract super class of all non-menu related AWT components. It can be
extended directly to create a customized component necessary for our progress bar and image button
component as well.

The ProgressBar should provide a graphical representation of integer values in a bar graph style,
comparable with a non-interactive Gauge of the MIDP lcdui package.

Listing 4.6 contains the source code of our ProgressBar implementation. The current progress
value in the range from 0 to 100 is stored in the value variable. The method setValue() is used to
change the state of the ProgressBar during application runtime.

In order to create a component that is capable of displaying itself, we need to overwrite the paint
method. The paint method is responsible for drawing the component itself. In the progress bar paint()
method, we use the given graphic object to draw a progress bar depending on the value variable and the
current size of the component.

 111

Most custom components need to overwrite two additional methods that are important for the
appropriate layout of the component. The methods getMinimumSize() and
getPreferredSize() are used by layout managers to query the size information of the component.
Overwriting these methods with custom implementations makes sure that the component is displayed
in an appropriate size.

Listing 4.6 ProgressBar.java

import java.awt.*;

public class ProgressBar extends Component {
 int currentValue = 0;
 final int MAX_VALUE = 100;

 public ProgressBar() {
 }

 public void setValue (int currentValue) {
 if (currentValue >= 0
 && currentValue <= MAX_VALUE) {
 this.currentValue = currentValue;
 }
 }

 public Dimension getPreferredSize() {
 return new Dimension (100, 20);
 }

 public Dimension getMinimumSize() {
 return new Dimension (10, 10);
 }

 public void paint (Graphics g) {

 Dimension dim = getSize();
 int progressPosition = (dim.width-4) * currentValue /
MAX_VALUE;

 g.setColor (Color.black);
 g.drawRect (0, 0, dim.width-1, dim.height-1);

 g.setColor (Color.white);
 g.drawRect (1, 1, dim.width-3, dim.height-3);

 g.setColor (SystemColor.activeCaption);

 g.fillRect (2, 2, progressPosition, dim.height-4);
 g.setColor (Color.white);
 g.fillRect (progressPosition + 2, 2,
 dim.width - progressPosition - 4, dim.height-4);
 }
}

For testing purposes, we provide a small application shown in Listing 4.7 to show how the
ProgressBar can be integrated into a MIDlet; the application is shown in Figure 4.8. The
application just provides a Scrollbar for setting the current progress value and the ProgressBar

TE
AM
FL
Y

Team-Fly®

 112

itself. Real applications using the progress bar will probably be multithreaded. Note that for thread-safe
access to AWT, it is necessary to use the EventQueue.invokeLater() method, described in the
section "Multiple Threads in the PDAP AWT Subset."

Figure 4.8. The ProgressTest application for testing the ProgressBar component.

Listing 4.7 ProgressTest.java

import java.awt.*;
import java.awt.event.*;
import javax.microedition.midlet.*;

public class ProgressTest extends MIDlet implements
AdjustmentListener {

 Frame frame;
 ProgressBar pBar = new ProgressBar();
 Scrollbar sBar = new Scrollbar();

 public ProgressTest() {
 frame = new Frame("ProgressBar Test");

 sBar = new Scrollbar (Scrollbar.HORIZONTAL, 0, 10, 0, 100);
 sBar.addAdjustmentListener(this);

 frame.add(pBar, BorderLayout.NORTH);
 frame.add(sBar, BorderLayout.SOUTH);
 frame.pack();
 }

 public void adjustmentValueChanged(AdjustmentEvent e) {
 pBar.setValue (sBar.getValue());
 pBar.repaint();
 }

 public void startApp() {
 frame.show();
 }

 public void pauseApp() {
 }

 113

 public void destroyApp(boolean unconditional) {
 notifyDestroyed();
 }
}

After the implementation of the ProgressBar, we will now focus on an active component that is
capable of handling user events. In order to show how this can be achieved, we will implement a button
that displays an image instead of a text label. When the button is pressed by tapping the stylus on it, it
will create an ActionEvent and send it to all registered listeners.

As in the ProgressBar implementation, we derive our ImageButton component from the
Component class. Listing 4.8 contains the source code of the ImageButton. The paint(),
getPreferredSize(), and getMinimumSize() methods correspond to their counterparts of
the ProgressBar implementation. The constructor takes an image object and a command string and
stores the parameters in object variables.

For handling user input, one possibility would be to register a mouse listener. However, for custom
components, it is more appropriate to overwrite the processMouseEvent() method, which
receives all mouse events when enabled. Enabling the events roughly corresponds to the registration
process of the listener interface. This is done by calling the enableEvents() method of the
Component class with the parameter AWTEvent.MOUSE_EVENT_MASK. Without this call, our
implemented processMouseEvent() method would never be called by the event handler.

In addition to handling mouse events, it is necessary to enable users of the component to register action
listeners, just like for regular buttons. Thus, the methods addActionListener() and
removeActionListener() must be provided. The listeners variable contains a Vector that
keeps track of the listeners registered with the ImageButton component.

In the processMouseEvent() method, a check for the event ID MOUSE_CLICKED is performed.
If the mouse event passes the test, an ActionEvent object is created and sent to the
actionPerformed() methods of all registered listeners by iterating through the listeners.

Listing 4.8 ImageButton.java

import java.awt.*;
import java.awt.event.*;
import java.util.Vector;

public class ImageButton extends Component {

 Image image;
 String command;
 Vector listeners = new Vector();

 public ImageButton (Image image, String command) {
 this.image = image;
 this.command = command;

 enableEvents(AWTEvent.MOUSE_EVENT_MASK);
 }

 public void addActionListener(ActionListener listener) {
 listeners.addElement (listener);
 }

 114

 public void removeActionListener(ActionListener listener) {
 listeners.removeElement (listener);
 }

 public void paint (Graphics g) {
 Dimension dim = getSize();
 int w = image.getWidth (this);
 int h = image.getHeight (this);
 g.drawImage (image,
 (dim.width - w) / 2,
 (dim.height - h) / 2,
 this);
 Color fg = g.getColor();
 g.setColor (fg);
 g.drawRoundRect (0, 0, dim.width-1, dim.height-1, 4, 4);
 }

 public Dimension getMinimumSize() {
 return new Dimension (image.getWidth (null),
 image.getHeight (null));
 }

 public Dimension getPreferredSize() {
 return getMinimumSize();
 }

 public void processMouseEvent(MouseEvent e) {

 if (e.getID() == MouseEvent.MOUSE_CLICKED) {

 ActionEvent ae = new ActionEvent
 (this, ActionEvent.ACTION_PERFORMED, command);

 for (int i = 0; i < listeners.size(); i++)
 ((ActionListener) listeners.elementAt (i))
 .actionPerformed (ae);
 }

 super.processMouseEvent(e);
 }
}

For testing purposes, we provide a small application shown in Listing 4.9 to show how the
ImageButton can be integrated into a MIDlet. The application uses an ImageButton that is
registered to an ActionListener of the Frame. When the ImageButton is clicked, we
increment a clickCount variable and display its value in the frame title.

Listing 4.9 ImageTest.java

import java.awt.*;
import java.awt.event.*;
import javax.microedition.midlet.*;

public class ImageTest extends MIDlet implements ActionListener {

 115

 Frame frame;
 int clicks = 0;
 ImageButton button;

 public ImageTest() {
 frame = new Frame("ImageButton Test");

 button = new ImageButton
 (Toolkit.getDefaultToolkit().getImage ("logo.png"),
"logo");
 button.addActionListener(this);

 frame.add(button, BorderLayout.CENTER);
 frame.pack();
 }

 public void actionPerformed(ActionEvent ae) {
 frame.setTitle ("clicks: " + (++clicks));
 }

 public void startApp() {
 frame.show();
 }

 public void pauseApp() {
 }

 public void destroyApp(boolean unconditional) {
 notifyDestroyed();
 }
}

Figure 4.9 shows the ImageTest application containing the ImageButton component created in
this section.

Figure 4.9. The ImageTest application for testing the ImageButton component.

Switching Layouts Depending on the Screen Resolution Available

 116

The screen sizes of PDAs differ significantly between different models. Figure 4.10 illustrates a set of
different PDAs from various vendors showing diverse screen formats and orientations. The Nokia 9210
has a horizontal display with a resolution of 640x240 pixels. Regular Palms have a screen resolution of
160x160 pixels. The HandEra 330 has a vertical screen format with a resolution of 240x320 pixels
similar to the screen of most PocketPCs such as the Compaq IPaq.

Figure 4.10. PDAs with different screen sizes available on the market.

In some cases, to make optimal use of the screen space available, a layout that dynamically adopts to
the screen resolution available might make the most sense. In order to demonstrate this concept,
assume that we would like to display two components with a fixed size. Depending on the screen
format, there might be space enough for both components, or only one component might fit on the
screen. If both components fit, they might fit only if horizontally or vertically arranged. It might also be
possible that not even a single component will fit in the available space. Clearly, we want to make
optimal use of the screen space available, so if both components fit, both should be displayed. If one
component fits, we need a control to switch the displayed component, similar to a JTabbedPane in
Swing. Finally, if not even one component fits, a scrollbar should allow the user to select a region of
the component(s) to be displayed.

How can this goal be achieved? It isn't as difficult as it might seem. Fortunately, there is a special
method doLayout() that the AWT system calls whenever an arrangement of a component is
required. So it is possible to overwrite this method, look at the space available, and then arrange the
child components accordingly.

For the example code, assume that width and height are the actual dimensions of the components
to be displayed. The following subclass of Panel arranges the two components rect1 and rect2
with respect to the width and height variables as described in the previous paragraph.

We start the implementation of doLayout() by removing all contained components, disabling a
choice control for switching between the images, and storing the actual dimensions in a local variable d:

class DynPanel extends Panel {

 public void doLayout() {
 removeAll();
 cardChoice.setEnabled (false);
 Dimension d = getSize();

 117

Now we can figure out if enough space is available for displaying at least one of the images by
comparing the actual size with the image width and height. If one image fits, further tests are
performed to determine whether both images can fit in the space available. If so, the images are
arranged accordingly by setting the layout manager to a corresponding grid layout, and both images,
rect1 and rect2, are added to the panel:

if (d.width >= width && d.height >= height) {

 boolean dw = d.width >= 2 * width;
 boolean dh = d.height >= 2 * height;
 if (dw | dh) {
 if ((dw && !dh) || (dw && dh && d.width > d.height))
 setLayout (new GridLayout (1, 2));
 else
 setLayout (new GridLayout (2, 1));

 add(rect1);
 add(rect2);
 }

If there is enough space for one image but not enough for both of them, only one is displayed,
depending on the state of a choice in the main frame. Also, the choice is enabled in order to let the user
select the component she would like to view:

 else {
 setLayout (new BorderLayout());
 add(cardChoice.getSelectedIndex() == 0 ?
 rect1 : rect2);
 cardChoice.setEnabled (true);
 }
}

Finally, if not even one image fits in the space available, we create a ScrollPane that contains the
two child components in a subpanel with a grid layout:

 else {
 setLayout (new BorderLayout());
 ScrollPane scroll = new ScrollPane();
 Panel panel = new Panel (new GridLayout (2, 1));
 panel.add(rect1);
 panel.add(rect2);
 scroll.add(panel);
 add(scroll);
 }

 super.doLayout();
}

For the case in which the application is running on a system with flexible window sizes, we need to add
a method returning the desired size of the dynamic panel. Here, the dimensions allowing a horizontal
arrangement of the child components are returned:

 public Dimension getPreferredSize() {
 return new Dimension (2 * width, height);
 }
}

Listing 4.10 contains the code for the complete DynLayout example. The inner class
RectComponent is a custom component that is inserted into the DynPanel, showing the effects. It

 118

just draws an empty or filled rectangle, depending on the boolean value given to the constructor.
Besides the DynLayout with the two instances of RectComponent (rect1 and rect2), the
application frame contains text fields for setting the width and height variables. These are useful for
demonstrating the effects of the dynamic layout because the screen size itself is usually fixed. The
constructor of the DynLayout arranges the control components and sets the listener. The
itemSelected() method is responsible for changing the displayed RectComponent if the choice
control is switched.

Although this example is limited to a special case, it serves as a demonstration for some principles of
dynamic layout. Feel free to extend it as needed, for example by querying the actual sizes of child
components instead of using the width and height variables or by adding support for more than two
child components.

Listing 4.10 DynLayout.java

import java.awt.*;
import java.awt.event.*;

import javax.microedition.midlet.*;

public class DynLayout extends MIDlet implements ActionListener,
ItemListener {

 int width = 100;
 int height = 100;

 Frame frame = new Frame ("DynLayout");
 TextField widthField = new TextField ("100");
 TextField heightField = new TextField ("100");
 Choice cardChoice = new Choice();
 Button applyButton = new Button ("Apply");
 DynPanel dynPanel = new DynPanel();

 class RectComponent extends Component {

 boolean fill;

 public RectComponent (boolean fill) {
 this.fill = fill;
 }
 public void paint (Graphics g) {
 Dimension d = getSize();

 g.setColor (Color.black);
 if (fill)
 g.fillRect ((d.width - (width - 5)) / 2,
 (d.height - (height - 5)) / 2,
 width - 5, height - 5);
 else
 g.drawRect ((d.width - (width - 5)) / 2,
 (d.height - (height - 5)) / 2,
 width - 5, height - 5);
 }

 public Dimension getPreferredSize() {
 return new Dimension (width, height);
 }

 public Dimension getMinimumSize() {

 119

 return new Dimension (width, height);
 }
 }

 RectComponent rect1 = new RectComponent (false);
 RectComponent rect2 = new RectComponent (true);

 class DynPanel extends Panel {

 public void doLayout() {

 removeAll();
 cardChoice.setEnabled (false);
 Dimension d = getSize();

 if (d.width >= width && d.height >= height) {

 boolean dw = d.width >= 2 * width;
 boolean dh = d.height >= 2 * height;

 if (dw | dh) {
 if ((dw && !dh) || (dw && dh && d.width >
d.height))
 setLayout (new GridLayout (1, 2));
 else
 setLayout (new GridLayout (2, 1));
 add(rect1);
 add(rect2);
 }
 else {
 setLayout (new BorderLayout());
 add(cardChoice.getSelectedIndex() == 0 ?
 rect1 : rect2);
 cardChoice.setEnabled (true);
 }
 }
 else {
 setLayout (new BorderLayout());
 ScrollPane scroll = new ScrollPane();
 Panel panel = new Panel (new GridLayout (2, 1));
 panel.add(rect1);
 panel.add(rect2);
 scroll.add(panel);
 add(scroll);
 }

 super.doLayout();
 }

 public Dimension getPreferredSize() {
 return new Dimension (2 * width, height);
 }
 }

 public DynLayout() {

 Panel labelPanel = new Panel (new GridLayout (0, 1));
 Panel fieldPanel = new Panel (new GridLayout (0, 1));
 Panel buttonPanel = new Panel (new GridLayout (0, 1));

 120

 labelPanel.add(new Label ("Width: "));
 labelPanel.add(new Label ("Height: "));

 fieldPanel.add(widthField);
 fieldPanel.add(heightField);

 cardChoice.add("outline");
 cardChoice.add("filled");
 buttonPanel.add(cardChoice);
 buttonPanel.add(applyButton);

 applyButton.addActionListener(this);
 cardChoice.addItemListener(this);

 Panel controlPanel = new Panel (new BorderLayout());
 controlPanel.add(labelPanel, BorderLayout.WEST);
 controlPanel.add(fieldPanel, BorderLayout.CENTER);
 controlPanel.add(buttonPanel, BorderLayout.EAST);

 frame.add(controlPanel, BorderLayout.NORTH);
 frame.add(dynPanel, BorderLayout.CENTER);

 frame.addWindowListener(new WindowAdapter() {
 public void windowClosing (WindowEvent ev) {
 notifyDestroyed();
 }
 });

 frame.pack();
 }

 public void itemStateChanged (ItemEvent ev) {

 if (ev.getStateChange() == ItemEvent.SELECTED) {

 dynPanel.invalidate();
 frame.validate();
 dynPanel.repaint();
 }
 }

 public void actionPerformed (ActionEvent ev) {

 width = Integer.parseInt (widthField.getText());
 height = Integer.parseInt (heightField.getText());

 rect1.invalidate();
 rect2.invalidate();
 frame.validate();
 }
 public void startApp() {
 frame.show();
 }

 public void pauseApp() {
 }

 public void destroyApp (boolean unconditional) {

 121

 frame.dispose();
 }
}

Custom Layout Managers

Although the PDAP AWT subset contains all AWT layout managers including the flexible
GridBagLayout, there may still be cases that cannot be handled by the standard layout managers.
Although nesting panels with different layout managers helps in many situations, this approach isn't
suitable for all scenarios and is also very resource consuming. Thus, the design of custom layout
managers, generating application dependent layouts, is of special importance for developing PDAP
applications.

If we look back to the DialogMenuDemo application created in the section "Dialogs and Menus," the
amounts and items are arranged using a GridLayout. Thus, the horizontal space is equally
distributed to both columns regardless of their actual size. Using a GridBagLayout, it would be
possible to distribute the space in a more flexible way. However, here you will learn the creation of
custom layout managers by the example of a layout manager similar to GridLayout, but allowing
different column widths and row heights. Because the layout is similar to the layout policy of HTML
tables, this layout manager is called TableLayout.

The first step of creating a custom layout manager is to implement the LayoutManager interface,
consisting of the methods listed in Table 4.3. Those methods are responsible for the interaction of the
layout and the container it is assigned to.

Table 4.3. Methods of the LayoutManager Interface
Method Description
void addLayoutComponent (String
constraint, Component comp)

Adds the specified component with the
specified constraint to the layout.

void layoutContainer (Container parent) Lays out the contents of the given
container.

Dimension minimumLayoutSize (Container
parent)

Calculates the minimum size
dimensions for the specified container.

Dimension preferredLayoutSize
(Container parent)

Calculates the preferred size for the
specified container.

void removeLayoutComponent (Component
comp)

Removes the specified component from
the layout.

In addition to the LayoutManager interface methods, the TableLayout needs a constructor. The
TableLayout constructor takes the number of columns as parameter and stores it in the cols object
variable. The number of rows isn't required because it can be calculated by dividing the total number of
components by the number of columns. The following code snippet shows the TableLayout
constructor and a helper method for calculating the row count:

public TableLayout (int cols) {
 this.cols = cols;

 if (cols < 1)
 throw new RuntimeException
 ("cols must be > 0");
}

int getRowCount (Container container) {
 return (container.getComponentCount() + cols - 1) / cols;
}

TE
AM
FL
Y

Team-Fly®

 122

Before we can implement the methods for calculating the minimal or preferred layout size or
performing the actual layout itself, it makes sense to think about a helper method caring about the
common calculations of all those methods.

For both calculating the minimum layout sizes and performing the actual layout task, it is necessary to
know the minimum sizes of the rows and columns. The height of a row is determined by the maximum
cell height of that row. The width of a column is determined by the maximum cell width of that column.
The helper method getMinimumSizes() fills the given int arrays with the corresponding
calculations and returns the sums in a Dimension object:

public Dimension getMinimumSizes (Container container,
 int [] mcw, int [] mrh) {
 int count = container.getComponentCount();

 Dimension sum = new Dimension (0, 0);
 int i = 0;

 for (int y = 0; y < mrh.length; y++) {
 for (int x = 0; x < cols && i < count; x ++) {
 Dimension ms = container.getComponent
(i++).getMinimumSize();
 mcw [x] = Math.max (mcw [x], ms.width);
 mrh [y] = Math.max (mrh [y], ms.height);
 }
 sum.height += mrh [y];
 }

 for (int x = 0; x < cols; x++)
 sum.width += mcw [x];

 return sum;
}

Using this getMinimumSizes() method, the minimumLayoutSize() method of the
LayoutManager interface can be implemented easily by just adding the container insets to the
returned dimensions:

public Dimension minimumLayoutSize (Container container) {

 Insets insets = container.getInsets();
 int rows = getRowCount (container);

 Dimension result = getMinimumSizes
 (container, new int [cols], new int [rows]);

 result.width += cols - 1 + insets.left + insets.right;
 result.height += rows - 1 + insets.top + insets.bottom;

 return result;
}

For the limited screen sizes of PDAs, it seems appropriate to return the minimumLayoutSize also
as a preferred layout size:

public Dimension preferredLayoutSize (Container container) {
 return minimumLayoutSize (container);
}

 123

The main job of the TableLayout is done in the layoutContainer() method. The method
resizes each component that is added to the container according to its height and width and the
container size. If there is remaining space, all components are scaled with an equal factor, calculated by
dividing the space available by the minimum layout size:

public void layoutContainer (Container container) {

 int count = container.getComponentCount();
 int rows = getRowCount (container);

 if (count == 0) return;

 Insets insets = container.getInsets();
 Dimension size = container.getSize();

 int x0 = insets.left;
 int y0 = insets.top;

 int w0 = size.width - x0 - insets.right;
 int h0 = size.height - y0 - insets.bottom;

 int [] mcw = new int [cols];
 int [] mrh = new int [rows];

 Dimension min = getMinimumSizes (container, mcw, mrh);

 // calculate a scale factor

 int scx = ((w0-cols+1) << 8) / min.width;
 int scy = ((h0-rows+1) << 8) / min.height;
 int i = 0;

 for (int y = 0; y < rows; y++) {
 int x1 = x0;
 int h = (mrh [y] * scy) >> 8;
 for (int x = 0; x < cols && i < count; x++) {
 int w = (mcw [x] * scx) >> 8;
 container.getComponent (i++).setBounds (x1, y0, w, h);
 x1 += w + 1;
 }
 y0 += h + 1;
 }
}

Because we don't need additional layout constraints such as NORTH or CENTER for the
BorderLayout, we don't need to keep track of adding and removing components. Thus, the
implementations of addLayoutComponent() and removeLayoutComponent() are left
empty:

public void addLayoutComponent (String where, Component component) {
}

public void removeLayoutComponent (Component component) {
}

Note that if layout constraints are important, in most cases it is more appropriate to implement the
improved LayoutManager2 class, which can handle arbitrary objects as layout constraints instead of
Strings.

 124

Listing 4.11 contains the full source code of the TableLayout. You can try the TableLayout by
replacing the GridLayout in the ShoppingChart application. Figure 4.11 shows a corresponding
screenshot. As you can see in the picture, in contrast to the original application, more space is
distributed to the items and less to the amounts, resulting in a more adequate layout.

Figure 4.11. The ShoppingChart2 application using the TableLayout.

Listing 4.11 TableLayout.java

public class TableLayout implements LayoutManager {

 int cols;

 public void addLayoutComponent (String where, Component component)
{
 }

 public void removeLayoutComponent (Component component) {
 }

 public TableLayout (int cols) {
 this.cols = cols;

 if (cols < 1)
 throw new RuntimeException
 ("cols must be > 0");
 }
 public Dimension getMinimumSizes (Container container,
 int [] mcw, int [] mrh) {

 int count = container.getComponentCount();

 Dimension sum = new Dimension (0, 0);
 int i = 0;

 for (int y = 0; y < mrh.length; y++) {
 for (int x = 0; x < cols && i < count; x ++) {
 Dimension ms = container.getComponent
(i++).getMinimumSize();
 mcw [x] = Math.max (mcw [x], ms.width);

 125

 mrh [y] = Math.max (mrh [y], ms.height);
 }
 sum.height += mrh [y];
 }

 for (int x = 0; x < cols; x++)
 sum.width += mcw [x];

 return sum;
 }

 int getRowCount (Container container) {
 return (container.getComponentCount() + cols - 1) / cols;
 }

 public Dimension minimumLayoutSize (Container container) {

 Insets insets = container.getInsets();
 int rows = getRowCount (container);

 Dimension result = getMinimumSizes
 (container, new int [cols], new int [rows]);

 result.width += cols - 1 + insets.left + insets.right;
 result.height += rows - 1 + insets.top + insets.bottom;

 return result;
 }
 public Dimension preferredLayoutSize (Container container) {
 return minimumLayoutSize (container);
 }

 public void layoutContainer (Container container) {

 int count = container.getComponentCount();
 int rows = getRowCount (container);

 if (count == 0) return;

 Insets insets = container.getInsets();
 Dimension size = container.getSize();

 int x0 = insets.left;
 int y0 = insets.top;

 int w0 = size.width - x0 - insets.right;
 int h0 = size.height - y0 - insets.bottom;

 int [] mcw = new int [cols];
 int [] mrh = new int [rows];

 Dimension min = getMinimumSizes (container, mcw, mrh);

 // calculate a scale factor

 int scx = ((w0-cols+1) << 8) / min.width;
 int scy = ((h0-rows+1) << 8) / min.height;
 int i = 0;

 for (int y = 0; y < rows; y++) {

 126

 int x1 = x0;
 int h = (mrh [y] * scy) >> 8;
 for (int x = 0; x < cols && i < count; x++) {
 int w = (mcw [x] * scx) >> 8;
 container.getComponent (i++).setBounds (x1, y0, w, h);
 x1 += w + 1;
 }
 y0 += h + 1;
 }
 }
}

Multiple Threads in the PDAP AWT Subset

As mentioned in the beginning of this chapter, one of the main restrictions of the PDAP AWT subset is
that AWT methods might be called from the event dispatching thread only. This restriction is necessary
because the implementation of a thread-safe AWT subset is more complex and slower than an AWT
subset based on the single thread model. Actually, the modern J2ME SWING user interface doesn't
allow calls from multiple threads for the same reasons. However, this does not mean that the PDAP
AWT cannot work with threads at all. It is just necessary to take some extra steps when making calls to
AWT methods from separate threads.

For calls from separate threads, the AWT class EventQueue provides two static methods,
invokeLater() and invokeAndWait(). Both methods take an object implementing the
Runnable interface as parameter. Calls to these methods can be performed from threads other than
the event handling thread. AWT automatically ensures that the run() method of the given
Runnable class is then called from the AWT event thread. The difference between invokeLater()
and invokeAndWait() is that invokeLater() returns immediately, whereas
invokeAndWait() does not return until the run() method of the given object has been executed.

An example using multiple threads is a simulation running in a separate thread, which needs to update
some components showing the simulation state from time to time.

The PdaLander application is a simplified simulation of a lunar landing. It displays the landing
parameters such as altitude, velocity, and fuel remaining and allows the user to set the thrust of the
engine to a value between 0 and 100%.

The core of the application, the simulation thread can be implemented as an inner class of the
PdaLander application, accessing the simulation state variables velocity, height, fuel, and
thrust. The constants GRAVITY and ACCELERATION reflect the gravity of the moon and the
acceleration available at 100% thrust. Note that all values are measured in fine-grained units in order to
avoid slow floating-point operations. All values are measured in metric units in order to simplify the
calculations and to save our lunar lander from the fate of the Mars Polar lander.

The simulation is performed by measuring the elapsed time since the last simulation step and then
updating all variables accordingly. The current velocity is recalculated based on the acceleration and
time, the height is calculated based on the velocity and time, and finally the remaining fuel is adjusted.
Then the invokeAndWait() method is called in order to update the user interface, ensuring
synchronization with the AWT event thread:.

import java.awt.*;
import java.awt.event.*;
import javax.microedition.midlet.*;

public class PdaLander extends MIDlet {

 static final long GRAVITY = 1620; // mm/s2
 static final long ACCELERATION = 2*GRAVITY;

 127

 long velocity = 0; // 0 mm/s (= 0 m/s)
 long height = 1000000; // 1000000 mm = 1000 m = 1 km
 long fuel = 100000; // ms = 120 s = 2 min
 long thrust = 0;

 class Simulation extends Thread {

 long time = System.currentTimeMillis();

 public void run() {
 do {
 long dt = System.currentTimeMillis() - time;

 velocity += ((GRAVITY - (ACCELERATION * thrust)
 / 100) * dt) / 1000;
 height -= (velocity * dt) / 1000;
 time += dt;
 fuel -= (thrust * dt) / 100;

 try {
 EventQueue.invokeAndWait (screenManager);
 }
 catch (Exception e) {
 throw new RuntimeException (e.toString());
 }
 }
 while (height > 0);
 }
 }

The screenManager, which contains the run method indirectly called from the Simulation
object, is responsible for updating the user interface according to the simulation state. It also reads the
new thrust setting and determines if the lander has landed safely or crashed into the ground. The helper
method milliToStr() just converts the fine grained units to the usual units by dividing them by
1000. The maximum allowable landing speed is one meter per second:

static final long MAX_VELOCITY = 1099;

Label velocityDisplay = new Label();
Label heightDisplay = new Label();
Label fuelDisplay = new Label();
Scrollbar thrustSlider =
 new Scrollbar (Scrollbar.HORIZONTAL, 0, 0, 0, 100);

ScreenManager screenManager = new ScreenManager();

class ScreenManager implements Runnable {

 public String milliToStr (long milli) {
 return (milli / 1000) + "." + Math.abs ((milli % 1000) / 100);
 }

 public void run() {

 if (height <= 0)
 heightDisplay.setText
 (velocity <= MAX_VELOCITY ? "Landed" : "Crashed!");
 else
 heightDisplay.setText (milliToStr (height));

 128

 velocityDisplay.setText (milliToStr (velocity));
 fuelDisplay.setText (milliToStr (fuel < 0 ? 0 : fuel));

 thrust = fuel <= 0 ? 0 : thrustSlider.getValue();
 }
}

The constructor just sets up the user interface by adding the controls and labels to the application frame:

 public PdaLander() {

 Panel intermediate = new Panel (new BorderLayout());
 Panel controlPanel = new Panel (new GridLayout (0, 2));

 controlPanel.add(new Label ("Height:"), Label.LEFT);
 controlPanel.add(heightDisplay);
 controlPanel.add(new Label ("Velocity:"));
 controlPanel.add(velocityDisplay);
 controlPanel.add(new Label ("Fuel:"));
 controlPanel.add(fuelDisplay);
 controlPanel.add(new Label ("Thrust:"));
 controlPanel.add(thrustSlider);

 intermediate.add(controlPanel, BorderLayout.NORTH);
 frame.add(intermediate, BorderLayout.CENTER);
 frame.addWindowListener(new WindowAdapter() {
 public void windowClosing (WindowEvent ev) {
 notifyDestroyed();
 }
 });

 frame.pack();
 }

When the application is brought on the screen and not yet running, the simulation thread is started:

public void startApp() {
 frame.show();
 if (simulation == null) {
 simulation = new Simulation();
 simulation.start();
 }
}

When the application is paused by the Application Management System (AMS), we do nothing. This
behavior could be improved by suspending the ScreenManager thread.

public void pauseApp() {
}

When the application is terminated, the height is set to a negative value in order to make sure that the
simulation thread terminates immediately. Then the frame is disposed:

 public void destroyApp (boolean unconditional) {
 height = -100000000;
 frame.dispose();
 }
}

 129

A simple approach to master the landing is to let the lander fall to 550 meters and then go to full thrust.
When the speed is reduced to 1 m/s, go to 50% thrust.

A full listing of an improved lunar lander example without inserted text is contained in the next section.

Combined Application Example: A Lunar Lander with Graphical Display

As an example of combining some of the techniques demonstrated in this chapter, we will enhance the
lunar lander example from the previous section by adding a graphical display and slightly modifying
the screen layout depending on the ratio between height and width.

For the external camera view component of the lander, we create a new inner class ExternalView
derived from Canvas. In the paint method, we draw a triangle representing the lander and three lines
representing the engine exhaust, depending on the thrust level. The screen position of the lander is
calculated in the getScrY() method by multiplying the real height with the screen height and then
dividing by the maximum height. The old thrust level and display position are saved in order to be able
to determine if the values have changed in the check method. The check method is called from the
ScreenManager. It forces a repaint only if the thrust level or screen height has changed in order to
avoid unnecessary flickering.

The animation could be improved further by repainting only the area of the ExternalView
component that was actually affected by the move of the lander. Even smoother animation would be
possible by using an offscreen buffer as in the MIDP stopwatch example. However, for games MIDP is
probably the more appropriate profile anyway, so we do not repeat the corresponding code here:

 class ExternalView extends Canvas {

 int oldY;
 long oldThrust;

 public void paint (Graphics g) {

 int x = getSize().width / 2;
 int y = getScrY();

 g.drawLine (x-5, y-1, x+5, y-1);
 g.drawLine (x-5, y-1, x, y - 10);
 g.drawLine (x+5, y-1, x, y - 10);

 if (thrust > 10) {
 g.drawLine (x-3, y+1, x-3, (int) (y + 1 + thrust /
20));
 g.drawLine (x+3, y+1, x+3, (int) (y + 1 + thrust /
20));
 g.drawLine (x, y+1, x, (int) (y + 1 + thrust / 15));
 }

 oldY = y;
 oldThrust = thrust;
 }

 public Dimension getPreferredSize() {
 return new Dimension (50, 100);
 }

 public Dimension getMinimumSize() {
 return new Dimension (20, 50);
 }

 130

 int getScrY() {
 int scrH = getSize().height;
 return scrH - (int) (height * scrH / START_HEIGHT);
 }

 public void check() {
 if (thrust != oldThrust || oldY != getScrY())
 repaint();
 }

 }

The second improvement of our new PdaLander version is an automatic adoption to the screen size
ratio. Because the graphical display takes some additional space to the right of the controls, the labels
are automatically displayed above the controls instead of to the left if the height of the screen is greater
than the width:

 public PdaLander2() {

 Dimension d = Toolkit.getDefaultToolkit().getScreenSize();
 boolean vertical = d.height > d.width;

 Panel intermediate = new Panel (new BorderLayout());
 Panel controlPanel = new Panel (new GridLayout (0, vertical ?
1 : 2));

 int align = vertical ? Label.LEFT : Label.RIGHT;

 controlPanel.add(new Label ("Height:", align));
 controlPanel.add(heightDisplay);
 controlPanel.add(new Label ("Velocity:", align));
 controlPanel.add(velocityDisplay);
 controlPanel.add(new Label ("Fuel:", align));
 controlPanel.add(fuelDisplay);
 controlPanel.add(new Label ("Thrust:", align));
 controlPanel.add(thrustSlider);

 intermediate.add(controlPanel, BorderLayout.NORTH);
 frame.add(intermediate, BorderLayout.WEST);
 frame.add(externalView, BorderLayout.CENTER);

 frame.addWindowListener(new WindowAdapter() {
 public void windowClosing (WindowEvent ev) {
 notifyDestroyed();
 }
 });

 frame.pack();
 }

Listing 4.12 shows the complete source code of the enhanced PdaLander example and Figure 4.12
shows a screenshot of the PdaLander running on a Palm Pilot.

Figure 4.12. The PdaLander2 application running on a Palm Pilot.

 131

Similar to the other examples, there is much room for your own improvements. For example, the
display of a crashed lander could be designed differently from a successful landing. A more
sophisticated extension would be to allow vertical movements and to add some kind of terrain structure.
Another possible improvement would be to add a double buffered display, eliminating any screen
flickering.

Listing 4.12 PdaLander2.java

import java.awt.*;
import java.awt.event.*;
import javax.microedition.midlet.*;

public class PdaLander2 extends MIDlet {

 Frame frame = new Frame ("PDAlander");
 Simulation simulation;
 ScreenManager screenManager = new ScreenManager();

 Label velocityDisplay = new Label();
 Label heightDisplay = new Label();
 Label fuelDisplay = new Label();
 Scrollbar thrustSlider =
 new Scrollbar (Scrollbar.HORIZONTAL, 0, 0, 0, 100);

 ExternalView externalView = new ExternalView();

 static final long START_HEIGHT = 1000000;
 static final long GRAVITY = 1620; // mm/s2
 static final long ACCELERATION = 2*GRAVITY;
 static final long MAX_VELOCITY = 1000;

 long velocity = 0; // mm/s
 long height = START_HEIGHT; // mm
 long fuel = 100000; // ms
 long thrust = 0;

 class ExternalView extends Canvas {

 int oldY;
 long oldThrust;

 public void paint (Graphics g) {

TE
AM
FL
Y

Team-Fly®

 132

 // g.drawRect (0, 0, d.width, d.height);

 int x = getSize().width / 2;
 int y = getScrY();

 g.drawLine (x-5, y-1, x+5, y-1);
 g.drawLine (x-5, y-1, x, y - 10);
 g.drawLine (x+5, y-1, x, y - 10);

 if (thrust > 10) {
 g.drawLine (x-3, y+1, x-3, (int) (y + 1 + thrust /
20));
 g.drawLine (x+3, y+1, x+3, (int) (y + 1 + thrust /
20));
 g.drawLine (x, y+1, x, (int) (y + 1 + thrust / 15));
 }

 oldY = y;
 oldThrust = thrust;
 }

 public Dimension getPreferredSize() {
 return new Dimension (50, 100);
 }

 public Dimension getMinimumSize() {
 return new Dimension (20, 50);
 }

 int getScrY() {
 int scrH = getSize().height;
 return scrH - (int) (height * scrH / START_HEIGHT);
 }

 public void check() {
 if (thrust != oldThrust || oldY != getScrY())
 repaint();
 }

 }

 class ScreenManager implements Runnable {

 public String milliToStr (long milli) {
 return (milli / 1000) + "." + Math.abs ((milli % 1000) /
100);
 }

 public void run() {

 if (height <= 0)
 heightDisplay.setText
 (velocity <= MAX_VELOCITY
 ? "Landed"
 : "Crashed!");
 else
 heightDisplay.setText (milliToStr (height));

 133

 velocityDisplay.setText (milliToStr (velocity));
 fuelDisplay.setText (milliToStr (fuel < 0 ? 0 : fuel));

 thrust = fuel <= 0 ? 0 : thrustSlider.getValue();

 externalView.check();
 }
 }

 class Simulation extends Thread {

 long time = System.currentTimeMillis();

 public void run() { // 0..100

 do {
 long dt = System.currentTimeMillis() - time;
 velocity += ((GRAVITY - (ACCELERATION * thrust)
 / 100) * dt) / 1000;
 height -= (velocity * dt) / 1000;
 time += dt;
 fuel -= (thrust * dt) / 100;

 try {
 EventQueue.invokeAndWait (screenManager);
 }
 catch (Exception e) {
 throw new RuntimeException (e.toString());
 }
 }
 while (height > 0);
 }
 }

 public PdaLander2() {

 Dimension d = Toolkit.getDefaultToolkit().getScreenSize();
 boolean vertical = d.height > d.width;

 Panel intermediate = new Panel (new BorderLayout());
 Panel controlPanel = new Panel (new GridLayout (0, vertical ?
1 : 2));

 int align = vertical ? Label.LEFT : Label.RIGHT;

 controlPanel.add(new Label ("Height:", align));
 controlPanel.add(heightDisplay);
 controlPanel.add(new Label ("Velocity:", align));
 controlPanel.add(velocityDisplay);
 controlPanel.add(new Label ("Fuel:", align));
 controlPanel.add(fuelDisplay);
 controlPanel.add(new Label ("Thrust:", align));
 controlPanel.add(thrustSlider);

 intermediate.add(controlPanel, BorderLayout.NORTH);
 frame.add(intermediate, BorderLayout.WEST);
 frame.add(externalView, BorderLayout.CENTER);

 frame.addWindowListener(new WindowAdapter() {

 134

 public void windowClosing (WindowEvent ev) {
 notifyDestroyed();
 }
 });
 frame.pack();
 }

 public void startApp() {
 frame.show();
 if (simulation == null) {
 simulation = new Simulation();
 simulation.start();
 }
 }

 public void pauseApp() {
 }

 public void destroyApp (boolean unconditional) {
 height = -100000000;
 frame.dispose();
 }
}

Summary

After the short introduction in which we introduced the use of AWT components, you should now
be familiar with handling those that are contained in the AWT. Moreover, you have learned to use
layout managers to place AWT components in a container such as panels and frames and even
know how to handle events that might be invoked by user interactions.

 135

Chapter 5. Data Persistency
IN THIS CHAPTER

• RMS Basics
• Basic Functionality of the Class RecordStore
• A Simple Diary Application Using RMS
• Record Listeners
• Storing Custom Objects
• Ordered Traversal: Comparators and Record Enumerations
• The Search Problem

Mobile devices such as cellular phones or PDAs normally don't have a file system available like
that found on desktop computers. However, these devices still provide a mechanism to store data
persistently. This mechanism is based on memory techniques such as flash memory. These
techniques provide an advantage in that the head-positioning times associated with disk-based
media are avoided. Thus, a more appropriate system based on random record access instead of
sequential file reading is provided for these devices. For access to this record system, PDAP and
MIDP contain the Record Management System (RMS).

RMS Basics

The RMS API is contained in the package javax.microedition.rms. A MIDlet can create
and access a number of record stores. Each record store has a name that is unique in the MIDlet
suite. It consists of a number of variable-length records. The records themselves are simple byte
arrays without any further predefined structure.

The RMS API does not include routines for integrity maintenance. All maintenance is performed
by the platform automatically.

MIDlets can access record stores of other MIDlets only if they are in the same MIDlet suite. For
instance, it is possible to include a MIDlet A inside MIDlet suite 1 and include a MIDlet B in
MIDlet suite 2. Although both MIDlet suites are on the same device, MIDlet A is not allowed to
manipulate the log or diary information of MIDlet B because it's in a different suite. Figure 5.1
shows how the RMS maintains multiple records stores of different MIDlets.

Figure 5.1. The record store's visibility and structure.

 136

Within a MIDlet suite, MIDlets can create record stores with case-sensitive names up to 32
Unicode characters long. Inside a MIDlet suite, the names must be unique. However, MIDlets are
allowed to create record stores with the same name in different MIDlet suites. In that case, the
platform is responsible for handling them as separate record stores. Additionally, the platform is
responsible for deleting the record stores that are created by a MIDlet on the device when the
MIDlet is deleted.

All operations on the record store are atomic. That means that if two threads write the same record
in parallel, these calls are serialized by the system automatically. This process avoids corruption of
the internal structure of the record store, but does not prevent the application data structure from
becoming invalid: Serializing two write operations to the same record means that the second write
operation overwrites the result of the previous operation, possibly causing application problems.

The RMS API does not provide any predefined mechanisms for locking transactions.

The record store maintains a date/time stamp indicating the last modification of the record store
and a version number. The date/time stamp consists of a long integer representing the time in the
format of the System.currentTimeMillis() method. Each time the record store is modified,
the date/time stamp is updated. The version number is represented by an integer value. It is
incremented for each modifying operation on the record store.

The primary key to records in a record store is an integer value called the record ID. The ID of the
first record created is 1. The IDs of subsequent records are incremented by 1.

Basic Functionality of the Class RecordStore

Record stores are represented in the RMS API by the class RecordStore. The RecordStore class
provides methods to open, close, read, and manipulate the record store. It also provides access to meta-
information such as the number of records and the memory space still available and currently
consumed.

Global Record Store Methods and Exceptions

 137

An instance of the RecordStore class, representing a single record store, can be obtained via the
static method openRecordStore(). The method call requires two parameters: the name of the
RecordStore and a flag specifying whether the RecordStore should be created if it does not
exist yet. The name of the record store should be a String consisting of no more than 32 Unicode
characters. The names are case sensitive, so Foo, foo, and FOO would denote different record stores.
The following line opens the record store named myRecords and creates it if it does not exist yet:

RecordStore myRecords = RecordStore.openRecordStore("myRecords",
true);

Other general static methods are provided for listing all record stores of a MIDlet suite and deleting a
record store. Because these methods are static, it is possible to use them without obtaining an instance
of RecordStore first. These general methods are listed in Table 5.1. To use all other
RecordStore access methods, you must create a RecordStore instance by calling
openRecordStore().

Note

MIDP 2.0 introduces two additional openRecordStore() methods to share

RecordStores across multiple MIDlet suites. An additional setMode() method allows you to change
the access mode of a RecordStore later.

The first new openRecordStore() method requires four parameters. The first two parameters are
identical to the existing openRecordStore() method and define the name of the record store and
whether the store should be created as if it does not yet exist. The third parameter defines the access
mode. The constant RecordStore.AUTHMODE_PRIVATE indicates that only MIDlets in the same
MIDlet suite can access the RecordStore. RecordStore.AUTHMODE_ANY enables any MIDlet to
access the RecordStore. The fourth parameter is a boolean specifying whether the RecordStore is
writable by other MIDlet suites in the AUTHMODE_ANY case.

The second new openRecordStore() method takes only three String parameters. Again, the first
parameter defines the name of the RecordStore. The second and third parameter define a vendor and a
MIDlet suite name required to get access to the RecordStore.

The authentication mode of a record store can be changed after creation using the setMode() method.
This method takes the previously described authentication mode and the write flag as parameters.

All three methods can throw a SecurityException if the desired operation is not permitted.

For closing a record store, the API provides the method closeRecordStore(). At the latest, any
open record store owned by an application should be closed when the application is terminated. Please
note that the number of calls to close a certain record store must match the calls to
openRecordStore(). Calling closeRecordStore() allows the system to free resources
associated with a record store.

Table 5.1. Static RecordStore Methods
Method Name Purpose
String[] listRecordStores() Returns all record stores in a String

array that are available in the current
MIDlet suite.

RecordStore openRecordStore (String
recordStoreName, boolean

Opens a record store.

 138

createIfNecessary)

void deleteRecordStore (String
recordStoreName)

Deletes a complete record store from
the MIDlet suite.

The RecordStore methods can throw different types of Exceptions in case of a failure. The
exceptions are listed in Table 5.2. For example, a RecordStoreNotFoundException is thrown
if the desired record store does not exist in the MIDlet suite and the openRecordStore() method
is called without setting the create option. In case of success, the method returns an instance of the
RecordStore class.

Table 5.2. Possible RecordStore Exceptions
Exception Name Reason
InvalidRecordIDException Thrown if the index that is passed to an operation like

deleteRecord(), getRecord(),
getRecordSize(), or setRecord() is not a valid
index.

RecordStoreException Thrown when a general record store failure occurs.
RecordStoreFullException Thrown to indicate that the operation cannot be

completed because the complete storage space
available for the record store is consumed already.

RecordStoreNotFoundException Thrown by the methods openRecordStore() and
deleteRecordStore() to indicate that the record
store with the specified name does not exist.

RecordStoreNotOpenException Thrown when a method to access a record is called
after the record store was closed.

Manipulating Single Records

When the record store is successfully opened, you can add new records using the addRecord()
method. This method takes three parameters. The first is the byte array containing the data that should
be written to the record store. The second specifies the offset from which to start writing data of the
byte array. The third specifies how many bytes of the given array should be written. The method
returns the index of the newly created record. Like all RecordStore methods, addRecord() may
throw different types of RecordStoreExceptions in case of a failure. If you want to write the
complete byte array, set the second parameter to 0 and the third to the length of the byte array:

myRecords.addRecord (myBytes, 0, myBytes.length);

For replacing a record at a given index, RecordStore provides the method setRecord(). The
usage of the setRecord() method is similar to addRecord(), except that the index of the record
to be replaced must be given as the first parameter. In contrast to addRecord(), no index value is
returned. Please note that the first record in a record store has the index number 1, and not 0 as in most
other Java APIs dealing with indexed structures. Specifying a record ID of 0 or any other invalid record
ID will result in an InvalidRecordIDException. The following call replaces the first record of a
record store with the complete byte array given as the second parameter:

myRecords.setRecord (1, myBytes, 0, myBytes.length);

For reading records, RMS provides two different getRecord() methods. The simple version of
getRecord() takes a record ID as a parameter and returns a byte array containing the corresponding
record data. Using the following line of code, you can read the data of the first record in the
myRecords record store:

byte[] recordData = myRecords.getRecord (1);

 139

The second variant of getRecord() avoids allocating a new byte array by writing data to a byte
array given by the application. It is invoked with more parameters and provides a different return value.
As with the simple version, the first parameter is the record ID. The second parameter is a byte array
that is used for storing the data read. The third parameter is the offset at which to start writing the
record data in the given byte array. As a result, the method returns the number of bytes transferred to
the specified buffer. The application is required to provide a buffer that is large enough to store the
record with the given ID. If the buffer size is not sufficient, an
ArrayIndexOutOfBoundException is thrown. The following lines allocate a byte array as a
buffer and read the first record from the myRecords record store into the newly allocated buffer:

byte[] myBuffer = new byte [BIG_ENOUGH];
int numberOfBytesRead = myRecords.getRecord (1, myBuffer, 0);

Records that are no longer needed can be deleted using the deleteRecord() method. The only
parameter of deleteRecord() is the ID of the record to be deleted. After deletion, the record is
removed from the RecordStore irrevocably. Please note that the record ID of the removed record is
not reused and cannot be reset with a new record using the setRecord() method. In case of
resetting a previously deleted record, an InvalidRecordStoreIDException is thrown. All
further records keep their record IDs.

Meta Information

In addition to methods manipulating whole record stores or single records, the RMS API also provides
a set of methods for obtaining information about a record store or single records.

All methods to get record store meta information are listed in Table 5.3. One important method needed,
for example, to iterate all records in a record store is getNumRecords(). This method is invoked on
a record store instance and returns the number of records stored in the record store as an integer value.
The following line shows how the method is called to get the number of records in the myRecords
record store:

int numberOfRecords = myRecords.getNumRecords();

Table 5.3. Methods for Accessing RecordStore Meta Information
Method Name Purpose
long getLastModified() Returns the last modification of the record store in the format

returned by System.currentTimeMillis().
String getName() Returns the name of the current record store.
int getNextRecordID() Returns the record ID of the next record that will be added to

the record store.
int getRecordSize(int
recordID)

Returns the byte size of the record at the given ID.

int getSize() Returns the byte size of the complete record store.
int getSizeAvailable() Returns the storage space that is currently available for

storing records.
int getVersion() Returns the integer value that represents the number of

modifications of the record store.

A Simple Diary Application Using RMS
Using the methods described in the previous section, you can now build a simple diary application. The
application will demonstrate how to store simple objects (Strings) in a record store.

 140

The purpose of the application is to store one String per day. The user interface consists of a widget
and buttons for browsing the diary creating new diary entries.

Because RMS is available in MIDP and PDAP, we will start with the RMS-related functions for
loading and saving Strings that can be used in both versions of the diary application. The complete
sources of both diary versions, differing in the user interface parts, are given in Listing 5.1 for MIDP
and in Listing 5.2 for PDAP. Here, we will focus on the RMS specific calls like opening the record
store, loading and saving Strings, and closing the record store.

Because the RMS only provides a mechanism for handling byte array records, you need to convert the
diary entries represented as Strings before adding them to the record store. Also, before you can
display a diary record in a text widget, you need to convert the byte array back into a String.
Fortunately, the functionality for these conversions is available in the String class. In order to
convert a String instance to a byte array, you can just call the getBytes() method of the String
class. The following line shows how to convert a String to a byte array using the getBytes()
method:

byte[] byteArray = new String ("Hello World!").getBytes();

The resulting byte array contains the String Hello World!. This byte array can be stored in a record
store using the addRecord() or setRecord() method. In order to convert a byte array read from
a record store back into a String object, you can use the corresponding String constructor taking a
byte array as parameter.

Before you begin implementing the diary functionality, you need two variables containing the diary
record store and an index that points to the record currently displayed. In both versions of the
application, these variables are declared as follows:

RecordStore diary;
int currentId = 1;

Now you can start with the loadEntry() method that loads a diary entry from the record store and
converts it into a String. The loadEntry() method gets the ID of the desired record as input, sets
the current ID to the given value, and returns the corresponding String. If the ID is not valid, a new
record is created automatically, and the ID returned from addRecord() is set as the current ID. The
following code snippet shows the implementation of loadEntry() for both the MIDP and PDAP
versions:

public String loadEntry (int newId) throws RecordStoreException {
 if (newId < 1 || newId > diary.getNumRecords()) {
 byte [] data = "".getBytes();
 currentId = diary.addRecord (data, 0, data.length);
 }
 else
 currentId = newId;
 return new String (diary.getRecord (currentId));
}

Now you can load records and also append new records, but you still need a method to update diary
entries when the user enters additional information or changes the entry. The saveEntry() method
stores the given string with the ID stored in the currentId variable:

public void saveEntry (String entry) throws RecordStoreException {
 byte [] data = (entry).getBytes();
 diary.setRecord (currentId, data, 0, data.length);
}

 141

Using the two methods loadEntry() and saveEntry(), you have implemented two basic
methods that are responsible for loading and storing records to a record store in both the MIDP and
PDAP versions of the diary application. The next step to implement the diary application is to open the
diary record store in the constructor of the application.

As described in the previous section, the method openRecordStore() can throw
RecordStoreExceptions when it is not able to open the record store for some reason. In order to
handle these exceptions, it is necessary to put the call in a corresponding try-catch block. In the
following snippet, you throw a RuntimeException, terminating the whole application in case of a
failure. In real applications, more elaborate error handling may be necessary:

try {
 diary = RecordStore.openRecordStore ("diary", true);
 // load and display the last entry here.
}
catch (RecordStoreException e) {
 throw new RuntimeException ("Cannot open diary; reason: "+e);
}

After the record store is opened, you jump to the last record of the Diary record store and pass the
stored String to the text widget of the Diary implementation. Because the UI widgets in MIDP and
PDAP are different, we included a comment as placeholder for the actual code. The complete code of
the constructors is contained in both full listings.

Note

If you compare the listings to the code snippets for loadEntry() and saveEntry(), you will
notice that you save an additional empty space to each record, and use String.trim() when
loading it from the RecordStore. You need this workaround because the J2ME WTK 1.0 throws an
exception if empty records are stored in a record store.

In order to make sure that the current record is written back and to avoid orphan resources, you need to
save the current entry and close the record store when the application is terminated. You do so by
implementing a corresponding destroyApp() method. Again, we've included a comment instead of
profile-dependent code where the current entry is obtained from the user interface widget:

public void destroyApp (boolean unconditional) {
 try {
 String text;
 // fill text with content of the UI widget here
 saveEntry (text);
 diary.closeRecordStore();
 }
 catch (RecordStoreException e) {
 throw new RuntimeException ("Cannot close Diary; reason: "+e);
 }
}

When the code is completed with a corresponding user interface, you have a full diary application as
shown in Listings 5.1 and 5.2. Figures 5.2 and 5.3 show the running application.

Figure 5.2. The running RmsDemoMidp application.

TE
AM
FL
Y

Team-Fly®

 142

Figure 5.3. The running RmsDemoPdap application.

Listing 5.1 RmsDemoMidp.java—The Diary Application for MIDP

import javax.microedition.midlet.*;
import javax.microedition.lcdui.*;
import javax.microedition.rms.*;

public class RmsDemoMidp extends MIDlet implements CommandListener {

 TextBox textBox = new TextBox ("Diary", "", 150, TextField.ANY);
 int currentId = 1;
 RecordStore diary;

 Display display;
 static final Command prevCommand = new Command ("Prev",
Command.SCREEN, 1);
 static final Command nextCommand = new Command ("Next",
Command.SCREEN, 2);
 static final Command newCommand = new Command ("New",
Command.SCREEN, 3);

 public RmsDemoMidp() {
 try {
 diary = RecordStore.openRecordStore ("diary", true);
 String text = loadEntry (diary.getNumRecords());
 textBox.setString (text);
 textBox.setTitle ("Diary - Day " + currentId);
 }
 catch (RecordStoreException e) {
 throw new RuntimeException ("Cannot open diary; reason:
"+e);
 }

 143

 textBox.addCommand (prevCommand);
 textBox.addCommand (nextCommand);
 textBox.addCommand (newCommand);

 textBox.setCommandListener(this);
 }

 public String loadEntry (int newId) throws RecordStoreException {
 if (newId < 1 || newId > diary.getNumRecords()) {
 byte [] data = " ".getBytes();
 currentId = diary.addRecord (data, 0, data.length);
 }
 else
 currentId = newId;
 return new String (diary.getRecord (currentId)).trim();
 }

 public void saveEntry (String entry) throws RecordStoreException
{
 byte [] data = (entry + " ").getBytes();
 diary.setRecord (currentId, data, 0, data.length);
 }

 public void startApp() {
 display = Display.getDisplay (this);
 display.setCurrent (textBox);
 }

 public void destroyApp (boolean unconditional) {
 try {
 String text;
 text = textBox.getString();
 saveEntry (text);
 diary.closeRecordStore();
 }
 catch (RecordStoreException e) {
 throw new RuntimeException ("Cannot close Diary; reason:
"+e);
 }
 }

 public void pauseApp() {
 }
 public void commandAction (Command c, Displayable d) {
 try {
 saveEntry (textBox.getString());

 if (c == nextCommand && currentId < diary.getNumRecords())
{
 textBox.setString (loadEntry (currentId+1));
 }
 else if (c == prevCommand && currentId > 1) {
 textBox.setString (loadEntry (currentId-1));
 }

 else if (c == newCommand) {
 textBox.setString (loadEntry (diary.getNumRecords() +
1));
 }

 144

 textBox.setTitle ("Diary - Day " + currentId);

 }
 catch (RecordStoreException e) {
 throw new RuntimeException ("Cannot perform; reason: "+e);
 }
 }
}

Listing 5.2 RmsDemoPdap.java—The Diary Application for PDAP

import java.awt.*;
import java.awt.event.*;
import javax.microedition.rms.*;
import javax.microedition.midlet.*;

public class RmsDemoPdap extends MIDlet implements ActionListener {
 Frame frame = new Frame();
 TextArea textArea = new TextArea();
 int currentId;
 RecordStore diary;

 Button buttonPrev = new Button ("Prev");
 Button buttonNext = new Button ("Next");
 Button buttonNew = new Button ("New");

 public RmsDemoPdap() {
 try {
 diary = RecordStore.openRecordStore ("diary", true);
 String text = loadEntry (diary.getNumRecords());
 textArea.setText (text);
 frame.setTitle ("Diary - Day " + currentId);
 }
 catch (RecordStoreException e) {
 throw new RuntimeException ("Cannot open diary; reason:
"+e);
 }

 frame.add("Center", textArea);

 Panel buttons = new Panel();

 buttons.add(buttonPrev);
 buttons.add(buttonNext);
 buttons.add(buttonNew);

 buttonPrev.addActionListener(this);
 buttonNext.addActionListener(this);
 buttonNew.addActionListener(this);

 frame.add("South", buttons);
 frame.pack();

 frame.addWindowListener(new WindowAdapter() {
 public void windowClosing (WindowEvent ev) {
 destroyApp (true);
 notifyDestroyed();
 }
 });
 }

 145

 public String loadEntry (int newId) throws RecordStoreException {
 if (newId < 1 || newId > diary.getNumRecords()) {
 byte [] data = " ".getBytes();
 currentId = diary.addRecord (data, 0, data.length);
 }
 else
 currentId = newId;

 return new String (diary.getRecord (currentId));
 }

 public void saveEntry (String entry) throws RecordStoreException
{
 byte [] data = entry.getBytes();
 diary.setRecord (currentId, data, 0, data.length);
 }

 public void startApp() {
 frame.show();
 }

 public void destroyApp (boolean unconditional) {
 try {
 saveEntry (textArea.getText());
 diary.closeRecordStore();
 }
 catch (RecordStoreException e) {
 throw new RuntimeException ("Cannot close Diary; reason:
"+e);
 }
 }

 public void pauseApp(){
 }

 public void actionPerformed (ActionEvent ev) {

 try {
 saveEntry (textArea.getText());

 if (ev.getSource() == buttonNext
 && currentId < diary.getNumRecords())
 textArea.setText (loadEntry (currentId+1));
 else if (ev.getSource() == buttonPrev && currentId > 1)
 textArea.setText (loadEntry (currentId-1));
 else if (ev.getSource() == buttonNew)
 textArea.setText (loadEntry (diary.getNumRecords() +
1));
 frame.setTitle ("Diary - Day " + currentId);
 }
 catch (RecordStoreException e) {
 throw new RuntimeException ("Cannot perform; reason: "+e);
 }
 }
}

 146

Record Listeners
In contrast to the desktop file system, it is possible to register listeners to record stores. A listener is
informed whenever a record is changed in the record store it is registered to. This mechanism may be
useful if different threads or different MIDlets of the same MIDlet suite are operating on one record
store in parallel. A possible application could be some kind of automated logging service, writing
records in the background. A MIDlet providing a GUI for the service could register itself as listener to
the log record store when it is running in the foreground. Thus, it would be able to update its display of
the log entries whenever a new record is added.

The corresponding RecordListener interface consists of the following three methods:

void recordAdded (RecordStore recordStore, int id)

is called when a new record with the given ID is added to the given record store.

void recordChanged (RecordStore recordStore, int id)

is called when the given record is changed.

void recordDeleted (RecordStore recordStore, int id)

is called when the given record is deleted.

A listener implementing these methods can be registered using the addRecordListener() method
of the corresponding record store, where the only parameter is the RecordListener. You can
unregister the listener by calling the removeRecordListener() method of the record store with
the same listener as a parameter.

Storing Custom Objects
Up to this point, you have only stored byte arrays or strings in a record store. As explained in the diary
example, Strings have a method with which you can convert them to byte arrays, and a constructor
that takes a byte array as input. But if you want to store your own objects, you need to provide a way to
convert them to byte arrays and back yourselves.

The simplest solution would be to add the same constructor and getBytes() method to your custom
objects that String already provides. You can implement the mapping two different ways. One
possibility is to convert the byte array to different fields in your object. The other possibility is to keep
the byte array as storage, and to implement field access methods as wrappers to portions of the byte
array. The second possibility makes sense especially when your structure consists of elements having a
fixed size. Here, we will focus on the first method, which is simpler to handle, especially for dynamic
structures.

Data Streams

Assume you are going to implement a travel list management tool, where the entries consist of the
journey destination, the date of the journey and the distance actually traveled.

Such an object could be implemented as follows:

class Journey {

 147

 int distance;
 long date;
 String destination;
}

The simplest mechanism to serialize this kind of object is provided by a combination of a
DataOutputStream and a ByteArrayOutputStream. The DataOutputStream allows you
to write simple data types such as integers or byte arrays to an OutputStream, and the
ByteArrayOutputStream is a special OutputStream that creates a byte array. To get a byte
array representation of the whole object, you plug them together in the getBytes() method of your
class Journey. There, you write the fields to the stream and finally obtain the byte array from the
ByteArrayOutputStream:

byte [] getBytes() throws IOException {
 ByteArrayOutputStream baos = new ByteArrayOutputStream();
 DataOutputStream dos = new DataOutputStream (baos);
 dos.writeInt (distance);
 dos.writeLong (date);
 dos.writeUTF (destination);
 dos.close();
 baos.close();
 return baos.toByteArray();
}

In the constructor, you can use a ByteArrayInputStream and a DataInputStream to perform
the inverse operation:

Journey (byte [] data) throws IOException {
 ByteArrayInputStream bais = new ByteArrayInputStream (data);
 DataInputStream dis = new DataInputStream (bais);
 distance = dis.readInt();
 date = dis.readLong();
 destination = dis.readUTF();
 dis.close();
 bais.close();
 }

Direct Encoding

An alternative to using a set of streams—which may be faster but which also generates more
implementation effort—is to decode the information in the byte array manually. For example, if the
integer storing the distance is contained in the first four bytes of the byte array, it can be decoded using
the following line:

distance = ((data [0] & 0xff) << 24) | ((data [1] & 0xff) << 16)
 | ((data [2] & 0xff) << 8) | (data [3] & 0xff);

The corresponding inverse operation is

data [0] = (byte) (0xff & (distance >> 24));
data [1] = (byte) (0xff & (distance >> 16));
data [2] = (byte) (0xff & (distance >> 8));
data [3] = (byte) (0xff & distance);

Because of the additional implementation effort, this method makes sense only in time-critical
applications where the overhead of creating two additional streams is too expensive.

 148

Ordered Traversal: Comparators and Record
Enumerations
So far, you've accessed records by their primary index only. But what if you want to sort the journeys
in the previous example's travel list by the length of the trip or the date, without requiring that they all
be entered in the correct order? For this purpose, RMS provides record enumerations.

Record enumerations let you visit all the records in a record store in a custom order. The first step is to
define the custom order. You do so by implementing the compare() method of the
RecordComparator interface, which defines an order for the records. The compare() method
takes two byte arrays as parameters. It returns one of the constants EQUIVALENT, FOLLOWS, or
PRECEDES, depending on the relative order of both records. If in the desired search order the record
given as the first parameter follows the second, FOLLOWS must be returned. The other cases are
analogous.

For the Journey class, you can implement a RecordComparator that sorts all entries by date as
follows:

public class JourneyDateComparator implements RecordComparator {
 public int compare (byte[] rec1, byte[] rec2) {
 Journey journey1 = new Journey (rec1);
 Journey journey2 = new Journey (rec2);
 if (journey1.date > journey2.date) return FOLLOWS;
 if (journey1.date == journey2.date) return EQUIVALENT;
 else return PRECEDES;
 }
}

Here, direct access to the portion of the byte array where the date is encoded may result in improved
performance. However, the readability of the example would also suffer.

By giving the RecordComparator to the method enumerateRecords() in the class
RecordStore, you can obtain a RecordEnumeration. The RecordEnumeration provides
methods to move forward and backwards in the RecordStore with respect to the order defined by
the Comparator implementation.

The enumerateRecords() method takes three parameters: a RecordFilter, the
RecordComparator, and a boolean value determining if the RecordEnumeration should be
kept updated, reflecting changes of the record store performed during traversal. There may be a
significant tradeoff in speed when setting the "keep updated" parameter, but the parameter can be
useful when the record store is changed during traversal. The RecordFilter parameter allows
enumeration of a subset of the records. (It's explained in the next section.) Both the RecordFilter
and RecordComparator parameters can be set to null, resulting in an unfiltered, unordered
enumeration.

The RecordEnumeration returned from enumerateRecords() can be traversed using the
hasNextElement() and nextRecord() methods. When the record enumeration is no longer
needed, the application should call destroy() in order to notify the system that system resources
allocated for the record enumeration can be released.

The following code snippet shows how your JourneyDateComparator and the
RecordEnumeration can be used to traverse a travel record store, ordered by journey date:

 149

RecordStore travelList = RecordStore.open ("travelList", true);
RecordEnumeration enumeration = travelList.enumerateRecords
 (null, new JourneyDateComparator(), false);

while (enumeration.hasNext()) {
 Journey journey = new Journey (enumeration.next())
 // place real operations here
}
enumeration.destroy()
travelList.closeRecordStore();

You can also add methods for comparing the destination (or distance), allowing you to iterate the
records ordered correspondingly. Table 5.4 shows a general overview of the methods of the
RecordEnumeration class.

Table 5.4. Methods of RecordEnumeration
Name Purpose
void destroy() Releases system resources associated with this

enumeration.
boolean
hasNextElement()

Indicates whether records are left in the enumeration.

boolean
hasPreviousElement()

Analogous to hasNextElement(), but in the inverse
direction.

boolean isKeptUpdated() Indicates whether the enumeration is kept updated.
void keepUpdated
(boolean keepUpd)

Sets or resets the automatic update mode.

byte[] nextRecord() Returns the next record.
int nextRecordId() Returns the ID of the next record.
int numRecords() Returns the number of records in this enumeration. Differs

from RecordStore.getNumRecords() for filtered or
outdated enumerations only.

byte[] previousRecord() Returns the previous record.
int previousRecordId() Returns the ID of the previous record.
void rebuild() Rebuilds the enumeration to reflect all changes. Performed

automatically in the updated mode.
void reset() Resets the enumeration to the first record.

Filtered Record Enumerations

You have already seen that the enumerateRecords() method has a filter parameter, but we have
not explained how to use it. The corresponding RecordFilter interface works similarly to the
RecordComparator interface. It provides a single method, matches(), which takes a record byte
array as input and returns a boolean value, determining whether the given record passes the filter.

For example, if you need an enumeration of the journeys where the distance was greater than x
kilometers, you can implement it as follows:

Class MinDistanceFilter {
 int min;
 DistanceFilter (int min) {
 this.min = min;
 }
 boolean matches (byte[] record) {
 return new Journey (record).getDistance() >= min;
 }

 150

}

The Search Problem

In the previous sections, you learned to sort and filter records in a record store. Obviously, you can
search a record by iterating all records until the desired record is found, or just set a filter that
filters out all other records.

Unfortunately, this approach requires looking at all records in the worst case and looking at half of
the records in the average case. A search on a sorted set of records can be performed much faster
by an algorithm called a binary search. The algorithm goes to the middle of the set and determines
whether the element searched is greater or smaller than the record in the middle. Thus, the
algorithm can decide in which half of the records the searched element is located. For this half, the
procedure is applied again. Step by step, the number of records in question is reduced by half. So,
compared to a linear search, the overall number of comparisons is reduced to a logarithmic
function. For 100 records, a linear search requires 100 comparisons in the worst case and 50 in the
average case; a binary search requires only 7 comparisons. This factor increases with larger
number of records.

The record enumeration does not provide any means to jump over half of the records and go to the
middle. If fast searching in ordered sets of records is important for your application, consider
sorting the whole record store and performing a binary search instead of iterating record
enumerations. In Chapter 9, "Advanced Application: Blood Sugar Log," we will present the
corresponding algorithms.

Summary

In this chapter you learned about persistent storage of application data. You now know how to use
the methods of the class RecordStore for basic access to the RMS. You know how to convert
custom classes to byte arrays and back and how to iterate, filter, and order record stores using
enumerators.

The next chapter explains how to make connections to other devices or the Internet using the
generic connection framework.

 151

Chapter 6. Networking: The Generic Connection
Framework
IN THIS CHAPTER

• Creating a Connection—The Connector Class
• Connection Types
• GCF Examples

For the Java 2 Standard Edition, the classes for handling network connections are located in the
java.net package. This package contains a lot of different classes. It includes at least one class for
each type of connection, such as socket connections, HTTP connections, datagram connections, and
server sockets. It also contains many support classes, for instance classes for handling URLs or
decoding Internet addresses. In sum, the java.net package includes more than 20 classes, interfaces,
and exception classes.

The huge amount of classes and interfaces that is needed to support network capabilities would be too
much to be adopted for the Java 2 Micro Edition. Thus, the Connected Limited Device Configuration
(CLDC) takes a different approach: Instead of providing one class for each protocol like J2SE, CLDC
offers a uniform approach for handling connections, the so-called Generic Connection Framework
(GCF). GCF contains only one generic Connector class. The Connector class takes a URI as
input and returns a corresponding connection object, depending on the protocol parameter of the URI
string. The protocol parameter of a URI is the part from the beginning of the string to the first colon.
For example, for an HTTP connection, the protocol parameter is the leading http of an address such
as http://java.sun.com. The general form of URI strings that are passed to the Connector
class is as follows:

<protocol>://<address>;<parameters>

The syntax of the strings that are passed to the Connector.open() method needs to follow the
Uniform Resource Indicator (URI) syntax that is defined in the IETF standard RFC2396. The complete
RFC can be found under the following URI: http://www.ietf.org/rfc/rfc2396.txt.

Note

The CLDC itself specifies interfaces, classes, and exceptions of the GCF only. No implementations of
any concrete connection type are provided at the configuration level.

Table 6.1 gives an illustrative overview of connection types that can be implemented by a particular
J2ME profile such as the MID or PDA Profile. J2ME profiles might also include additional protocols
that are not listed in Table 6.1.

Table 6.1. Example URLs for the Connector.open() Method of the Generic
Connection Framework

Protocol
Sample String Parameter for
Connector.open() Connection Type

HTTP http://java.sun.com HttpConnection

Sockets socket://time-a.nist.gov:13 StreamConnection

ServerSockets serversocket://:4444 StreamConnectionNotifier

Serial comm:0;baudrate=2400; CommConnection

Datagrams datagram://127.0.0.1 DatagramConnection

TE
AM
FL
Y

Team-Fly®

http://www.ietf.org/rfc/rfc2396.txt

 152

File file://addesses.dat FileConnection

Bluetooth "bluetooth://psm=1001" StreamConnection

The only connection type that is guaranteed to be available in MIDP 1.0 is the HTTP protocol. PDAP
adds specialized interfaces for access to serial ports and file systems. Whether a certain protocol is
actually available depends on the device. For example, it does not make sense to support the comm
protocol on devices without a serial port.

Creating a Connection—The Connector Class

In the GCF, connections are established using the class Connector. By passing a URL describing the
protocol to the open method of the Connector class, a connection is established. For example, the
following line opens a Hypertext Transfer Protocol (HTTP) connection to the address
http://java.sun.com:

try {
 Connection connection = Connector.open ("http://java.sun.com");
}
catch (IOException e) {
 // an error occurred while opening the connection.
}

In the case of an error, an IOException is thrown. Most of the GCF methods can throw an
IOException in order to report I/O errors to the application.

If the connection is established successfully, an instance of a class implementing the Connection
interfaces is returned. Other special interfaces derived from Connection are available for different
connection types like datagram or stream connections. Figure 6.1 gives an overview of the
corresponding GCF interfaces.

Figure 6.1. The connection interfaces of the GCF.

The general Connection interface itself does not implement much functionality. It only defines the
close() method that is needed to terminate a connection that was opened using the open() method
of the Connector class. The functionality for reading and writing data is added in
InputConnection and OutputConnection. The InputConnection defines two methods

 153

for reading data from the connection: openInputStream() returns an InputStream, and
openDataInputStream() returns a DataInputStream. Analogously, the
OutputConnection provides two methods, openOutputStream() and
openDataOutputStream(), returning the corresponding streams for writing data.

Probably the most important connection interface is the StreamConnection, combining the
InputConnection and OutputConnection in one interface. It is used directly or as base
interface for most connection types. It is the base interface for the ContentConnection, which
adds functionality for accessing the meta-information available for HTTP connections. For datagram
connections, the GCF provides the DatagramConnection interface, representing an endpoint for
datagrams. Finally, the GCF supports the interface StreamConnectionNotifier that
corresponds to J2SE ServerSockets. This interface consists of only one acceptAndOpen()
method. This method returns a StreamConnection when a client has successfully established a
connection.

For filesystem and serial port connectivity, the PDAP provides the FileConnection and
CommConnection interfaces. These connections are optional to a PDAP implementation depending
on the underlying hardware and operating system.

We have already shown the simple open() method of the Connector class, taking a URI string as
input and returning an instance of a class implementing the Connection interface. However, this is
not the only open() method available; the Connector class provides two additional open()
methods. The second variant of open() takes an additional mode integer constant that determines
whether the connection is read-only, write-only, or a read-write connection. The corresponding
constants are listed in Table 6.2. The last variant of the open() method takes a third parameter,
indicating that the protocol may throw an InterruptedIOException in the case of a device-
specific timeout. Without using additional parameters, the behavior of the open() method is to open a
connection in READ_WRITE mode, without throwing timeout exceptions.

The optional parameters depend on the protocol to which they are passed. For instance, the connection
mode WRITE might result in an IllegalArgumentException if it is used to open a protocol for
accessing a bar code scanner allowing read-only access.

Table 6.2. Possible Access Modes for Opening a Connection Using the GCF
Mode Description
READ Read-only connections
READ_WRITE Connections using read and write access
WRITE Write-only connections

We already mentioned that a concrete instance of a class implementing the Connection interface is
returned when a connection is established successfully. In order to access the functionality of the
concrete type of connection, the returned Connection needs to be typecast to the corresponding sub-
interface. For example, when opening an HTTP connection, it usually makes sense to cast the returned
object to the more specific HttpConnection interface:

HttpConnection httpConnection =
 (HttpConnection) Connector.open ("http://java.sun.com");

In the following section, we will take a closer look at the different connection types that are listed in the
CLDC specification.

Connection Types

 154

Before describing the mandatory HTTP protocol and other connections, we will cover the optional
socket connections because they form the basis for higher-level protocols such as HTTP or FTP.
Actually, it might be possible to create a CLDC-based device without display, implementing a Web
server as a user interface. Examples might be configurable network routers or production control
hardware.

Note

We cannot cover all the underlying protocols in full detail here, so we will mainly focus on the Java
API. For complete coverage, refer to the corresponding standard specifications or other protocol
specific literature.

General Socket Connections

Socket and datagram connections are simple basic IP connection types. Although sockets and
datagrams are usually available on machines connected to the Internet, for wireless connections the
situation is different. Carriers often use a proprietary protocol over the air, and allow only special
connection types such as HTTP connections. Thus, although sockets are usually required for HTTP
connections, CLDC devices might provide HTTP but no socket connections. The main difference
between sockets and datagrams is that sockets are a reliable and end-to-end connection established for
a period of time, whereas datagrams are simple data packets with a limited length that might never
reach their destination without notifying the sender.

TCP socket connections are usually not symmetric, but a client connects to a server. The server listens
to a specific port, usually depending on the protocol that is used. For example, the default port used by
HTTP servers is 80, and the default port for FTP is 21. A simple method to test the socket functionality
in general is to connect to an existing server and to display what the server sends. Here, a good
candidate is the clock server, usually listening on port 13. For each incoming connection, it sends its
current date and time back to the client. If a certain server supports the time, service can easily be
tested by connecting to that port with a simple terminal program (telnet). You can find a list of time
servers at http://www.boulder.nist.gov/timefreq/service/time-servers.html.

Here, we will first describe the client side of TCP/IP sockets and then sketch how to set up a server
socket. (For general coverage of TCP/IP, refer to TCP/IP Unleashed by Karanjit Rom Siyan and Tim
Parker, ISBN 0672323516.)

Client-Socket Connections

The parameter given to the open() method in order to establish a socket connection at the client side
consists of the protocol identifier (such as socket://), the IP address of the server that will be
connected (such as time-a.nist.gov), and a port number that is separated from the host address
using a colon (:13). For example,

StreamConnection streamConnection =
 (StreamConnection) connector.open ("socket://time-a.nist.gov:13");

When a socket connection is opened, the returned instance always implements the
StreamConnection's interface, providing access to corresponding input and output streams.

In the following code snippet, a socket connection to a time server is established, and then the time is
read from the corresponding input stream:

try {
 Connection connection = Connector.open ("socket://time-
a.nist.gov:13");

http://www.boulder.nist.gov/timefreq/service/time-servers.html

 155

 // converting the Connection to a StreamConnection
 StreamConnection streamConnection = (StreamConnection)connection;

 // getting Input
 InputStream in = streamConnection.getInputStream();

 // reading and writing of data
 StringBuffer buf = new StringBuffer();
 while (true) {
 int i=in.read();
 if (i==-1) break;
 buf.append ((char) i);
 }
 System.out.println ("server time: "+buf);
 // closing the streams and the connection
 in.close();
 streamConnection.close();
}
catch (IOException e) {
 // Handle the exception occurred while opening a socket
connection
}

Note

For reading character data, a reader is usually adequate. For obtaining a reader from an input stream,
use the class InputStreamReader. The same holds for output streams, writers, and the class
OutputStreamWriter.

For a more elaborate example including a user interface, refer to the sample application presented in
the section "GCF Terminal Program."

Server Sockets

The counterpart to client sockets are server sockets. Server sockets listen to a fixed TCP/IP port
number. When a client requests a connection to the port that the server socket is listening to, the server
can accept the request and establish a connection. In GCF, a server socket is established by giving
serversocket://:, followed by the desired port number, to the open() method of the
Connector class. The returned Connection object needs to be cast to the interface
StreamConnectionNotifier, which provides the method acceptAndOpen(). This method
blocks the application until a client socket connects to the port the server is listening to. When a client
establishes a connection, a StreamConnection to the client is returned.

In order to demonstrate the use of the server sockets, we have implemented a rudimentary HTTP based
server. Thus, a standard Web browser can be used to connect to the server by entering a URL that
points to the machine where the HTTP server is running and on which port the server is listening to. An
example URL might look as follows:

http://<ip-number>:<portnumber>

The HTTPServer is extended from the Thread class, making it rather simple to integrate the
HTTPServer in a MIDP or PDAP application of your own. Using the following code snippet, you
will be able to start the HTTPServer on port 8080:

new HTTPServer(8080).start();

 156

If there is currently a HTTPServer listening to the specified port, an IOException will be thrown
as described in the section "Creating a Connection." To track the status of the HTTPServer that is
printed to the console using the System.out.println() method, you can just write the results
into a text widget of MIDP or PDAP.

The HTTP server application can also be run on a desktop machine without a MIDP or PDAP
environment emulated. In order to do so, you need either to compile the SUN GCF for the desktop, or
to access the ME4SE CLDC emulation available from http://www.me4se.org.

A short description of the strings that are transferred between client and server is given in the next
section, "HTTP Connections."

Listing 6.1 shows the complete source code of the HTTP server. Figure 6.2 shows the HTML sample
page that is sent to a Web browser by the HTTP thread if it is included in a server application.

Figure 6.2. The output of the HTTP server implementation shown in Listing 6.1 when
connected with a Netscape 4.7 Web browser.

Listing 6.1 HttpServer.java—A Simple HTTP Server Thread Sending a Headline and the
Actual Time to the Connecting Web Browser as an Identification String

import java.io.*;
import java.util.*;
import javax.microedition.io.*;

public class HttpServer extends Thread {

 StreamConnectionNotifier serverConnection;
 int port;

 public HttpServer (int port) throws IOException {
 this.port = port;
 serverConnection =
 (StreamConnectionNotifier) Connector.open
 ("serversocket://:"+port);
 }

 public void run() {
 try {
 while (true) {
 System.out.println ("Waiting for connection on port
"+port);
 StreamConnection clientConnection =

http://www.me4se.org/

 157

 serverConnection.acceptAndOpen();
 System.out.println ("Connection to established.");
 sendAnswer (clientConnection);
 }
 } catch (IOException e) {
 System.out.println (e.toString());
 }
 }

 public void sendAnswer (StreamConnection s) throws IOException {
 OutputStream o = s.openOutputStream();
 Date date = new Date (System.currentTimeMillis());
 o.write (("HTTP/1.1 200 OK\r\n\r\n"
 +"<HTML><H1>This is a GCF based HTTP Server.</H1>"
 + date.toString() + "\r\n\r\n").getBytes());
 o.close();
 s.close();
 System.out.println ("Connection closed.");
 }
}

Note

Please note, that the procedure described previously is based on the CLDC 1.0 spec. MIDP 2.0
introduces a new PushRegistry class that can to be used with the PushListener interface in
order to establish inbound socket connections.

HTTP Connections

HTTP is the only communication protocol that must be supported by all MIDP and PDAP devices. The
HTTP support must include the HTTP protocol version 1.1 and the HEAD, GET, and POST requests as
described in RFC2616, which can be found at http://www.ietf.org/rfc/.

HTTP is the default protocol for transmitting HTML Web pages. The HTTP protocol is based on a
request/response paradigm where a client establishes a connection to a server that is listening on the
TCP port number 80 by default. Both the HTTP request and response consist of three parts: the request
or response line, header entries, and the actual payload data. The payload is separated from the header
by a single empty line. Line breaks are indicated by a sequence consisting of a carriage return and a
line feed control character (\r\n).

The client initiates the HTTP connection by sending a request line. The request line consists of a
method (for example, GET), the URL identifying the requested page, and the protocol version, all
separated by space characters. The following lines contain header lines and the actual payload. The
server processes the request and sends back a response to the client containing the status of the server,
its own header information, and the requested information.

The following sample lines, taken from an actual HTTP transfer, illustrate the protocol. Note that the
request payload is empty in this simple case. Actually, the request payload is empty in most HTTP
requests for HTML pages except from POST requests transmitting, for example, form data to the server.

A client sends a request for the root page (/) with an additional header indicating the device profile and
configuration:

GET / HTTP/1.1
User-Agent: Profile/MIDP-1.0 Configuration/CLDC-1.0

http://www.ietf.org/rfc/

 158

The server response of the server is

HTTP/1.1 200 OK
Date: Sat, 31 Mar 2001 21:09:48 GMT
Server: Apache/1.3.14 (Unix)
Last-Modified: Tue, 09 Jan 2001 09:29:10 GMT
ETag: "cd610-1fbc-3a5ad9e6"
Accept-Ranges: bytes
Content-Length: 8124
Connection: close
Content-Type: text/html

<html>
...
</html>

The request that is sent back from the server to the client can be split into three sections:

• The response line indicating the protocol version and status code:
• HTTP/1.1 200 OK
• The header containing meta-information provided by the server:
• Date: Sat, 31 Mar 2001 21:09:48 GMT
• Server: Apache/1.3.14 (Unix)
• Last-Modified: Tue, 09 Jan 2001 09:29:10 GMT
• ETag: "cd610-1fbc-3a5ad9e6"
• Accept-Ranges: bytes
• Content-Length: 8124
• Connection: close
• Content-Type: text/html
• The actual content (entity or resource):
• <html>
• ...
• </html>

The HTTPConnection Interface

The GCF provides a special interface for HTTP connections, the HTTPConnection.
HTTPConnection is a specialization of the ContentConnection interface, which is a
specialization of Connection.

The advantage of specialized HTTP connection is that it provides comfortable access methods to the
header fields of the connection. Only the actual content is transferred using streams. If the socket
protocol is supported for a device, it is also possible to connect to HTTP servers using the socket
protocol. However, in that case, you would need to enter the additional protocol lines manually along
with the actual content of the transfer, as shown in our server socket example in the previous section.

In addition to the access methods derived from the StreamConnection, a ContentConnection
provides the following methods for getting meta-information:

• getType()— Returns a String denoting the MIME type of the content, or null if there
is no such information available. In the preceding example, the content type is text/html.

• getEncoding()— Returns a String denoting that character encoding is used for the
content, for example UTF-8. If this information is not available, null is returned. The
encoding information may be used in the InputStreamReader constructor for reading
character-based data.

 159

• getLength()— Returns a long value returning the actual length of the content in bytes. If
this information is not available, the method returns -1.

The HTTPConnection specializes the ContentConnection interface further, adding support for
HTTP methods and header fields. Before we look into the additional methods in more detail, we need
to describe the three possible states of this type of connection:

• Setup—The connection to the server has not yet been established.
• Connected—All request parameters have been set and sent to the server, and the client expects

a response from the server.
• Closed—The connection is closed, and all methods invoked on the HTTPConnection will

throw an IOException. Note that the connection and all streams obtained should be closed.

Depending on the state, only a subset of the methods provided by HTTPConnection may be called
without causing a state transition or even an exception.

Note

A special feature of HTTP 1.1 that most HTTP 1.0 servers do not understand is chunked encoding.
Basically, chunked encoding means that parts of a request are sent separately with additional length
information. The additional length information is interpreted by HTTP 1.0 servers as content, letting
the server fail in interpreting the content. Some MIDP implementations such as the SUN wireless
toolkit switch to chunked encoding when the amount of data sent exceeds a fixed limit, or when the
flush() method is called on the output stream. In many cases, the problems with HTTP 1.0 servers
can be avoided by not calling flush().

Request Properties

The setRequestMethod() can be used to set the connection to GET, POST, or HEAD only in the
Setup state. The same holds for setRequestProperty(), which sets the request headers that need
to be initialized before a connection is established. The following line contains an example for setting
the User-Agent header:

setRequestProperty ("User-Agent", "Profile/MIDP-1.0
Configuration/CLDC-1.0");

This call causes the following header line to be sent with the request when the connection is established:

User-Agent: Profile/MIDP-1.0 Configuration/CLDC-1.0

The HTTPConnection will change to the Connected state when one of the methods for sending and
receiving data, like openInputStream() or openOutputStream(), is called. The transition to
the Connected state is also performed when the header fields of the server response are accessed. For
that purpose, the getHeaderField() method can be used. The following line of code would return
the String "Apache/1.3.14 (Unix)" for our example request:

String serverType = getHeaderField("Server");

The complete source code for creating the example request is as follows:

try {
 HttpConnection httpConnection =
 (HttpConnection) Connector.open ("http://www.leo.org/");
 httpConnection.setRequestProperty

 160

 ("User-Agent", Profile/MIDP-1.0 Configuration/CLDC-1.0);
 InputStream is = httpConnection.openInputStream();

 // read data from server here

 is.close();
 httpConnection.close();
}
catch (IOException e) {
 // put exception handling here...
}

The most important request property is the Request method. The default Request method is GET. The
GET request method is used by Web browsers for requesting HTML pages from Web servers. HTTP
does not allow GET requests to have side effects on the server. Thus, if data will be submitted to the
server, the POST method must be used. For example, Web browsers use POST requests for sending the
content of HTML forms to the server. HTML editors can use POST requests to update HTML pages
stored at the server. The openOutputStream() method can be used to open a stream for writing
data to the server.

A complete application example for running a chat system over HTTP using the GET and POST
methods is given in the section "A Simple HTTP Based Client-Server Chat Application." For full
coverage of the HTTP protocol refer to RFC2616, which can be found at http://www.ietf.org/rfc.

Datagram Connections

Datagram connections provide a mechanism for transferring simple data packets between two
applications. In contrast to TCP socket connections, UDP datagram connections are not reliable. Thus,
DatagramConnections can only be used for connections where packet losses are acceptable.
Typical applications of datagram connections are streaming or real-time applications. The advantage of
datagrams is that their transport produces less protocol overhead. Thus, the performance for datagrams
can be higher than TCP performance.

Datagram connections can be used as server and client connections as well. The protocol name for both
client and server datagram connections is datagram://. For client connections, the protocol name is
followed by the host address and the port, separated by a colon. For server connections, the host is
omitted and just the colon and the port are given. For example, a client datagram connection to port
1234 of the server myserver.some.com is set up by the following line of code:

DatagramConnection datagramConn =
 (DatagramConnection)Connector.open
("datagram://myserver.some.com:1234");

Each datagram that is sent over a datagram connection is a small data packet consisting of the
destination address and a buffer containing the payload data. In J2ME, datagrams are encapsulated in
the Datagram class. Datagram objects are created using the newDatagram() method of a
datagram connection. The newDatagram() method takes the buffer containing the data and the size
of the buffer to be transferred. It then returns a new Datagram object. A datagram that is created in
this way automatically contains the receiver address of the connection.

The following snippet creates a Datagram object containing a "Hello World" string:

String helloWorldString = new String ("Hello World");
byte[] buffer = helloWorldString.getBytes();
Datagram myDatagram = datagramConn.newDatagram(buffer, buffer.length);

Datagrams are sent using the method send() of the DatagramConnection:

http://www.ietf.org/rfc

 161

datagramConn.send(myDatagram);

To receive datagrams, you need to create a datagram server connection. For that purpose, you again use
the Connector.open() method, but this time without specifying the hostname of the machine.
Instead, you just give the local port number your server will listen to:

DatagramConnection serverDatagramConn =
 (DatagramConnection)Connector.open ("datagram://:1234");

In order to receive a datagram, you need to call the receive() method, which blocks until a
datagram is received. Before you call the receive() method, you need to create a datagram object
that is passed to this method. The receive() method fills the given object from the datagram
received. Now let's assume that you expect the client to send a datagram containing a "hello
world" string consisting of 11 bytes. To create a datagram that is able to hold the complete buffer,
you need to create an empty datagram with a buffer size of at least 11 bytes using the following line of
code:

Datagram receivedDatagram = serverDatagramConn.newDatagramConn (11);

Finally, you need to call the receive() method of the DatagramConnection to receive the
datagram sent from the client and convert the contained buffer back to a String:

serverDatagramConn.receive(receivedDatagram);
String helloWorldString = new String(receivedDatagram.getData());

The helloWorldString variable should now contain the "Hello World" String that was
sent from the client.

As a real-world example, we will again use the server time-a.nist.gov. It supports not only
socket connections, but also the datagram time protocol specified in RFC868. This protocol returns a
32-bit binary number that represents the time in seconds since January 1, 1900.

If you want to compare the server time to the local time, you need to convert the server time to the
usual Java format, which is measured in milliseconds since January 1, 1970. Thus, you must subtract
the 2,208,988,800 seconds between 1.1.1900 and 1.1.1970 from the server time, and then multiply the
result by 1,000 in order to convert the seconds to milliseconds.

The following code example establishes a corresponding DatagramConnection to the time server
datagram://time-a.nist.gov:37:

try {
 Connection connection = Connector.open ("datagram://time-
a.nist.gov:37");

 // converting the Connection to a DatagramConnection
 DatagramConnection datagramConnection =
(DatagramConnection)connection;

 // creating a new datagram in order to request the time from the
server
 Datagram datagram = datagramConnection.newDatagram
 (datagramConnection.getNominalLength());

 // sends the datagram to the server
 datagramConnection.send (datagram);

 // for the response that is sent from the server

TE
AM
FL
Y

Team-Fly®

 162

 // we need to create a new datagram that can hold 4 bytes
 Datagram respDatagram = datagramConnection.newDatagram (4);

 // receives the datagram containing the actual time
 datagramConnection.receive (respDatagram);

 // in order to convert the 4 bytes that are
 // received to a long we need the following lines
 byte[] received = respDatagram.getData();
 long time = (((((long) received [0]) & 0x0ff) << 24)
 + ((((long) received [1]) & 0x0ff) << 16)
 + ((((long) received [2]) & 0x0ff) << 8)
 + ((((long) received [3]) & 0x0ff)));

 // Convert seconds since 1.1.2000 to Milliseconds since 1.1.1970
 time = (time - 2208988800l) * 1000;

 // calculate deviation
 long difference = time – System.currentTimeMillis();

 // closes the datagram connection
 datagramConnection.close();
}
catch (IOException e) {
// Handle the exception that occurred while opening a datagram
connection
}

Serial Connections

Some devices running a CLDC KVM might be equipped with a serial port and support the protocol for
serial connections. In order to transfer data over the serial port, the device needs to be connected to a
desktop computer or to another device that supports serial communication—for example, a GPS
receiver. In order to test serial communication, a simple terminal can be used.

PDAP specifies that a PDAP implementation can support the CommConnection if supported by the
underlying operating system and hardware. Such a CommConnection can be established as shown in
the following code snippet that opens a 9600 baud communication connection on comm port 0 with 8
bits per character and no parity

For example,

CommConnection connection =
 (CommConnection) Connector.open
 ("comm:0;baudrate=9600;bitsperchar=8;parity=none");

The actual serial port properties depend on the device's hardware. A comma-separated list of all
available comm ports can be obtained from the system property "microedition.commports" using the
System.getProperty() method. These comm ports might not only include physical RS-232
ports, but also IR or Bluetooth ports that are mapped to serial ports. Commonly supported parameters
are

• Number of the comport: comm=0..n or IR=0..n
• baudrate=57600, 38400, 19200, 9600, 2400, 1200
• bitsperchar=8, 7
• parity=even, odd, none

 163

They need to match the connection properties of the connected device. For debugging purposes, the
mobile device can easily be connected to the desktop PC using a serial RS232 connection, as shown in
Figure 6.3. Using a terminal program such as Hyperterm (included in MS Windows), the transferred
data can be visualized on the host computer system.

Figure 6.3. The mobile device connected to a desktop PC for sending and receiving
data using a terminal application such as Hyperterm.

Note

The CommConnection that is used in PDAP is also available in MIDP 2.0.

File Connections

A new kind of connection that is added to the Generic Connection Framework by PDAP is the
capability to access file-based memory cards or the internal file system of a device. Currently, most of
the new handheld devices are equipped with some kind of card reader supporting one or even two
different brands of removable media cards such as

• CompactFlash cards
• MultiMedia cards
• Secure Digital cards
• SmartMedia cards
• and MemorySticks

Those cards support a hierarchical file system similar to the file system known from desktop computers.
PDAs may also provide an internal file system.

For access to file systems, the three interfaces FileConnection , FileSystemEvent and
FileSystemListener are included in PDAP. Those interfaces and the additional
FileSystemRegistry class are described in detail in the following sections.

The FileConnection Interface

The FileConnection interface defines methods for handling files on removable media, similar to
the functionality provided by the java.io.File class of the Java 2 Standard Edition. For opening a
file connection using the Connector class, a URL consisting of the following parts needs to be
passed:

file://<host>/<path>

 164

The possible root strings can be queried using the PushRegistry.listRoots() method. In order
to simplify path concatenation they have a trailing "/".

The following list shows examples of possible root strings:

• CFCard/
• SDCard/
• MemoryStick/
• C:/
• usr/
• sda1/

When compared with other GCF connections, the connection behavior of the file connection differs to
some extent. The Connector.open() method can successfully return a FileConnection object
although the referenced file or directory does not yet existent. This behavior is necessary for creating
files and directories. The following code snipped shows how the FileConnection interface can be
used to create a directory, given the device provides a "SDCard" file system root:

try {
 FileConnection fileConn =
 (FileConnection)Connector.open("file:///SDCard/MyDir/");
 if (!fileConn.exists())
 fconn.mkdir();
 fconn.close();
}
catch (IOException ioe) {
 // handle the error that occurred during directory creation
}

If a platform does not support file connections, it will throw a
javax.microedition.io.ConnectionNotFoundException when an application tries to
open a particular connection using Connector.open() method.

The FileConnection is derived from the StreamConnection interface and supports its
methods for opening input and output streams. Furthermore, the interface defines methods such as
create() and delete() for creating and deleting files, and methods to check the capability of
reading and writing of a file such as canRead() and canWrite(). Also methods to query
information about the memory space available and currently occupied are provided.

FileSystem Security

The security model supported for FileConnections is device and implementation dependent.
Accessing a file connection is restricted to prevent unauthorized access and manipulation of data.
Implementations must prohibit access to RMS databases, private data, and internal files of the
operating system. The security model may be applied already at the invocation of the
Connector.open() method. When the URL passed to the Connector.open() method points
to a file or directory that is not allowed to be accessed, a java.lang.SecurityException may
be thrown. The security model may also be applied later, when an application actually tries to open a
stream.

Registering FileSystemListeners Using the FileSystemRegistry

Since the functionality of the FileConnection is defined in an interface and not in an abstract class
that could hold static methods as well, the functionality to add and remove FileSystemListeners
is contained in a separate class. The FileRegistry class contains three static methods. The
addFileSystemListener() method is used to register a new FileSystemListener, and the

 165

removeFileSystemListener() method is used to deregister such a listener. Notifications from
the FileRegistry class are important for applications like when file browsers that may want to
notify the user or update the display when e.g. a memory card was inserted or removed. Whenever a
file system is added or removed, the corresponding rootAdded() or rootRemoved() callback
method is called. Both methods provide a FileSystemEvent parameter. The FileSystemEvent
is used to identify the particular file system change that occurred. The type of the event can be retrieved
using the getID() method returning one of the constants FileSystemEvent.ROOT_ADDED or
FileSystemEvent. ROOT_REMOVED. The getRootName() method allows you to query the
file system root the event is referring to.

IRDA Connections

Unfortunately, infrared connections corresponding to the IRDA standard are covered neither by the
CLDC specification nor by the MIDP or PDAP profile, except from the serial port emulation. However,
it might be possible that some devices allow mapping a serial connection to the infrared port. Also,
even if IRDA communication is currently not specified in CLDC, it might be provided by device
manufacturers, third parties or future versions of the J2ME standards.

Bluetooth Connections

A very new connection type for mobile devices is the upcoming Bluetooth technology. The Bluetooth
standard defines data exchange up to 100 meters over the air at a maximum bandwidth of 723.2kB/s.
However, in order to save battery power in mobile devices, usually the pico version of the standard is
implemented, which reduces the nominal range of the Bluetooth Communication to 10 meters.
Bluetooth might replace the IRDA communication that is often used between mobile phones, PDAs,
and notebooks because it does not need to have a direct optical connection between sender and receiver.
Thus, it would be possible to use a cell phone that is placed in the user's vest pocket to connect a PDA
to the Internet.

JSR-82 covering Bluetooth connectivity for J2SE and J2ME includes a Bluetooth integration into the
GCF. To get more information about JSR-82, it is available for public review under the following URL:
http://www.jcp.org/jsr/detail/82.jsp.

GCF Examples
Now that you know about the connection types provided by CLDC, MIDP 1.0, and 2.0, you are ready
to implement two example applications: a terminal program and a chat application. These example
applications will be CLDC-based.

GCF Terminal Program

Prior to the PC era, it was quite common to have a single centralized computer and a set of simple
hardware terminals providing text-based interfaces to the main computer. A terminal program is an
application that simulates this kind of interface by providing a local text interface to a remote process.
Before the World Wide Web became popular, terminal programs were widely used to access so-called
mailboxes or bulletin board systems (BBS) over a serial modem connection. Today, terminal programs
implementing the telnet protocol are still used for command line access; for example, for server
configuration.

For the sample terminal application, we will take advantage of the fact that the GCF is indeed very
generic. You will enter a URI, and your terminal program will connect to the given address and display
what the other end of the connection sends. For example, if you connect to an HTTP address, the
program will display the HTML code of the requested page. You may also use the example to view the

http://www.jcp.org/jsr/detail/82.jsp

 166

raw positioning data read from a GPS receiver using a serial connection. An input line allows you to
send data over the connection.

Here, we will only describe the network related parts of the application. The complete sources of the
MIDP and PDAP versions are shown in Listings 6.2 and 6.3, respectively. The MidpTerminal and
PdapTerminal application user interfaces consist of a widget in which you can enter a URL that is
used to open a particular connection. The connection is established by activating the Connect
command or by pressing the Connect button, depending on the platform in which the application is
running.

The core of the Terminal implementation is contained in an inner class of the main application called
Handler. This class "handles" establishing the connection and receiving new data in the background.
For that purpose, the Handler stores the connection, as well as the corresponding input and output
streams in member variables. It also contains a variable leave that determines whether the handler
should leave the receive loop and terminate itself:

class Handler extends Thread {

 StreamConnection connection;
 InputStream in;
 OutputStream out;
 boolean leave;

The constructor of the Handler takes a URL as input and establishes a corresponding stream
connection. It is called from the main application when the user enters an address and requests a
corresponding connection. The Handler is not able to handle datagram or serversocket protocols.
Trying to do so would cause a class cast exception.

When the connection is established, the out and in variables are set. Then, the establishment of the
connection is reported using the show() method of the main class:

public Handler (String url) throws IOException {

 connection = (StreamConnection) Connector.open
 (url, Connector.READ_WRITE, true);

 out = connection.openOutputStream();
 in = connection.openInputStream();

 show ("opened: "+ url + "\r");
}

The main work is performed in the run() method of the Handler thread. The run() method is
invoked automatically when the main application calls the start() method, which runs the handler
as a separate thread in the background. In the run() method, incoming data is collected in a string
buffer until the leave flag is set, no more data is available, or the buffered data reaches a limit of 1024
bytes. In that case, the collected data is shown to the user by handing it over to the show() method.
Then, the buffer is cleared and a new iteration of the read loop is entered. If read encounters a -1, that
means that the stream is closed remotely. In that case, disconnect() is called in order to terminate
the Handler and to release the connection:

 public void run() {

 StringBuffer buf = new StringBuffer();

 try {
 while (!leave) {

 167

 do {
 int i = read();
 if (i == -1) disconnect();
 // ignore control characters except from cr
 else if (i == '\r' || i >= ' ')
 buf.append ((char) i);
 }
 while (!leave && in.available() > 0 && buf.length() <
1024);

 show (buf.toString());
 buf.setLength (0); // clear buffer
 }
 }
 catch (Exception e) {
 if (!leave) show (e.toString() + "\r");
 disconnect();
 }
 }
}

You might have noticed that the method Handler.read() is called for reading data from the stream
instead of just calling in.read(). The only difference is that Handler.read() implements telnet
parameter negotiation, which allows you to use the Terminal sample application as a telnet client by
connecting to port 23 of a corresponding host. The Telnet protocol is widely used to connect computer
systems remotely with a command-line interface. For details of the Telnet protocol please refer
RFC854.

The main application classes, MidpTermial and PdapTerminal, mainly handle the user interface.
The only method that is independent from the user interface is disconnect(), which closes the
connection if a connection exists and notifies the corresponding Handler to terminate.

An important difference of the PDAP implementation when compared to the MIDP implementation is
that the show() method does not manipulate the user interface directly. Because the PDAP AWT is
not thread safe, it is necessary to manipulate the user interface indirectly by calling
invokeAndWait() with an instance implementing the Runnable interface. Here, you use the class
Appender for that purpose. The Appender instance encapsulates the string to be appended to the
list of incoming data. When the AWT calls the run() method of the Appender, AWT has made sure
that it is currently safe to manipulate the user interface. Now, the Appender adds its payload to the
list showing the data sent from the remote end of the connection.

Figure 6.4 shows an example session of the terminal program. Note that the terminal is only a minimal
implementation for demonstration purposes. It does not handle any control sequences such as cursor
control, except from carriage return characters (\r). Feel free to extend the sample as you like for your
purposes. For example, for applications relying on binary data transfer, it might be better to use a hex
format for sending and receiving data. Listing 6.2 contains the MIDP version of the terminal program,
and Listing 6.3 shows the PDAP version.

Figure 6.4. An example PdapTerminal connection to an HTTP server using the socket
protocol after sending "GET / HTTP 1.0" and an empty MidpTerminal and line.

 168

Listing 6.2 MidpTerminal.java—The MIDP Terminal Application for Using Different
Protocols in the Same Application

import java.io.*;

import javax.microedition.midlet.*;
import javax.microedition.io.*;
import javax.microedition.lcdui.*;

/** The MIDP version of a simple Terminal client */

public class MidpTerminal extends MIDlet implements CommandListener {

 /** The Handler class cares about establishing the connection and
 receiving and displaying data in the background. */

 class Handler extends Thread {

 StreamConnection connection;
 InputStream in;
 OutputStream out;
 boolean leave;

 /** Establishes a connection to the given URI */
 public Handler (String uri) throws IOException {

 connection = (StreamConnection) Connector.open
 (uri, Connector.READ_WRITE, true);

 out = connection.openOutputStream();
 in = connection.openInputStream();

 show ("opened: "+uri + "\r");
 }

 /* Like in.read(), but additional performs telnet parameter
 negotiations */

 public int read() throws IOException {
 while (true) {
 int i = in.read();
 if (i != 0x0ff) return i;

 169

 int cmd = in.read();

 if (cmd == 0x0ff)
 return 0x0ff;

 int opt = in.read();

 if (cmd == 0xfd || cmd == 0x0fb) {
 out.write (0x0ff);
 out.write (cmd == 0xfd ? 252 : 254);
 out.write (opt);
 out.flush();
 }
 }
 }

 /** Main receive loop running in the background */

 public void run() {

 StringBuffer buf = new StringBuffer();

 try {
 while (!leave) {
 do {
 int i = in.read();

 if (i == -1) disconnect();
 else if (i == '\r' || i >= ' ')
 buf.append ((char) i);
 }
 while (!leave && in.available() > 0
 && buf.length() < 1024);
 show (buf.toString());
 buf.setLength (0);
 }
 }
 catch (Exception e) {
 if (!leave) show (e.toString() + "\r");
 disconnect();
 }
 }
 }

 List incoming = new List ("MidpTerminal", Choice.IMPLICIT);

 TextBox uriField = new TextBox
 ("Connect to:", "http://www.kawt.de/", 100, TextField.ANY);

 TextBox sendField = new TextBox ("Send:", "", 100, TextField.ANY);

 Command connectCmd = new Command ("Connect", Command.SCREEN, 1);
 Command sendCmd = new Command ("Send", Command.SCREEN, 1);
 Command okCmd = new Command ("Ok", Command.OK, 1);
 Command abortCmd = new Command ("Abort", Command.CANCEL, 1);

 Handler handler = null;
 Display display;

 170

 /** Set up user interface */

 public MidpTerminal() {
 uriField.addCommand (okCmd);
 uriField.addCommand (abortCmd);
 uriField.setCommandListener(this);
 sendField.addCommand (okCmd);
 sendField.addCommand (abortCmd);
 sendField.setCommandListener(this);

 incoming.addCommand (connectCmd);
 incoming.addCommand (sendCmd);
 incoming.setCommandListener(this);

 incoming.append ("", null);
 }

 /** Set display to the URI dialog */

 public void startApp() {
 display = Display.getDisplay (this);
 display.setCurrent (uriField);
 }

 /** Shows the given string by appending it to the
 list with respect to contained line breaks. */

 public void show (String data) {
 int i0 = data.indexOf ('\r');

 if (i0 == -1) i0 = data.length();

 incoming.set
 (incoming.size()-1,
 incoming.getString (incoming.size() - 1)
 + data.substring (0, i0), null);
 i0++;
 while (i0 <= data.length()) {
 int i = data.indexOf ((char) 13, i0);
 if (i == -1) i = data.length();
 incoming.append (data.substring (i0, i), null);
 i0 = i+1;
 }
 }
 /** Performs the action associated with the given command
 like showing dialogs, opening the connection or sending
 a string */

 public void commandAction (Command c, Displayable d) {

 try {
 if (c == connectCmd)
 display.setCurrent (uriField);
 else if (c == sendCmd && handler != null)
 display.setCurrent (sendField);
 else if (c == abortCmd)
 display.setCurrent (incoming);
 else if (c == okCmd) {
 display.setCurrent (incoming);

 171

 if (d == sendField && handler != null) {
 handler.out.write
(sendField.getString().getBytes());
 handler.out.write ('\r');
 handler.out.write ('\n');
 handler.out.flush();
 sendField.setString ("");
 }
 else if (d == uriField) {

 disconnect();
 handler = new Handler (uriField.getString());
 handler.start();
 }
 }
 }
 catch (Exception e) {
 show (e.toString());
 disconnect();
 }
 }

 public void pauseApp() {
 }
 public void disconnect() {
 if (handler != null) {
 handler.leave = true;
 show ("disconnected!\r");
 try {
 handler.connection.close();
 handler.in.close();
 handler.out.close();
 }
 catch (IOException e) {
 }
 handler = null;
 }
 }

 public void destroyApp (boolean unconditional) {
 disconnect();
 }
}

Listing 6.3 PdapTerminal.java—The PDAP Terminal Application for Using Different
Protocols in the Same Application

import java.io.*;
import javax.microedition.io.*;
import javax.microedition.midlet.*;

import java.awt.*;
import java.awt.event.*;

public class PdapTerminal extends MIDlet implements ActionListener {

 /** The Handler class cares about establishing the connection and

TE
AM
FL
Y

Team-Fly®

 172

 receiving and displaying data in the background. */

 class Handler extends Thread {

 StreamConnection connection;
 InputStream in;
 OutputStream out;
 boolean leave;
 /** Establishes a connection to the given URI */

 public Handler (String uri) throws IOException {

 connection = (StreamConnection) Connector.open
 (uri, Connector.READ_WRITE, true);

 out = connection.openOutputStream();
 in = connection.openInputStream();

 show ("opened: "+uri + "\r");
 }

 /** Like in.read(), but additional performs telnet
 parameter negotiations. */

 public int read() throws IOException {
 while (true) {
 int i = in.read();
 if (i != 0x0ff) return i;

 int cmd = in.read();

 if (cmd == 0x0ff)
 return 0x0ff;

 int opt = in.read();

 if (cmd == 0xfd || cmd == 0x0fb) {
 out.write (0x0ff);
 out.write (cmd == 0xfd ? 252 : 254);
 out.write (opt);
 out.flush();
 }
 }
 }

 /** Collects incoming data in the background and
 shows it if the buffer size reaches 1 k or
 no more data is available at the moment. */

 public void run() {

 StringBuffer buf = new StringBuffer();
 try {
 while (!leave) {

 do {
 int i = in.read();

 if (i == -1) disconnect();

 173

 else if (i == '\r' || i >= ' ')
 buf.append ((char) i);
 }
 while (!leave && in.available() > 0
 && buf.length() < 1024);

 show (buf.toString());

 buf.setLength (0);
 }
 }
 catch (Exception e) {
 if (!leave) show (e.toString() + "\r");
 disconnect();
 }
 }
 }

 /** Class for thread safe appending of information to
 the list of incoming data */

 class Appender implements Runnable {
 String data;
 Appender (String data) {
 this.data = data;
 }

 public void run() {
 int i0 = data.indexOf ('\r');

 //System.out.println ("Adder: cr index is: "+i0);
 if (i0 == -1) i0 = data.length();

 incoming.replaceItem
 (incoming.getItem (incoming.getItemCount() - 1)
 + data.substring (0, i0), incoming.getItemCount()-1);
 i0++;
 while (i0 <= data.length()) {
 int i = data.indexOf ('\r', i0);
 if (i == -1) i = data.length();
 incoming.add(data.substring (i0, i));
 i0 = i+1;
 }
 }
 }

 Frame frame = new Frame();
 TextField urlField = new TextField ("");
 List incoming = new List();
 TextField sendField = new TextField();

 Button connectButton = new Button ("connect");
 Button sendButton = new Button ("send");

 Handler handler;

 /** Initializes GUI */

 174

 public PdapTerminal() {
 frame = new Frame ("GcfTerminal");

 frame.addWindowListener(new WindowAdapter() {
 public void windowClosing (WindowEvent e) {
 destroyApp (true);
 notifyDestroyed();
 }
 });

 connectButton.addActionListener(this);

 Panel topPanel = new Panel (new BorderLayout());
 //topPanel.add("West", protocolChoice);
 topPanel.add("Center", urlField);
 topPanel.add("East", connectButton);

 sendButton.addActionListener(this);

 Panel bottomPanel = new Panel (new BorderLayout());
 bottomPanel.add("Center", sendField);
 bottomPanel.add("East", sendButton);

 frame.add("North", topPanel);
 frame.add("Center", incoming);
 frame.add("South", bottomPanel);

 frame.pack();
 }

 /** Shows the given string thread safe by handing a new Appender
 to invokeLater */

 public void show (String s) {
 try {
 Toolkit.getDefaultToolkit().getSystemEventQueue()
 .invokeAndWait (new Appender (s));
 }
 catch (Exception e) {
 throw new RuntimeException (e.toString());
 }
 }

 /** Shows the main frame on the device screen */

 public void startApp() {
 frame.show();
 }

 /** Handles the buttons by opening a connection or sending text
*/

 public void actionPerformed (ActionEvent event) {

 try {
 if (event.getSource() == sendButton && handler != null) {
 handler.out.write (sendField.getText().getBytes());

 175

 handler.out.write ('\r');
 handler.out.write ('\n');
 handler.out.flush();
 sendField.setText ("");
 }
 else if (event.getSource() == connectButton) {
 disconnect();
 handler = new Handler (urlField.getText());
 handler.start();
 }
 }
 catch (Exception e) {
 incoming.add(e.toString());
 incoming.add("");
 disconnect();
 }
 }

 /** Closes the connection if any */

 public void disconnect() {
 if (handler != null) {
 handler.leave = true;
 show ("disconnected!\r");
 try {
 handler.connection.close();
 handler.in.close();
 handler.out.close();
 }
 catch (IOException e) {
 }
 handler = null;
 }
 }

 public void pauseApp() {
 }
 public void destroyApp (boolean unconditional) {
 disconnect();
 frame.setVisible (false);
 }

A Simple HTTP-Based Client-Server Chat Application

In addition to the telnet client, we would like to show you how to build a "real" client-server
application, where the server runs on a desktop computer, and the CLDC device takes over the role of
the client. To keep things simple, we have chosen a chat application as an example. The idea is that you
can connect to a server, see the messages from other people connected to the same server, and write
your own messages that become visible to the other users. Because HTTP is the only protocol available
for all devices, we will use HTTP as the communication protocol for our application. However, using
HTTP includes a significant drawback: HTTP does not provide server initiated transmissions, so the
clients need to connect to the server and to "poll" for new data from time to time. It might be possible
to work around this limitation by keeping an HTTP connection open for each client and to forward data
to all connected clients automatically. However, it might be possible that the gateway used by the
device for HTTP access does not support this, so we will stick to polling here.

In order to allow the clients to receive only their new messages, all messages have an unique number,
which is managed by a simple server-sided counter. Thus, the client can submit the number of the

 176

newest message it has already received, and the server will send only newer messages that have higher
numbers assigned. If no number is given, the server will just send the 10 most recent messages.

Thus, we can define the following behaviors for reading:

• Client—Sends a request of type GET.
• Server—First it sends a line containing the number that will be assigned to the next message.

Then, if the URL is of the form /?start=N, a list of all messages, starting with message
number N, is transmitted. For all other URLs, the last 10 messages are submitted. All items are
separated by a pair of carriage return and linefeed control characters (\r\n).

For submitting text, you will use the HTTP POST command with an identical URL, but you will also
send the nickname and the text in the body of the request. In return, the server sends the same content
as for the GET command:

• Client—Sends a request of type POST.
• Server—Sends the same reply as for the GET command. The text just sent by the client is

included in the list of messages. Thus, at least one message is sent.

J2SE Chat Server

Now that we have defined the communication protocol, we can start with implementing a
corresponding server.

The server depends on the java.io and java.net packages. It stores the number of the current
message, a buffer for text, and a J2SE server socket in member variables:

import java.io.*;
import java.net.*;

public class ChatServer {
int current = 0;
String [] lines = new String [256];
ServerSocket serverSocket;

The constructor of the server gets a port number as input and creates a corresponding server socket:

public ChatServer (int port) throws IOException {
 serverSocket = new ServerSocket (port);
 System.out.println ("Serving port: "+port);
}

The run() method of the server contains a loop that waits for incoming connections. When a request
is accepted, a buffered reader and a writer corresponding to input and output streams associated with
the connection are handed over to the handleRequest() method. Usually, the actual handling of
the request would be performed in a separate thread, enabling the server to handle new requests
immediately. However, in order to keep the server as simple as possible, you handle the request in the
current thread, blocking new requests for the corresponding amount of time:

public void run() {
 while (true) {
 try {
 Socket socket = serverSocket.accept();
 handleRequest (new BufferedReader
 (new InputStreamReader (socket.getInputStream())),
 new OutputStreamWriter
(socket.getOutputStream()));

 177

 socket.close();
 }
 catch (Exception e) {
 e.printStackTrace (System.err);
 }
 }
}

The main functionality of the chat server is performed in the handleRequest() method. It gets the
socket reader and writer as input from the run() method. At first, it reads the HTTP request line from
the client and prints it to system.out:

public void handleRequest (BufferedReader reader,
 Writer writer) throws IOException {

 String request = reader.readLine();
 System.out.println ("handling: "+request);

The next step is to analyze the request line. For that purpose, it is divided into the method, the
requested address, and the version part, which are separated by space characters:

int s0 = request.indexOf (' ');
int s1 = request.indexOf (' ', s0+1);

String method = request.substring (0, s0);
String url = request.substring (s0+1, s1);

Now, the first line to be submitted is determined by analyzing the request URL:

int start = -1; // default;
int cut = url.indexOf ("?start=");

if (cut != -1)
 start = Integer.parseInt (url.substring (cut+7));
if (start < 0) start = count – 10;

Additional header lines are skipped by reading from the stream until an empty line or the end of the
stream is reached. An empty line marks the end of the HTTP headers and the beginning of the content
of the request:

while (true) {
 String s = reader.readLine();
 System.out.println ("header: "+s);
 if (s == null || s.length() == 0) break;
}

Now, if the HTTP-Request method is POST, the nickname and the sender are read from the HTTP
content. A corresponding string is appended to the message ring buffer of the server:

if (method.equalsIgnoreCase ("post")) {

 String nick = reader.readLine().substring (5);
 String text = reader.readLine().substring (5);

 System.out.println ("nick="+nick);
 System.out.println ("text="+text);

 lines [(current++) % lines.length] = nick + ": "+ text;

 178

 // skip possible additional crlf from bad http implementations
 if (reader.ready()) reader.readLine();
}

Finally, an HTTP OK status report is sent back to the client, together with the number that will be
assigned to the next incoming messages, and the list of messages that was requested by the client:

 writer.write ("HTTP/1.0 200 OK\r\n");
 writer.write ("Content-Type: text/plain\r\n");

 writer.write ("Connection: close\r\n");

 // Header is separated from content by a blank line.
 writer.write ("\r\n");

 writer.write (""+current+"\r\n");

 if (start < current - lines.length) start = current -
lines.length;
 if (start < 0) start = 0;

 for (int i = start; i < current; i++) {
 writer.write (lines [i % lines.length]);
 writer.write ("\r\n");
 }
 writer.close();
}

The main method of the chat server sets up the server listening to the port given as the command-line
parameter. If no port number was given, it defaults to port 8080:

 public static void main (String [] argv) throws IOException {

 if (argv.length == 0)
 new ChatServer (8080).run();
 else if (argv.length == 1)
 new ChatServer (Integer.parseInt (argv[0])).run();
 else
 System.out.println ("Usage: java ChatServer [port]");
 }
}

Note

The Java Servlet API provides better support for implementing HTTP-based server applications than
using raw sockets. However, we did not want to introduce an additional dependency for this example
application.

MIDP and PDAP Chat Clients

Now, you have developed a simple HTTP based chat server. You can test it using a simple Web
browser. By starting the server on the local machine and pointing a Web browser to the address
http://localhost:8080, you can get a list of the 10 most recent messages. This list will
probably be empty, but you can use a very simple HTML page to send messages to the server:

 179

<html><head><title>Chat Server Test</title></head>
<body>
 <form target="main" method="post"
 action="http://localhost:8080/"
 enctype="text/plain">

 <table>
 <tr><td>Nickname:</td><td><input name="nick" /></td></tr>
 <tr><td>Text:</td><td><input size="80" name="text" /></td></tr>
 </table>
 <input value="Submit Text" type="submit" />
 </form>
 </body>
</html>

However, the main idea is to use J2ME devices as clients for the chat server. Listings 6.4 and 6.5
contain the MIDP and PDAP versions of the chat client. Again, the main task is performed in the
transmit method in both cases, which sends a new string to the server and updates the display of the
client with the messages received from the server.

The transfer method is called from two points in the program:

• From the event handler when the user requests to send some text. In that case, the string to be
submitted to the server is given as a parameter.

• Periodically from a refresh task every four seconds with null as a parameter, in order to keep
the message display of the client updated.

The transfer method takes the string to be sent to the server as parameter, or null if the local list of
messages should only be updated from the server without sending a new message. Depending on this
parameter, a HTTP connection is opened in READ or READ_WRITE mode. The URI is constructed
from the hostname that was queried by the user interface and stored in the host variable and the start
parameter, denoting from which message number the server should start sending. The count variable
is initialized with the value -1, so for the first request, the server will send back the 10 most recent
messages. The count variable is updated later in this method from the response of the server. Because
IO exceptions might be thrown during the connection, you include the whole method in a try-catch
block. The Boolean return value indicates whether the transfer was performed successfully:

boolean transfer (String submit) { // if null, just read
 try {
 HttpConnection connection = (HttpConnection) Connector.open
 (host + "/?start="+count,
 submit != null ? Connector.READ_WRITE : Connector.READ);

If submit is not null, a corresponding writer is obtained from the HTTP connection, and the method
is set to POST. Then, the message stored in the submit variable is submitted as content of the request:

Writer writer = null;

if (submit != null) {
 connection.setRequestMethod (HttpConnection.POST);
 writer = new OutputStreamWriter
 (((StreamConnection) connection).openOutputStream());
 writer.write ("nick="+nick + "\r\n");
 writer.write ("text="+submit+"\r\n");
 writer.close();
}

Now you open a reader in order to read the new messages submitted with the reply from the server:

 180

Reader reader = new InputStreamReader
 (((StreamConnection) connection).openInputStream());

First, you read the new count value, denoting the number that will be assigned to the next message
arriving at the server. This value is important in order to know where to start the next request.
readLine() is a static method of this class that reads a line from the given reader:

count = Integer.parseInt (readLine (reader));

Now you read the messages submitted by the server until you reach the end of the stream:

while (true) {
 String s = readLine (reader);
 if (s == null || s.length() == 0) break;
 addLine (s);
}

Next, you close the readers and the corresponding connection. Also, you return true in order to
indicate that the transfer was performed successfully:

 reader.close();
 connection.close();
 return true;
}

Finally, if an exception occurred in the connection, you add the corresponding error string to the
display, and then call the disconnect() method which stops the timer that ensures the display is
updated periodically. A false value is returned in order to indicate that an exception has occurred:

 catch (Exception e) {
 addLine (e.toString());
 disconnect();
 return false;
 }
}

The only other part of the application relevant for communications is RefreshTask:

class RefreshTask extends TimerTask {
 public void run() {
 transfer (null);
 }
}

When a connection is established, it is launched with parameters to request an update of the messages
from the server every four seconds:

timer = new Timer();
timer.schedule (new RefreshTask(), 0, 4000);

Figure 6.5 shows emulated MIDP and PDAP clients connected to a local chat server. Note that the
resulting chat application is minimalistic. For example, it does not check if two different users are using
the same nickname. The application is intended to show the basic HTTP functionality only. Feel free to
extend or change the application as you like for your own purposes.

Figure 6.5. Emulated MIDP and PDAP clients connected to a local chat server.

 181

Listing 6.4 MidpChat.java—A MIDP Chat Client Using the HTTP Protocol to
Communicate with the Server

import javax.microedition.midlet.*;
import javax.microedition.lcdui.*;
import javax.microedition.io.*;

import java.util.*;
import java.io.*;

public class MidpChat extends MIDlet implements CommandListener {

 List list = new List ("MidpChat", Choice.IMPLICIT);
 TextBox text = new TextBox ("Chat Text", "", 100, TextField.ANY);

 int count = -1;
 Timer timer;

 String host = "http://localhost:8080";
 String nick = "guest";

 Display display;

 Command write = new Command ("Write", Command.OK, 1);
 Command submit = new Command ("Submit", Command.OK, 1);
 Command cancel = new Command ("Cancel", Command.BACK, 1);

 class RefreshTask extends TimerTask {

 public void run() {
 if (display.getCurrent() == list)
 transfer (null);
 }
 }

 class ConfigForm extends Form implements CommandListener {

 TextField hostField =
 new TextField ("Host:", host, 50, TextField.ANY);
 TextField nickField =
 new TextField ("Nickname:", nick, 50, TextField.ANY);
 Command connectCommand = new Command ("Connect", Command.OK,
1);
 Command abortCommand = new Command ("Abort", Command.BACK, 1);

TE
AM
FL
Y

Team-Fly®

 182

 ConfigForm() {
 super ("Configuration");
 append (hostField);
 append (nickField);
 addCommand (connectCommand);
 addCommand (abortCommand);
 setCommandListener(this);
 }

 public void commandAction(Command c, Displayable d) {
 if (c == connectCommand) {
 host = hostField.getString();
 nick = nickField.getString();
 connect();
 }
 display.setCurrent (list);
 }
 }

 static String readLine (Reader reader) throws IOException {
 StringBuffer buf = new StringBuffer();
 while (true) {
 int c = reader.read();
 if (c == -1) {
 if (buf.length() == 0) return null;
 break;
 }
 if (c == 10) break;
 if (c != 13) buf.append ((char) c);
 }
 return buf.toString();
 }

 public MidpChat() {
 list.addCommand (write);
 list.setCommandListener(this);
 text.addCommand (submit);
 text.addCommand (cancel);
 text.setCommandListener(this);
 }

 public void startApp() {
 display = Display.getDisplay (this);
 if (timer == null)
 configure();
 else
 display.setCurrent (list);
 }
 void configure() {
 disconnect();
 display.setCurrent (new ConfigForm());
 }

 void connect() {
 disconnect();
 if (transfer (null)) {
 timer = new Timer();
 timer.schedule (new RefreshTask(), 0, 4000);
 }
 }

 183

 void addLine (String line) {
 list.append (line, null);
 }

 void disconnect() {
 if (timer != null) {
 timer.cancel();
 timer = null;
 }
 }

 boolean transfer (String submit) { // if null, just read
 try {
 HttpConnection connection = (HttpConnection)
Connector.open
 (host + "/?start="+count,
 submit != null ? Connector.READ_WRITE :
Connector.READ);

 Writer writer = null;

 if (submit != null) {
 connection.setRequestMethod (HttpConnection.POST);
 writer = new OutputStreamWriter
 (((StreamConnection)
connection).openOutputStream());
 writer.write ("nick="+nick + "\r\n");
 writer.write ("text="+submit+"\r\n");
 writer.close();
 }

 Reader reader = new InputStreamReader
 (((StreamConnection) connection).openInputStream());
 count = Integer.parseInt (readLine (reader));
 while (true) {
 String s = readLine (reader);
 if (s == null || s.length() == 0) break;
 addLine (s);
 }

 reader.close();
 connection.close();
 return true;
 }
 catch (Exception e) {
 addLine (e.toString());
 disconnect();
 return false;
 }
 }

 public void commandAction(Command c, Displayable d) {
 if (c == write) {
 display.setCurrent (text);
 }
 else {
 if (c == submit) {
 transfer (text.getString());
 text.setString ("");
 }

 184

 display.setCurrent (list);
 }
 }

 public void pauseApp() {
 }

 public void destroyApp (boolean unconditional) {
 disconnect();
 }
}

Listing 6.5 PdapChat.java—A PDAP Chat Client Using the HTTP Protocol to
Communicate with the Server

import java.io.*;
import java.awt.*;
import java.util.*;
import java.awt.event.*;
import javax.microedition.io.*;

import javax.microedition.midlet.*;

public class PdapChat extends MIDlet implements ActionListener,
Runnable {

 Frame frame = new Frame ("PdapChat");
 java.awt.List list = new java.awt.List();
 TextField text = new TextField();
 Button configButton = new Button ("Config");
 Button submitButton = new Button ("Submit");

 int count = -1;
 Timer timer;
 String host = "http://localhost:8080";
 String nick = "guest";

 class ConfigDialog extends Dialog implements ActionListener {
 TextField hostField = new TextField (host);
 TextField nickField = new TextField (nick);
 Button connectButton = new Button ("Connect");
 Button abortButton = new Button ("Abort");

 ConfigDialog() {
 super (frame, "Configuration", true);
 Panel labels = new Panel (new GridLayout (0, 1));
 Panel fields = new Panel (new GridLayout (0, 1));
 Panel buttons = new Panel();

 add("West", labels);
 add("Center", fields);
 add("South", buttons);

 labels.add(new Label ("host:"));
 labels.add(new Label ("nick:"));
 fields.add(hostField);
 fields.add(nickField);

 connectButton.addActionListener(this);

 185

 buttons.add(connectButton);
 abortButton.addActionListener(this);
 buttons.add(abortButton);
 pack();
 }
 public void actionPerformed (ActionEvent ev) {
 if (ev.getSource() == connectButton) {
 host = hostField.getText();
 nick = nickField.getText();
 connect();
 }
 setVisible (false);
 }
 }

 class RefreshTask extends TimerTask {
 public void run() {
 try {
 Toolkit.getDefaultToolkit()
 .getSystemEventQueue()
 .invokeAndWait (new Runnable() {
 public void run() {
 transfer (null);
 }
 }
);
 }
 catch (Exception e) {
 }
 }
 }

 static String readLine (Reader reader) throws IOException {
 StringBuffer buf = new StringBuffer();
 while (true) {
 int c = reader.read();
 if (c == -1) {
 if (buf.length() == 0) return null;
 break;
 }
 if (c == '\n') break;
 if (c != '\r') buf.append ((char) c);
 }
 return buf.toString();
 }

 public PdapChat() {
 frame.add("Center", list);
 Panel input = new Panel (new BorderLayout());
 frame.add("South", input);
 input.add("Center", text);
 Panel buttons = new Panel();
 input.add("South", buttons);
 buttons.add(submitButton);
 buttons.add(configButton);
 submitButton.addActionListener(this);
 configButton.addActionListener(this);

 frame.addWindowListener(new WindowAdapter() {
 public void windowClosing (WindowEvent e) {
 destroyApp (true);

 186

 notifyDestroyed();
 }
 });
 frame.pack();
 }

 void configure() {
 disconnect();
 new ConfigDialog().show();
 }

 void connect() {
 disconnect();
 if (transfer (null)) {
 timer = new Timer();
 timer.schedule (new RefreshTask(), 0, 4000);
 }
 }

 void disconnect() {
 if (timer != null) {
 timer.cancel();
 timer = null;
 }
 }

 /** implementation of runnable */

 public void run() {
 transfer (null);
 }
 boolean transfer (String submit) { // if null, just read
 try {
 HttpConnection connection = (HttpConnection)

Connector.open(host + "/?start="+count, submit !=
null? Connector.READ_WRITE : Connector.READ);

 Writer writer = null;
 if (submit != null) {
 connection.setRequestMethod (HttpConnection.POST);
 writer = new OutputStreamWriter

(((StreamConnection)connection).openOutputStream());
 writer.write ("nick="+nick + "\r\n");
 writer.write ("text="+submit+"\r\n");
 writer.close();
 }

 Reader reader = new InputStreamReader
 (((StreamConnection) connection).openInputStream());
 count = Integer.parseInt (readLine (reader));
 while (true) {
 String s = readLine (reader);
 if (s == null || s.length() == 0) break;
 addLine (s);
 }
 reader.close();
 connection.close();
 return true;
 }
 catch (Exception e) {
 addLine (e.toString());
 disconnect();

 187

 return false;
 }
 }

 public void addLine (String l) {
 list.add(l);
 }

 public void actionPerformed (ActionEvent event) {
 if (event.getSource() == configButton)

 configure();
 else {
 transfer (text.getText());
 text.setText ("");
 }
 }

 public void startApp() {
 frame.show();
 if (timer == null) configure();
 }

 public void destroyApp (boolean unconditional) {
 frame.setVisible (false);
 disconnect();
 }

 public void pauseApp() {
 }
}

MIDP 2.0 Additions to the javax.microedition.io Package
The Generic Connection Framework is extended by MIDP 2.0 with the following interfaces and classes:

• the HTTPSConnection interface supporting secure HTTP connections.
• the PushListener interface that needs to be used together with the new PushRegistry

class.
• the SecureConnection in order to establish SSL or TLS connections.
• the SecurityInfo interface.
• the ServerSocketConnection interface, which has already been described in this

chapter, is mandatory for MIDP 2.0.
• the UDPDatagramConnection interface that is derived from DatagramConnection.

The UDPDatagramConnection interface is derived from DatagramConnection and adds
two new methods to retrieve information about the local machine such as String
getLocalAddress() and int getLocalPort().

Handling Inbound Connections

An application that needs to respond to inbound connections can be registered with the Application
Management Systems (AMS) in two ways. Although it is possible to call the
registerConnection() method of the PushRegistry dynamically, listeners for inbound
connections can also be statically registered using a new entry in the JAD file:

 188

MIDlet-Push-<n>: <ConnectionUrl>, <MIDletClassName>, <AllowedSender>

The first entry MIDlet-Push-<n>is used for numbering the push MIDlets in a given suite. The
ConnectionUrl defines the protocol and parameters of inbound connections the AMS should listen
for. The MIDletClassName parameter contains the class name of the MIDlet that should be started
if an inbound connection on the given URL was detected. The AllowedSender parameter may be
used to restrict connections to the MIDlet. In case of IP connections the allowed senders may be
specified by an IP number including wildcards. A single * allows access from any client.

If the client is allowed to connect to the MIDlet, the AMS starts the MIDlet by calling the startApp()
method. After the MIDlet is started, it needs to handle the connection itself. For instance, in order to
register a MIDlet called MIDPHttpServer, the corresponding jad entry allowing all clients to
connect would look as follows:

MIDlet-Push-1: socket://:80, MIDPHttpServer, *

Another approach to register a MIDlet to inbound connection is to call the registerConnection()
method from the PushRegistry class dynamically. The previously mentioned descriptor file entries
are passed as String parameters to the method. In both cases the startApp() method is called if
an inbound connection is detected by the AMS.

Since the startApp() method has no parameter for passing the inbound connection, the MIDlet
needs to query the inbound connection. For querying the inbound connections currently waiting to be
handled, the PushRegistry.listConnctions() method is provided. This method takes one
boolean parameter as flag. True indicates that the String array returned by the method should
contain connections with input data that requires handling only. If false is passed to the method, all
connections registered to the given MIDletSuite are returned.

The following sample code snippet shows how to handle a previously registered inbound socket
connection:

public void startApp() {

 String availableConnections[];
 availableConnections = PushRegistry.listConnections(true);

 if (availableConnections.size() > 0) {

 }

 try {
 // since the socket connection is the only connection
 // we want to listen to we can simply pass the result String
 // containing the Connector.open() method.
 StreamConnection sconn = (StreamConnection)Connector,open();
 InputStream is = sconn.opeInputStream();
 // read input data here
 is.close();
 sconn.close();
 }
 catch (IOEXception ioe) {
 // handle a possible error during establishing the connection
 }

}

Note

 189

Please note, that not all generic connections will be appropriate for use as push application transport.
Even if a GCF protocol is supported on a particular device it is not required to be enabled as a valid
push mechanism.

The PushRegistry supports a listener model as well, which can be used by implementing the
PushListenerInterface in a subclass of MIDlet. In order to register a class implementing the
PushListener, the PushRegistry.setPushListener() method needs to be called, taking
the connection as first parameter, and the class implementing the PushListener interface as second
parameter. When the registered connection is established, the notifyConnection() method of the
PushListener interface is called. The parameter passed to notifyConnection() is a String
describing the incoming connection parameters.

Security

The new SecureConnection and HttpsConnection interfaces support the
getSecurityInfo() method returning a class implementing the SecurityInfo interface.

The SecurityInfo interface provides the following methods in order to get information about a
secure connection:

• String getChipherSuite()
• String getProtocolName()
• String getProtocolVersion()
• Certificate getServerCertificate()

Summary

In this chapter you have learned how to integrate network capabilities into your MIDlets. You
know the possible network protocols that might be supported in the CLDC profiles, especially the
HTTP protocol. You have also seen how to integrate these protocols using the generic connection
framework into applications such as the terminal and the chat client-server application.

 190

Chapter 7. PIM: Accessing the Personal Information
Manager
IN THIS CHAPTER

• General PIM API Design
• Addressbook API
• Calendar API
• ToDo API
• Contact Sample Application

The traditional main purpose of PDAs is to serve as Personal Digital Assistants, providing access
to a digital address book and calendar, as shown in Figure 7.1. The Personal Digital Assistant
Profile (PDAP) contains a corresponding API, allowing you to access the device-specific address
book, calendar database, and to-do lists from Java applications. This chapter discusses the
Personal Information Manager (PIM) API that is available in PDAP.

Figure 7.1. The SONY CLIE Emulator showing the built-in address book containing
two sample contacts.

For J2SE and PersonalJava the so called JavaPhone API is available (see
http://java.sun.com/products/javaphone/). Because the PDAP implementation intends to have a
very small footprint, which is necessary to fit in the small RAM of CLDC devices, adopting the
JavaPhone API completely or just providing a JavaPhone subset would be inappropriate. In order
to accomplish the request to minimize the PIM footprint, PDAP defines an optional PIM API in
the package javax.microedition.pim.

In the following section, we will begin with the description of the general structure of the PIM
API, and then go into the details of accessing the address book, calendar, and to-do lists. Finally,
we'll show you how to create a demonstration MIDlet that is capable of accessing the address
book of the device.

http://java.sun.com/products/javaphone/

 191

General PIM API Design

The basic idea of the API is to store entries such as contacts, events, and to-do elements in an
appropriate database. In order to achieve this, the PIM API contains an interface PIMList
providing methods to add, delete, and enumerate all the entries contained in the list. The concrete
implementations of PIMList contained in the PIM API are ContactLists to store contacts,
EventLists to store events, and ToDoLists to store to-do items. The PIM class provides static
methods such as openContactList() to access the different list types.

PIMLists contain objects implementing the PIMElement interface. PIMElement encapsulates
the common properties of the different PIM elements such as Contacts, Events, and ToDos.
The interface provides methods for common functionality such as category access and vFormat
import and export, as well as access to the fields of an entry. Access to some specialized fields is
provided by the derived interfaces Contact, Event, and ToDo. For illegal PIM operations, a
PIMException will be thrown. In the next sections, you will learn the details of the specialized
address book, event, and to-do functionality.

In contrast to vCard, vCalendar, and the JavaPhone API, the PDAP PIM API does not support
multiple fields with the same name and type combination. Although this restriction causes a slight
loss of flexibility, it makes the API much less complex than the JavaPhone API. Fields with a
single ID and multiple types are described in more detail in the following section.

Addressbook API

The functionality of the address book is achieved using the ContactList and Contact classes
only. Contacts in the PIM API support a subset of the fields of the vCard format version 3.0 specified
in IETF RFC 2426. The following example shows a vCard for John Smith in ASCII format:

BEGIN:VCARD
FN:John Smith
N:Smith;John;;;MD
TEL;TYPE=WORK:555-7352
TEL;TYPE=HOME:555-4321
END:VCARD

Note

More information about IETF RFC 2426 can be found at

http://www.nic.mil/ftp/rfc/rfc2426.txt

Contacts and Their Fields

As mentioned earlier, the interface Contact extending the PIMElement interface represents a single
contact. A contact consists of several fields such as name, phone number, or birthday. These fields are
of different data types, depending on their purpose. For example, the name and address information is
stored in strings, whereas the birthday is stored in a date field. In the following subsections we will
describe the different field types and fields available in the PIM API.

TE
AM
FL
Y

Team-Fly®

http://www.nic.mil/ftp/rfc/rfc2426.txt

 192

The individual fields of a contact are addressed by field IDs. The field IDs are integer values which are
defined in the Contact interface. Examples for fields IDs are Contact.FORMATTED_NAME or
Contact.PUBLIC_KEY.

String-Based Data

String data is added to a Contact using the setString() method, which takes two parameters.
The first parameter is the field ID, and the second takes the string to be stored. For reading string data
fields, the method getString() is provided. This method takes the field ID to be read as a
parameter and returns the corresponding value. If the field has not been set, null is returned.

A contact containing one field, the formatted name, is created as follows:

ContactList myContacts = PIM.openContactList (PIM.READ_WRITE);
Contact myContact = myContacts.createContact();
myContact.setString(Contact.FORMATTED_NAME, "John, Smith");

Please note that a try-catch block for the PIMException is missing in the code above. We will omit
the mandatory try-catch block from all following code snippets.

A special field is the UID field. It contains an identifier that is unique for each contact. The unique
identifier is generated automatically and cannot be modified. It can be used to quickly retrieve a
particular contact.

Table 7.1 shows all field IDs that can be used to add string data to a Contact.

Table 7.1. Field ID Constants for String-based Data Defined in the Contact Interface
Field Name Description
ORG The organization name
FORMATTED_NAME The formatted name
NAME_FAMILY The family name
NAME_GIVEN The given name
NAME_OTHER Undefined information
NAME_PREFIX The name prefix
NAME_SUFFIX The name suffix
NICKNAME A nickname
NOTE A note
PUBLIC_KEY The public key, such as a PGP public key
TITLE The title
UID The contact's UID
URL A URL associated with the contact

Date-Based Data

In addition to text fields, the PIM API supports fields for storing dates, such as a person's birthday.
Similar to the setString() and getString() methods, the Contact class supports the
setDate() and getDate() methods to store and retrieve dates in a Contact. The set method
takes a field ID such as BIRTHDAY and a given Date object as parameters. The date can be retrieved
by giving the corresponding field ID to the getDate() method.

Another field containing a date is REVISION. This entry stores the date when the contact was last
modified. Setting this value is not recommended because it is automatically done by the
implementation. BIRTHDAY and REVISION are the only date fields supported by PDAP.

 193

The birthday of a contact can be set as shown in the following line of code:

myContact.setDate(Contact.BIRTHDAY, new Date());

Binary Data

Another simple field type is the byte array that can be added to a contact, for instance to store a photo
of a person in a Contact object. Analogous to the string and date fields, methods for setting and
retrieving the contents of that field are provided. The only supported field ID for a byte array type is the
predefined PHOTO constant to store a person's photograph.

For setting a byte array, use the setBinary() method, which takes a field ID and the byte array to
be stored in the contact. For retrieving the byte array, use getBinary(), which takes a field ID as
the only parameter.

Multivalue Data

Multivalue fields are used to store multiple instances of the same field. For instance, a field of a
Contact might contain different types (locations) of phone numbers, such as home or work phone
numbers. All phone numbers are stored in the different subentries of the same TEL entry. Typed data is
added to a contact using the set setTypedString() method that takes three parameters: the field
ID, the type ID, and the value to be stored. Revision is a read-only field that is set by the
implementation automatically.

Table 7.2 shows the fields that can take multiple values and the corresponding predefined type IDs.

Table 7.2. Multivalue Contact Fields and the Corresponding Type IDs
Field IDs Type IDs
EMAIL, FAX, TEL TYPE_ASSISTANT, TYPE_AUTO,

TYPE_HOME, TYPE_MOBILE, TYPE_OTHER,
TYPE_PAGER, TYPE_WORK

ADDR_COUNTRY, ADDR_EXTRA,
ADDR_LOCALITY, ADDR_POBOX,
ADDR_POSTALCODE, ADDR_REGION,
ADDR_STREET

TYPE_HOME, TYPE_OTHER, TYPE_WORK

The following code snippet shows how two phone numbers, the home and work phone number, are
assigned to a contact:

myContact.setTypedString(Contact.TEL, Contact.TYPE_WORK, "555-1177");
myContact.setTypedString(Contact.TEL, Contact.TYPE_HOME, "555-7711");

Device-Specific Meta Information

Because the currently available PDA devices have different native PIM implementations, the
PIMList interface provides query methods for retrieving information about all supported fields and
the supported types for a given field ID.

For obtaining this information, the getSupportedFields(), isFieldSupported() and
getSupportedTypes() methods are provided. The getSupportedFields() method returns
an integer array containing all field IDs that are supported by the device. The method
IsSupportedField() returns a boolean determining whether the given field ID is supported. The
getSupportedTypes() method takes a field ID as a parameter and returns an int array
containing all possible subtypes for this field. For example, you can query the possible type IDs for the
Contact.TEL field of a given ContactList using the following code snippet:

 194

int [] possibleSubTypes =
 myContactList.getSupportedTypes(Contact.TEL);

On a device that is capable of storing only a home and a work phone number, the resulting int array
contains the type IDs Contact.TYPE_HOME and Contact.TYPE_WORK only.

Extended Fields

A Contact may also provide support for so-called "extended" fields. Extended fields are supported to
store device-dependent fields, where no field ID is predefined.

The IDs for extended fields are returned by the getSupportedFields() method of the PIMList
interface. They are returned together with the standard fields in the same array. The method
isExtendedField() can be used to determine whether a field is an extended field with a non-
standard ID.

When working with extended fields, two additional methods of the PIMList interface are of special
interest. The method getFieldLabel() returns a human-readable label for a given field ID. This
method allows an application to display a label for an extended field, although the meaning of the ID is
not known to the application. The method PIMElement.getDataType() returns one of the
PIMElement constants STRING, DATE, INT, BINARY, or TYPED_STRING. This method allows
the application to figure out the correct access methods for an extended field.

Categories

Contacts can be assigned to one or more categories using the addToCategory() method. The
method takes the name of the category as String parameter. The maximum number of categories a
contact may be assigned to can be queried using the maxCategories() method. A return value of -
1 means that the number of categories is not limited. A Contact can be removed from a category
using removeFromCategory().

Please note that devices may limit the category names to those defined in the corresponding PIMList.
If a Contact is added to an invalid category an PIMListException is thrown. PIMList
provides the following methods to manage categories available: addCategory(),
deleteCategory(), and getCategories().

ContactLists: Creating, Updating, and Deleting Contacts

Now that you are familiar with the fields of the Contact interface, it is time to take a look at the
ContactList interface, which encapsulates access to the persistent contact database.

The ContactList is derived from the PIMList interface, which offers the base functionality for
handling collections of PIM elements. ContactList provides a createContact() method for
creating new contacts.

When creating new contacts or modifying existing contacts, the commit() method of the Contact
interface must be called in order to make the changes persistent. Without calling commit, a new contact
will not be stored in the database.

The PIMList class supports a deleteElement() method, which takes a PIMElement as a
parameter, can be used to delete the specified element from the database.

The PIMList class also provides two methods for retrieving an enumeration: an elements()
method that returns all elements of the database, and a second elements() method that gets all

 195

elements matching the element passed as a parameter to this method. Finally, a close() method is
provided.

The functionality to get access to the contact list(s) stored on the device is provided by the PIM class.
The PIM class provides two static openContactList() methods and one method for retrieving the
names of the non-default contact databases. The first openContactList() method takes the mode
in which the contact database should be opened, either PIM.READ_ONLY or PIM.READ_WRITE.
This method is used to open the default contact database. The second openContactList() method
takes two parameters: the mode and the contact database name. In order to get an overview of all
possible contact database names, the listContactLists() method is supported; it returns a string
array containing the database names. The first entry in the array contains the name of the default
database.

Now you are able to create a new Contact associated with the default ContactList and fill it with
personal information, as shown in the code snippet below:

ContactList myContacts = PIM.openContactList (PIM.READ_WRITE);
Contact myContact = list.createContact;
myContact.setString(Contact.FORMATTED_NAME, "John Smith");
myContact.setString(Contact.TEL, TYPE_WORK, "555-1177");
myContact.setString(Contact.TEL, TYPE_HOME, "555-7711");

Once the contact is created, it can be added to the default contact database:

myContact.commit();
myContacts.close();

The second operation that is of importance when using a contact database is to update an already
existing element. This might be necessary, for example, if the phone number of a given contact has
changed. In order to update an element of the ContactList, you need to get the instance of the
Contact first. The ContactList provides an element() method for searching existing
Contacts, taking a Contact template as parameter. The template is filled with the information the
search is based on. The element() method returns an enumeration containing all Contacts
matching the template. A partially filled Contact object is used as template.

In the following code snippet, you can see how to retrieve a given contact, update a phone number, and
then write it back to the database. There is no check whether the enumeration contains more than one
elements. In a real application, a corresponding test would be appropriate:

ContactList myContacts = PIM.openContactList (PIM.READ_WRITE);
Contact matchContact = myContacts.create();
matchContact.setString(Contact.FORMATTED_NAME, "John Smith");
Enumeration enum = myContacts.elements(matchContact);
Contact myContact = (Contact)enum.nextElement();
myContact.setString(Contact.TEL, TYPE_HOME, "555-1177");
myContact.commit();
myContacts.close();

In order to make sure that only the desired contact is returned, the UID field could be used in the
template instead of the formatted name. Another important operation provided by the ContactList
is the ability to delete a previously added Contact from the database. This can be performed by
passing the element to be deleted to the removeElement() method. So, you have to read the
particular contact as you did when updating a contact. You can use the same code snippet used for
updating a contact, except that you don't call setString() to modify a phone number; instead, you
pass the element stored in myContact directly to the removeContact() method after you read it
from the enumerator. This procedure is shown in the following code snippet:

 196

ContactList myContacts = PIM.openContactList (PIM.READ_WRITE);
Contact matchContact = myContacts.create();
matchContact.setString(Contact.FORMATTED_NAME, "John Smith ");

Enumeration enum = myContacts.elements(matchContact);
Contact myContact =(Contact)enum.nextElement();
myContacts.removeContact(myContact);

myContact.commit();
myContacts.close();

Calendar API
Similar to the addressbook API, the calendar API supports most of the fields specified by the
vCalendar in IETF RFC 2445. The calendar API supports two classes analogous to those in the
addressbook API.

The following code snippet shows a vCalendar entry:

BEGIN:VCALENDAR
VERSION:2.0
PRODID:-//hacksw/handcal//NONSGML v1.0//EN
BEGIN:VEVENT
DTSTART:19970714T170000Z
DTEND:19970715T035959Z
SUMMARY:Bastille Day Party
END:VEVENT
END:VCALENDAR

As you can see, the format is very similar to the vCard format used in the addressbook API.

Note

More information about IETF RFC 2445 can be found at

http://www.nic.mil/ftp/rfc/rfc2445.txt

The calendar API supports two interfaces analogous to those in the addressbook API (one interface
extending the PIMElement interface and one interface derived from the PIMList interface,
providing access to an event database).

Here the corresponding interfaces are the Event interface for a particular element and the
EventList interface, providing the necessary methods to access an event database.

Contacts and Events support different field IDs. The calendar API supports two interfaces
analogous to those in the addressbook API (one interface extending the PIMElement interface and
one interface derived from the PIMList interface, providing access to an event database).

Here the corresponding interfaces are the Event interface for a particular element and the
EventList interface, providing the necessary methods to access an event database.

Repetition of Events

http://www.nic.mil/ftp/rfc/rfc2445.txt

 197

The EventRepeat class is an encapsulation of the RRULE field in a vCalendar element. It is used to
determine how often an event occurs. The repetition details of the event are set using the setInt()
method, taking a field ID and an int value as parameter. The valid parameter combinations are shown
in Table 7.3. Additionally, an end date for the repetition can be set using the setDate() method,
taking the END field constant and a valid date as parameters.

Table 7.3. Field ID Constants and valid values for the setInt() method of the
EventRepeat class

Field IDs Valid Values
COUNT any positive int
FREQUENCY DAILY, WEEKLY, MONTHLY, YEARLY
INTERVAL any positive int
MONTH_IN_YEAR JANUARY, FEBRUARY, MARCH, APRIL, MAY, JUNE, JULY, AUGUST,

SEPTEMBER, OCTOBER, NOVEMBER, DECEMBER
DAY_IN_WEEK SUNDAY, MONDAY, TUESDAY, WEDNESDAY, THURSDAY, FRIDAY, SATURDAY
WEEK_IN_MONTH FIRST, SECOND, THIRD, FOURTH, FIFTH, LAST, SECONDLAST,

THIRDLAST, FOURTHLAST, FIFTHLAST
DAY_IN_MONTH 1-31
DAY_IN_YEAR 1-366

The following snippet shows how a repeat pattern is added to an event:

EventList myEvents = PIM.openEventList(PIM.READ_WRITE);
Event myEvent = myEvents.createEvent();

Date startDate = new Date();
myEvent.setString(Event.SUMMARY, "Weekly developer meeting.");
myEvent.setDate(Event.START, startDate);
myEvent.setDate(Event.ALARM, new Date(startDate.getTime() - 60000));
EventRepeat repeat = new EventRepeat();
repeat.setInt(EventRepeat. DAY_IN_WEEK, EventRepeat.MONDAY);

myEvent.setRepeat(repeat);

myEvent.commit();
myEvents.close();

In the following section, we will describe the list related calls used in this code snippet in more detail.

EventLists for Handling Events

For access to the event database, the PIM class provides openEventList() and
listEventLists() methods analogous to the methods available for obtaining contact lists. The
behavior of those methods is as described in the previous section about contact lists, except that the
openEventList() methods both return instances of EventList. Like ContactList,
EventList extends the general PIMList interface. In addition to the PIMList functionality, it
provides a new elements() method, returning an enumeration containing all Event elements ranging
from a start date to a specified end date.

ToDo API

 198

The to-do API supports a subset of the vToDo fields that are defined in the vCalendar RFC 2445
specification. Analogous to the addressbook and calendar API, the to-do API contains specializations
of the PIMElement and PIMList interfaces, namely the ToDo and ToDoList interfaces.

Field IDs supported in the ToDo interface are COMPLETED, DUE, NOTE, PRIORITY, SUMMARY, and
UID. The following code snippet illustrates the usage of the ToDo API:

TodoList myTodoList = PIM.openTodoList(PIM.READ_WRITE);

Todo myTodo = myTodoList.createTodo();

myTodo.set(Todo.SUMMARY, "Buy a book covering MIDP and PDAP");
myTodo.set(Todo.DUE, new Date());
myTodo.set(Todo.NOTE, "Perhaps Sams offers a good one."
 + "Take a look on their website first.");
myTodo.set(Todo.PRIORITY, 1);

myTodo.commut();
myTodoList.close();

Like the EventList, the ToDoList supports an elements() method that returns an enumeration
containing all ToDo elements ranging from a start date to an end date. Repeat patterns are not
supported for ToDos.

Contact Sample Application
In order to become familiar with the PDAP PIM API, you will now build a simple PIM sample
application. Although the sample will focus on the address book part of the API, it will be designed in a
structured way that allows you to reuse many parts as building blocks for your own, more powerful
PIM applications.

For the PIM sample application, you will first design a simple dialog that allows you to edit a single
contact, including fields with subtypes. The second building block of the application is the main
window, showing the list of contacts stored in the default ContactList of the device.

An Edit Dialog for Contacts

For the regular contact fields, it is obvious how to present them to the user in a graphical user interface.
You just put them in two grid layouts contained in the right and center areas of a border layout; the left
grid shows the labels and the center one the input fields, as in many other examples. However, for the
fields supporting multityped values such as TEL or FAX, the task becomes a bit more complex.

One option to make all subtypes accessible in a convenient way is to create separate panels for each
subtype such as WORK, HOME, and so on using a CardLayout. A Choice element can then be used
to switch between the panels.

This approach is shown in Listing 7.1. Figure 7.2 shows a screenshot of the contact dialog. The panels
are represented by the inner class FieldPane. FieldPane contains an integer variable type
representing the subtype of all contained fields. The method addField() adds a field with the given
label and ID. In order to be able to synchronize the user interface with a concrete Contact instance,
the FieldInfo helper class is used to store the link between the TextField in the user interface
and the ID and type of the corresponding field. All FieldInfo objects are stored in the vector
fieldList. When the dialog is filled from a contact in the edit method, all field info objects are

 199

iterated, and the TextFields are filled according to the corresponding content of the contact. If the
user confirms the dialog, the FieldInfo objects are iterated again, and the contents of the
TextFields, possibly altered by the user, are transferred back to the contact. Note that the transfer to
a contact object always needs to be committed to the database in order to become persistent.

Figure 7.2. The ContactDialog showing a sample contact.

The addField() method of the FieldPane inner class is not accessed in the ContactDialog
directly, but ContactDialog has its own addField() method. Depending on the given type
parameter, the STRING fields are added directly to the main FieldPane, whereas fields with
MULTIPLE subtypes are distributed to all corresponding panels. For this purpose, the subtypes
supported by the platform are queried using the getSupportedTypes() method. Then, for each
type, addSub() is called. In addSub(), the addField() method of the corresponding
FieldPane is called. Additional panels and choice entries are created as needed.

Note that the given add method supports string and multitype fields only, but no date or binary fields.
However, it should not be a problem to support those types by adding corresponding constants and user
interface elements.

Listing 7.1 ContactDialog.java—A Dialog for a Single Contact

import java.awt.*;
import java.awt.event.*;
import javax.microedition.pim.*;
import java.util.Hashtable;
import java.util.Vector;

public class ContactDialog extends Dialog
 implements ItemListener, ActionListener {

 Hashtable cards = new Hashtable();
 Contact contact;
 ContactList contactList;
 Panel cardPane = new Panel(new CardLayout());
 Choice typeChoice = new Choice();
 Button okButton = new Button("ok");
 Button cancelButton = new Button("cancel");

 200

 boolean result = false;
 Vector fieldList = new Vector();

 class FieldInfo {
 int id;
 int type;
 TextField field;
 }

 class FieldPane extends Panel {
 Panel labels = new Panel(new GridLayout(0, 1));
 Panel fields = new Panel(new GridLayout(0, 1));
 int type;

 FieldPane(int type) {
 super(new BorderLayout());
 this.type = type;
 add(labels, BorderLayout.WEST);
 add(fields, BorderLayout.CENTER);
 }

 void addField(int id, int type) {
 FieldInfo info = new FieldInfo();
 info.id = id;
 info.field = new TextField(30);
 info.type = type;
 labels.add(new Label(contactList.getFieldLabel(id)));
 fields.add(info.field);
 fieldList.addElement(info);
 }
 }

 public void actionPerformed(ActionEvent ev) {
 result = ev.getSource() == okButton;
 hide();
 }

 void addSub(int id, String type, int typeId) {
 FieldPane fieldPane = (FieldPane) cards.get(type);
 if (fieldPane == null) {
 fieldPane = new FieldPane(typeId);
 typeChoice.add(type);
 cards.put(type, fieldPane);
 Panel compact = new Panel(new BorderLayout());
 compact.add(fieldPane, BorderLayout.NORTH);
 ScrollPane sp = new ScrollPane();
 sp.add(compact);
 cardPane.add(sp, type);
 }
 fieldPane.addField(id, typeId);
 }

 void addField(int id) {
 if (id == Contact.UID || id == Contact.REVISION)
 return;
 int dataType = contact.getDataType(id);
 if (dataType == PIMElement.STRING)
 addSub(id, "Main", -1);
 else if (dataType == PIMElement.STRING_TYPED) {
 int[] types = contactList.getSupportedTypes(id);
 for (int i = 0; i < types.length; i++) {

 201

 switch (types[i]) {
 case Contact.TYPE_HOME :
 addSub(id, "Home", types[i]);
 break;
 case Contact.TYPE_WORK :
 addSub(id, "Work", types[i]);
 break;
 // add other types here
 }
 }
 }
 // other data types are ignored
 }

 public void itemStateChanged(ItemEvent e) {
 CardLayout cl = (CardLayout) (cardPane.getLayout());
 cl.show(cardPane, (String) e.getItem());
 }

 public ContactDialog(Frame frame, ContactList contactList) {
 super(frame, "Edit Contact", true);
 this.contactList = contactList;
 contact = contactList.createContact();
 add(typeChoice, BorderLayout.NORTH);
 add(cardPane, BorderLayout.CENTER);
 typeChoice.addItemListener(this);
 int[] ids = contactList.getSupportedFields();
 for (int i = 0; i < ids.length; i++)
 addField(ids[i]);
 Panel buttonPane = new Panel();
 buttonPane.add(okButton);
 buttonPane.add(cancelButton);
 okButton.addActionListener(this);
 cancelButton.addActionListener(this);
 add(buttonPane, BorderLayout.SOUTH);
 addWindowListener(new WindowAdapter() {
 public void windowClosing(WindowEvent ev) {
 result = false;
 hide();
 }
 });
 pack();
 }

 public boolean edit(Contact contact, String title) {
 setTitle(title);
 this.contact = contact;
 result = false;
 for (int i = 0; i < fieldList.size(); i++) {
 FieldInfo info = (FieldInfo) fieldList.elementAt(i);
 String text =
 contact.getDataType(info.id) == PIMElement.STRING
 ? contact.getString(info.id)
 : contact.getTypedString(info.id, info.type);
 info.field.setText(text == null ? "" : text);
 }
 show();
 if (result) {
 for (int i = 0; i < fieldList.size(); i++) {
 FieldInfo info = (FieldInfo) fieldList.elementAt(i);
 String text = info.field.getText();

TE
AM
FL
Y

Team-Fly®

 202

 if (text.equals(""))
 text = null;
 if (contact.getDataType(info.id) == PIMElement.STRING)
 contact.setString(info.id, text);
 else
 contact.setTypedString(info.id, info.type, text);
 info.field.setText(text == null ? "" : text);
 }
 contact.commit();
 }
 return result;
 }
}

The PimDemo MIDlet

Having implemented the dialog for editing a single contact, the main application is relatively simple.
You just need to display a list of all entries contained in the address book, obtained from the
corresponding ContactList. Listing 7.2 shows a corresponding sample application. Figure 7.3
shows the PimDemo MIDlet.

Figure 7.3. The PIMDemo application showing a list of all contacts added to the contact
database.

Because the displayed names of the entries might not be unique, it makes sense to store the UIDs in a
separate vector. Of course, it would be possible to keep all the Contact objects in the vector directly,
but this would demand a lot of heap memory, which might not be available on the PDA. The stored
UIDs are used in the getContact() method, where a given UID is translated back to a Contact
object using the filtered contact enumeration.

The application displays buttons to add, edit, or remove an entry. When the add or edit button is
pressed, a ContactDialog is shown, and the user can edit the content of the fields displayed. When
the program control returns from the dialog, and the dialog was not cancelled, the changes are made
persistent by calling the addElement() or updateElement() method of the ContactList.

Listing 7.2 FieldDialog.java—A Dialog, Based on the FieldDescription Class, for
Editing Single Item Fields

import java.awt.*;
import java.awt.event.*;
import javax.microedition.midlet.*;
import javax.microedition.pim.*;
import java.util.*;

public class PimDemo extends MIDlet implements ActionListener {

 203

 ContactList contactList = PIM.openContactList(PIM.READ_WRITE);
 Frame frame = new Frame("PimDemo");
 ContactDialog contactDialog = new ContactDialog(frame,
contactList);
 java.awt.List list = new java.awt.List();
 Vector uids = new Vector();
 Button editButton = new Button("edit");
 Button addButton = new Button("add");
 Button deleteButton = new Button("delete");
 Button exitButton = new Button("exit");

 public PimDemo() {
 for (Enumeration e = contactList.elements();
e.hasMoreElements();) {
 Contact c = (Contact) e.nextElement();
 uids.addElement(c.getString(Contact.UID));
 list.add(getLabel(c));
 }
 Panel buttonPane = new Panel();
 buttonPane.add(editButton);
 buttonPane.add(addButton);
 buttonPane.add(deleteButton);
 buttonPane.add(exitButton);
 editButton.addActionListener(this);
 addButton.addActionListener(this);
 deleteButton.addActionListener(this);
 exitButton.addActionListener(this);
 frame.add(buttonPane, BorderLayout.SOUTH);
 frame.add(list, BorderLayout.CENTER);
 frame.addWindowListener(new WindowAdapter() {
 public void windowClosing(WindowEvent ev) {
 destroyApp(true);
 notifyDestroyed();
 }
 });
 frame.pack();
 }

 Contact getContact(String uid) {
 Contact template = contactList.createContact();
 template.setString(Contact.UID, uid);
 Enumeration e = contactList.elements(template);
 return (Contact) e.nextElement();
 }

 String getLabel(Contact c) {
 String label = c.getString(Contact.FORMATTED_NAME);
 if (label == null)
 label =
 "" + c.getString(Contact.NAME_FAMILY) + ", " +
 getString(Contact.NAME_GIVEN);
 return label;
 }

 public void actionPerformed(ActionEvent ev) {
 System.out.println("ev: " + ev);
 if (ev.getSource() == addButton) {
 Contact c = contactList.createContact();
 if (contactDialog.edit(c, "New Contact")) {
 list.add(getLabel(c));
 uids.addElement(c.getString(Contact.UID));

 204

 }
 }
 else if (ev.getSource() == exitButton) {
 destroyApp(true); // clean up
 notifyDestroyed();
 }
 else if (ev.getSource() == editButton || ev.getSource() ==
 deleteButton) {
 int index = list.getSelectedIndex();
 if (index == -1)
 return;
 Contact c = getContact((String) uids.elementAt(index));
 if (ev.getSource() == deleteButton) {
 contactList.deleteElement(c);
 list.remove(index);
 uids.removeElementAt(index);
 }
 else if (contactDialog.edit(c, getLabel(c))) {
 list.replaceItem(getLabel(c), index);
 }
 }
 }

 public void pauseApp() {
 }

 public void startApp() {
 frame.show();
 }

 public void destroyApp(boolean uncond) {
 contactList.close();
 }
}

What Is Missing?

The PimDemo sample application shows basic access to the PIM API, but for a real PIM application, a
lot of functionality is missing. For example, categories are not supported, and the dialog shows only a
fraction of the fields available. Event and to-do entries are not supported at all. Field types other than
string and multityped fields are not supported. The contact list is not sorted, and a search function is
missing. The delete button lacks a confirm dialog.

Use the example as a starting point for your own ideas and extensions, and feel free to reuse the code in
your own applications.

Summary

In this chapter, you learned about the general design of the PIM API that is included in PDAP.
You know about the different kinds of PIMLists and PIMElements. Moreover, you are
familiar with the concept of the vCard and the vCalendar, you are able to create contact cards and
calendar entries and you know how to store them in a list, and how to use the PIM API to create a
PDAP application using this specific API.

 205

Chapter 8. Size Does Matter: Optimizing J2ME
Applications
IN THIS CHAPTER

• Reducing Class File Sizes
• Freeing Unused Variables and Resources
• Loop Condition Checking
• Avoiding Recursion
• Using Arrays Instead of Vectors
• Using Record Stores Instead of Heap Memory
• Distributing Functionality over Several Small MIDlets
• Fragmentation Problems
• User Interface Issues

Because of several computing and memory restrictions of mobile devices, you need to pay
particular attention to the size and performance of J2ME applications.

The most important hint is probably to keep everything as simple as possible. If an application
will be ported from the desktop, you may want to consider a re-implementation instead of trying
to downsize the existing program until it fits into J2ME.

Although most optimization possibilities depend on the individual application, in this chapter we'll
show you some general approaches and hints for saving resources. Unfortunately, there is often a
tradeoff between execution speed and memory consumption. Thus, not all of our hints will make
sense in all application scenarios.

Usually, memory in J2ME devices is divided into three different categories: program storage
space, persistent memory, and heap memory. The heap memory is used at runtime only and holds
all volatile objects. Depending on the device, there may be different limits on each of the types,
making trade-off decisions even more complicated.

Reducing Class File Sizes

When importing libraries, the fully qualified name—including the class and package name of each
imported function—is stored in the class file. Thus, limiting the number of imports may reduce the
size of a class file significantly. One large class will probably consume less memory than a set of
smaller classes, and the import overhead of additional convenience methods will often weigh more
than the code actually saved.

Freeing Unused Variables and Resources

The Java garbage collection mechanism usually frees unused objects automatically. "Unused"
from the point of view of the garbage collector means that the objects are not referenced from
somewhere else. If objects are no longer needed in a program, but are still referenced by a variable
or indirectly by another object, the garbage collector can't determine that the object can be
removed, and the corresponding memory is not reclaimed. Thus, if an object is allocated and then
no longer needed, but the variable holding the object is still in the valid scope, it may make sense

 206

to set the variable to null explicitly. For example, if a buffer is allocated at the beginning of a
method, but then no longer needed in the method, the garbage collector cannot reclaim the buffer
because the variable still points to the buffer. If the variable is explicitly set to null, the buffer is
no longer referenced and can be reclaimed by the garbage collection.

For J2ME, it is also very important to always dispose resources such as record stores or
connections when they are no longer needed. J2ME does not support finalization, which means
that system resources cannot be closed automatically during garbage collection. Thus, if the
reference to a system resource is removed without closing the resource, the resource will stay
allocated until system cleanup, when the program is terminated completely.

Loop Condition Checking
When you're trying to optimize execution speed, loops are the most important pieces of code to look at:
statements inside a loop are executed several times. Thus, even small optimizations can have a
significant effect.

A standard method to speed up loops is to move constant expressions out of the loop. For example, the
following simple for loop iterates all elements of the Vector vector:

for (int i = 0; i < vector.size(); i++) ...

In this line, the size() method of vector is called at each iteration. This repetition can be avoided
by storing the size in a local variable:

int size = vector.size();
for (i for (int i = 0; i < size; i++) ...

Please note that access to local variables is generally less expensive than access to instance or class
variables. Here, the size() method is called only once and stored in a local variable for fast access
inside the loop. If the direction the vector is iterated is not important, counting down may be a
reasonable alternative to introducing a new variable:

for (int i = vector.size()-1; i >= 0; i--) ...

The same technique can be applied to all expressions that are calculated inside the loop, but do not
change with the iterations.

Avoiding Recursion
Another common optimization technique that may speed up program execution and that definitely
saves memory is to transform recursions into iterations. You can usually do so if there is only one
simple recursion call. For example, the factorial of a number n is defined as n multiplied by the
factorial of (n-1). The corresponding recursive function is

public static void fact (int n) {
 return n == 1 ? 1 : n * fact (n – 1);
}

 207

The problem with recursion is that it consumes stack space: The return address and local variables are
stored on the program stack when a method is called. Also, the program state changes that correspond
to a method call might take more time than a simple loop.

Thus, for the function defined previously, the following iterative function may be more efficient:

public static void fact (int n) {
 int result = 1;
 while (n > 1) result *= n--;
 return result;
}

Obviously, the tradeoff is that the iterative constructs are often less readable than the recursive versions.

Using Arrays Instead of Vectors

Vectors are powerful and flexible containers for all kinds of objects. Their main advantage over
arrays is that their size grows dynamically as needed. The disadvantages are

• Many type casts may be needed because a Vector can hold any kind of objects.
• Vectors carry some overhead compared to a corresponding array. Actually, Vectors use

an array internally to store their data. Thus, using a Vector requires an additional indirection
step and an additional object when compared to using an array.

• The Vector access methods are synchronized, which also results in some performance
tradeoff. The fact that the size of an array cannot change may help to achieve thread safety
without synchronization.

For these reasons, in some cases it may make sense to use arrays instead of Vectors, especially if the
size of the structure does not change frequently. However, using an array instead of a Vector is not
free of costs. You can't change the size of an array. If an array must be extended, you have to allocate a
new array and copy its entire contents. Thus, for structures that frequently change size, sticking to a
Vector may be a better choice. An alternative that is also used internally by the Vector class is to
allow that the array is larger than necessary. The actual size is stored in a separate variable in that case.

Table 8.1 shows some Vector operations and the corresponding counterparts for arrays.

Table 8.1. Vector Operations and the Corresponding Counterparts for Array Access
Vector Array
(MyObject) v.elementAt
(i);

v[i];

v.addElement (o); v2 = new MyObject[v.length+1];
System.arraycopy (v, 0, v2, 0, v.length);
v2 [v.length] = o;
v = v2;

v.removeElementAt (i); v2 = new MyObject [v.length-1];
System.arraycopy (v, 0, v2, 0, i-1);
System.arraycopy (v, i+1, v2, i, v.length
- i);
v = v2;

v.insertElementAt (o, i); v2 = new MyObject [v.length+1];
System.arraycopy (v, 0, v2, 0, i-1);
System.arraycopy (v, i+1, v2, i+1,
v.length);

 208

v2[i] = o;
v = v2;

v.setElementAt (o, i); v[i] = obj;

Using Record Stores Instead of Heap Memory
An additional opportunity for saving heap space is to store application data in a record store instead of
consuming heap memory. The space available for persistent storage is often significantly larger than
the heap memory, so in situations where heap memory is really rare, it may make sense to shift some of
the memory consumption from the heap to persistent storage. However, accessing persistent storage
may be significantly slower than heap access. Thus, the price for having more heap may be a
significant performance tradeoff.

In order to demonstrate how to store objects in a record store instead of a Vector, let's create a sample
implementation of a StringVectorRms class that stores a list of Strings in a record store. In
contrast to an ordinary Vector, only a small amount of heap is consumed. The StringVectorRms
implementation provides the access methods listed in Table 8.2.

Table 8.2. Methods of the StringVectorRms Class
Method Description
StringVectorRms() Constructs an instance and creates the underlying

record store if needed.
addString (String text) Adds a String to the end of the Vector.
String stringAt (int index) Returns the String at the given index.
removeStringAt (int index) Removes the String at the given index and shifts the

entries starting at index+1 down in order to fill the
resulting gap.

SetStringAt (String
newText, int newIndex)

Replaces the String at position index with the new
String that is contained in the variable newText.

int size() Returns the number of Strings that are currently
stored.

Listing 8.1 shows the corresponding StringVectorRms implementation. It handles the
conversation between Strings and the byte arrays stored in the record store. It also maps the
Vector indices starting with 0 to RMS indices starting with 1 and maps all RmsExceptions to
RuntimeExceptions. Finally, it takes care of shifting the remaining elements to their new index if
an element is deleted.

Note

Especially for flash memory, write operations might take seconds. Thus, the removeStringAt()
method should be used with special caution; all remaining items are moved to their new index position,
requiring a lot of write operations.

Listing 8.1 StringVectorRMS.java—The StringVectorRMS Class for Storing
Strings in a Record Store During Application Runtime

import javax.microedition.rms.*;

 209

public class StringVectorRms {
 RecordStore store;
 String storeName;

 int size;

 static int openedStores = 0;

 public StringVectorRms() {
 storeName = "StringVectorRms"+(openedStores++);
 size = 0;
 try {
 store = RecordStore.openRecordStore (storeName, true);
 if (store.getNumRecords() > 0) {
 store.closeRecordStore();
 RecordStore.deleteRecordStore (storeName);
 store = RecordStore.openRecordStore (storeName, true);
 }
 }
 catch (Exception e) {
 throw new RuntimeException (e.toString());
 }
 }

 public void addString (String text) {
 try {
 byte[] data = text.getBytes();
 if (size < store.getNumRecords())
 store.setRecord (size+1, data, 0, data.length);
 else
 store.addRecord (data, 0, data.length);
 size++;
 }
 catch (Exception e) {
 throw new RuntimeException (e.toString());
 }
 }

 public String stringAt (int index) {
 try {
 return new String (store.getRecord (index+1));
 }
 catch (Exception e) {
 throw new RuntimeException (e.toString());
 }
 }

 public void removeStringAt (int index) {
 try {
 for (int i = index; i < size-1; i++) {
 byte[] data = store.getRecord (i+2);
 store.setRecord (i+1, data, 0, data.length);
 }
 size--;
 }
 catch (Exception e) {
 throw new RuntimeException (e.toString());

 210

 }
 }

 public void setStringAt (String newText, int newIndex) {
 try {
 byte[] newData = newText.getBytes();
 store.setRecord (newIndex+1, newData, 0, newData.length);
 }
 catch (Exception e) {
 throw new RuntimeException (e.toString());
 }
 }

 public int size() {
 return size;
 }

 public void close() {
 try {
 store.closeRecordStore();
 RecordStore.deleteRecordStore (storeName);
 }
 catch (Exception e) {
 throw new RuntimeException (e.toString());
 }
 }
}

Distributing Functionality over Several Small MIDlets

Another way to save memory is to distribute the functionality of an application to two or more
smaller applications in the same MIDlet suite. This approach seems especially feasible if the
application consists of mostly independent building blocks, which only share their persistent data.
An example could be any loosely connected client application, mainly operating on a local
database, but synchronizing data with a server from time to time. Instead of integrating the
synchronization in the main application, it can be moved to a separate application. Thus, the size
of the main application can probably be reduced significantly. Other parts of the application, such
as configuration dialogs, can probably be spun off as well.

Please note that you can split MIDlets only if all the applications are stored in the same suite;
otherwise, they can't share their persistent data.

Fragmentation Problems

A frequent problem for J2ME applications that are running on a KVM implementation without
compacting garbage collection is a memory paradox: Runtime.freeMemory() reports lots of
free memory, but a memory allocation following immediately fails and causes an
OutOfMemoryException.

 211

This issue was especially problematic with early versions of the SUN KVM. The SUN KVM now
provides a compacting garbage collector, so this problem seems less important. However, some
KVM implementations may not provide a compacting garbage collector for some reason, so you
should at least know about the characteristics of the problem.

The reason for the discrepancy between the return value of Runtime.freeMemory() and the
ability to allocate a certain block of memory is usually a fragmentation problem: Lots of memory
is available, but only in very small pieces. Runtime.freeMemory() reports the total amount of
memory available, but the largest continuous block of memory may be much smaller.

The garbage collection for J2SE is usually implemented using a compacting algorithm—all
memory blocks that can be reclaimed are compacted to a single large block of memory. In the
KVM, free memory blocks are reclaimed, but the compaction step may be omitted for
performance and complexity reasons. Thus, a fragmentation problem may occur when a lot of
small memory blocks are allocated. Even if most of the small blocks can be reclaimed during
garbage collection, the remaining blocks may fragment the free memory into several small pieces.

Although no general solution exists for the fragmentation problem, it may help to call the garbage
collector explicitly at some points in the program. Explicit calls of Runtime.gc() will force a
garbage collection before all the memory is used up. Thus, only part of the memory is fragmented.
New memory allocations are served from the small chunks before the remaining block is touched.
Please note that explicit calls to Runtime.gc() may help, but will not do so in all cases,
depending on the concrete memory consumption behavior of the application and on the total
amount of memory available on the device.

User Interface Issues

Compared to the desktop, the screen space available on MIDP devices or even PDAs is very
limited. This limited space requires a careful user interface design. Also, the situations in which
mobile devices are used are different. Whereas desktop applications are normally used for a longer
period of time, mobile applications are usually used for just a few seconds, but more frequently.
Thus, access to the desired information should be fast and navigation as simple as possible.

It should also be possible to leave the application at any point without loss of data. The reason is
that in mobile application scenarios, the user may want to switch or leave applications quickly—
for example, to answer an incoming call, when the subway reaches the destination station, or when
the airplane pilot asks passengers to switch off all electronic devices during landing. Thus, nested
dialogs should be avoided.

The built-in Palm Pilot applications provide very good examples for appropriate PDA user
interface design. Before designing your own applications, it makes sense to look at some other
typical PDA or MIDP applications, in order to get a feel for their design.

MIDP

The MIDP UI was designed for limited screens from the beginning, so it's difficult to give general
hints for improvements that don't depend on the individual application.

Because of the limited screen size, you'll often need to distribute the user interface to several
screens. Although commands provide one possibility to switch between forms, an important
alternative for selecting actions is to use a List in the IMPLICIT mode. Selecting a command
may require going to a submenu if the key mapping is not sufficient, but the list is always

TE
AM
FL
Y

Team-Fly®

 212

displayed directly on the main screen. Also, List Items can hold an Image, which is not
possible for commands.

PDAP

The PDAP user interface is based on the Abstract Windows Toolkit (AWT) that was originally
developed for the desktop. It provides more design freedom than the MIDP UI elements, but it
also loads more responsibility on the developer: Screen formats and sizes may differ significantly
from device to device, and the application should try to adopt to these characteristics. For example,
a configuration panel may fit completely on the screen of one device, but on another device a split
may be necessary. You could achieve such a division by putting both parts in panels and switching
between a CardLayout and a BorderLayout, depending on the actual screen size of the device.

The Choice class is a space-saving, comfortable widget. For PDA applications, it can often be
used as a space-saving alternative to a set of radio buttons or a number of other buttons. The
combination of a Choice with a Cardlayout may be used to simulate tab panes for PDAP.

Summary

In this chapter you learned about some possible program optimizations, allowing enhancement of
your J2ME applications with respect to execution speed and memory consumption. You now
know how to shift application data from the heap to record stores. You have seen some cases in
which it may make sense to split the functionality of an application into a few separate programs
in the same MIDlet or PDAlet suite. Finally, you saw some ways to optimize the user interface of
MIDP and PDAP applications.

The next chapter presents an advanced application example that illustrate integrated usage of the
MIDP and PDAP APIs, which have been described separately in the previous chapters. We will
show how to build an application for both MIDP and PDAP, sharing most of the classes, and
differing only in the implementation of the user interface.

 213

Chapter 9. Advanced Application: Blood Sugar Log
IN THIS CHAPTER

• Requirement Analysis
• Day Log
• Persistent Storage: The LogStorage Class
• The User Interface

This chapter demonstrates building integrated software that utilizes various CLDC APIs and
provides interfaces for both MIDP and PDAP while using identical classes for data handling.
Further, the application demonstrates the combination of the low-level and high-level MIDP API.

Here, we use blood sugar logging as an example application. People suffering from diabetes often
keep a daily log of their blood sugar level in order to keep track of their blood sugar values and
adjust the amount of insulin for their daily injection accordingly. They keep a record of their blood
sugar levels at several times every day. Our application can help those people by enabling them to
use their PDA or MID for keeping their daily log.

The purpose of this application is to log blood sugar values and graphically display the blood
sugar measurement values that have been taken during one day. However, the main purpose of
this application is to demonstrate the separation of the application logic from the user interface
and combine various CLDC APIs in a single program. Parts of the program can be reused for
building your own applications. For example, the graphics display could be used for building a
stock quotes display.

We will also utilize the example to show efficient binary search on record stores.

Requirement Analysis

The first step in building our application is to do a requirement analysis. What functionality will
the application perform? Here, we want to provide the following functionality to the user:

• Display the blood sugar values of the current day as a diagram, as shown in Figure 9.1.
The x-axis is the time, ranging from 6 to 22 o'clock. The y-axis is the blood sugar level in
mg/dl ranging from 40 to 280.

Figure 9.1. The running BloodSugarMidp application showing the logged
blood sugar values of the current day.

• Track hypoglycemic values that are lower than 80 mg/dl and hyperglycemic values that
are higher than 160 by drawing red lines on the chart at 80 and 160 mg/dl.

 214

• Enable the user to enter new values.
• Enable the user to delete erratic values.
• Enable the user to switch to previous logs.

In accordance with the design guidelines, persistent storage shall be performed in the background.

Day Log
In order to provide the desired functionality, we need two main data structures:

• A data structure for the current day, holding the date and the values and times for the day's
measurements

• A data structure storing all the days persistently

Thus, the day log data structure needs a field holding the date and a list of the time and value pairs. The
date is stored in the integer variable date, holding the day of the month in the lowest byte, the month in
the second-lowest byte, and the year in the two upper bytes. We are using this format instead of the
Date or Calendar object for simplified comparison, required for keeping the log entries in the right
order. To store the pairs, a local class Entry is used, consisting of two integer values: time and
value. Similar to the date field, we use an integer to represent the time, measured in minutes since
midnight. Again, the main reason is simpler comparison. We also use the DayLog class to define the
minimum and maximum value constants for the graphics display (see Figure 9.2).

Figure 9.2. The DayLog constants.

Our basic DayLog class looks as follows:

import java.io.*;
import java.util.*;

 215

public class DayLog {

 public static final int MIN_TIME = 6 * 60;
 public static final int MAX_TIME = 22 * 60;
 public static final int MIN_VALUE = 40;
 public static final int MAX_VALUE = 280;
 public static final int MIN_BORDER = 70;
 public static final int MAX_BORDER = 160;

 int date; // yymd per byte
 Vector entries = new Vector();

 class Entry {
 int time; // minutes since midnight
 int value;
 }
}

For creating new DayLogs, a constructor, initializing the structure with the given date, is required:

public DayLog (int date) {
 this.date = date;
 }

In order to fill the structure with data, a set method, adding a new entry, is needed. The following
method adds a new entry with respect to the correct time ordering of the entries. If an entry for the
given point of time already exists, it is overwritten:

public void set (int minutes, int value) {
 Entry entry = new Entry();
 entry.time = minutes;
 entry.value = value;

 for (int i = getCount()-1; i >= 0; i--) {
 int minutesI = getTime (i);

 if (minutes <= minutesI) {
 if (minutes == minutesI)
 entries.setElementAt (entry, i);
 else
 entries.insertElementAt (entry, i+1);
 return;
 }
 }

 entries.insertElementAt (entry, 0);
}

Storing information in the day log data structure does not make sense if the information cannot be read
back. Thus, we add access methods for the date, the number of entries, and the time and value of an
entry at a given index:

public int getDate() {
 return date;
}

public int getCount() {
 return entries.size();

 216

}

public int getTime (int index) {
 return ((Entry) entries.elementAt (index)).time;
}

public int getValue (int index) {
 return ((Entry) entries.elementAt (index)).value;
}

Finally, we add a method for deleting an entry. The method takes a point of time as input and removes
the best matching entry:

public void remove (int time) {

 int bestDelta = 24;
 int bestIndex = -1;

 for (int i = 0; i < entries.size(); i++) {
 int delta = Math.abs (time - getTime (i));
 if (delta < bestDelta) {
 bestDelta = delta;
 bestIndex = i;
 }
 }

 if (bestIndex != -1) {
 entries.removeElementAt (bestIndex);
 }
}

Serialization and Deserialization for Persistent Storage

Because the DayLog is intended to be stored persistently, conversion methods from and to byte arrays
are necessary. As described in Chapter 5, "Data Persistency," we use a ByteArrayInputStream
for deserialization and a ByteArrayOutputStream for serialization:

public DayLog (byte [] data) throws IOException {

 DataInputStream dis = new DataInputStream
 (new ByteArrayInputStream (data));

 date = dis.readInt();
 int count = dis.readInt();

 for (int i = 0; i < count; i++) {
 Entry entry = new Entry();
 entry.time = dis.readInt();
 entry.value = dis.readInt();
 entries.addElement (entry);
 }

 dis.close();
}

public byte [] getByteArray() throws IOException {
 ByteArrayOutputStream bos = new ByteArrayOutputStream();
 DataOutputStream dos = new DataOutputStream (bos);

 217

 dos.writeInt (date);
 int size = entries.size();
 dos.writeInt (size);
 for (int i = 0; i < size; i++) {
 dos.writeInt (getTime (i));
 dos.writeInt (getValue (i));
 }

 dos.close();

 return bos.toByteArray();
}

Helper Methods for the User Interface

Although the user interface itself is specific to the target profile, we can simplify the user interface code
by providing some helper methods in the DayLog class. Here, we add a set of methods for two
purposes:

• Converting the date of the DayLog to a readable string
• Scaling the entries to a given display size for simplified drawing

In order to convert the date to a String, we just extract the year, month, and day of month using the
corresponding shift and mask operations. Those parts are concatenated with hyphens:

public String getTitle() {
 return "" + (date >> 16)
 + "-" + ((date >> 8) & 0x0ff)
 + "-" + (date & 0x0ff);
}

In order to scale a value to the size of the screen, we would usually normalize it by subtracting the
MIN_VALUE and dividing by the difference of MAX_VALUE and MIN_VALUE, and then scale it up to
the space available by multiplying by the size available. Because we do not have floating-point
numbers in CLDC, we swap the normalization and scaling steps. Thus, we first multiply by the screen
size and then divide by the value range. By first multiplying and then dividing, we make sure that we
do not leave the scope of the integer data type:

public static int getY (int value, int size) {
 return - (value - MIN_VALUE) * size / (MAX_VALUE - MIN_VALUE);
}

In the getYPoints() method, we build an array of all values of the DayLog, scaled to the given
screen size, utilizing the getY() method:

public int [] getYPoints (int size) {

 int [] y = new int [getCount()];

 for (int i = 0; i < getCount(); i++) {
 y [i] = getY (getValue (i), size);
 }

 return y;
}

The getXPoints() method is analogous to getYPoints(), except that we do not define a
getX() helper method but perform the scaling step immediately in the loop:

 218

public int [] getXPoints (int size) {

 int [] x = new int [getCount()];

 for (int i = 0; i < getCount(); i++) {
 x [i] = (getTime (i)-MIN_TIME) * size / (MAX_TIME-MIN_TIME);
 }

 return x;
}

Finally we add a parseTime() method in order to convert a time string such as 12:00, consisting
of an hour and a minute value separated by a colon, to our internal time format. For MIDP, instead of
this conversion we could also use the time selector provided by DateField.

public static int parseTime (String time) {
 int cut = time.indexOf (':');
 if (cut==-1)
 return Integer.parseInt (time) * 60;

 return Integer.parseInt (time.substring (0, cut)) * 60
 + Integer.parseInt (time.substring (cut+1));
}

Persistent Storage: The LogStorage Class

Beneath the DayLog class for storing the log of a single day, we need another class to store all the
DayLogs persistently. The LogStorage class uses a record store for that purpose.

In the constructor, the record store with the name "BloodSugarLog" is opened and assigned to the
days object variable:

import javax.microedition.rms.*;
import java.util.*;
import java.io.*;
import java.util.*;

public class LogStorage {

 RecordStore days;
 public LogStorage() throws RecordStoreException {
 days = RecordStore.openRecordStore ("BloodSugarLog", true);
 }
}

The most important functionality of the persistent storage is to provide efficient access to the day log of
a specific date. If the logs are stored and put in order by time in the record store, we do not need to
iterate all records in order to find a specific date. Instead, we can take advantage of the ordering and
perform a so-called binary search. We just pick the middle element and compare it to our target date.
Now we know in which half we need to continue the search. Thus, we reduce the questionable records
by half with each iteration.

For our binary search, we implement a helper method that just reads the date of a record without
building the complete DayLog data structure:

 219

int getDate (int index) throws RecordStoreException {
 byte[] buf = days.getRecord (index);
 return ((((int) buf [0]) & 0x0ff) << 24)
 | ((((int) buf [1]) & 0x0ff) << 16)
 | ((((int) buf [2]) & 0x0ff) << 8)
 | ((((int) buf [3]) & 0x0ff));
}

The getIndex() method performs the binary search, returning the index of the day log of the given
date. If a day log for the given date does not exist, the negative index where the day log for the given
date should be inserted is returned:

public int getIndex (int date) throws RecordStoreException {

 int i = 1;
 int j = days.getNumRecords();
 int k;
 int dateK;

 while (i <= j) {
 k = (i + j) / 2;
 dateK = getDate (k);
 if (date == dateK) return k;
 else if (date > dateK) i = k+1;
 else j = k-1;
 }

 return -i;
}

The method for reading a DayLog of a given date is quite simple. First, the index for the given date is
calculated by calling getIndex(). Then, whether the index is negative or not, a new DayLog is
created or loaded from the record store:

public DayLog getDayLog (int date)
 throws RecordStoreException, IOException {
 int index = getIndex (date);

 return (index == -1)
 ? new DayLog (date)
 : new DayLog (days.getRecord (index));
}

Storing a DayLog is a bit more complicated. If an entry for the given date does not yet exist, all
following records need to be shifted in order to obtain space for the new record:

 public void storeDayLog (DayLog dayLog)
 throws RecordStoreException, IOException {
 if (!dayLog.isDirty()) return;

 int index = getIndex (dayLog.getDate());

 byte [] target = dayLog.getByteArray();

 if (index < 0) {
 index = -index;

 int num = days.getNumRecords();

 220

 if (index > num) {
 days.addRecord (target, 0, target.length);
 return;
 }

 byte [] buf = days.getRecord (num);
 days.addRecord (buf, 0, buf.length);

 for (int i = num; i > index; i++) {
 buf = days.getRecord (i-1);
 days.setRecord (i, buf, 0, buf.length);
 }
 }

 days.setRecord (index, target, 0, target.length);
 }
}

We also need a method for closing the record store. However, this is quite straightforward:

public void close() throws RecordStoreException {
 days.closeRecordStore();
}

Finally, we add a static method for converting Java Date objects to our internal format. For this
purpose, we create a calendar, set it to the given date, and then read the year, month, and day of month
fields:

public static int dateToInt (Date date) {
 Calendar c = Calendar.getInstance();
 c.setTime (date);
 return (c.get (Calendar.YEAR) << 16)
 | ((c.get (Calendar.MONTH)-Calendar.JANUARY+1) << 8)
 | (c.get (Calendar.DAY_OF_MONTH));
}

The User Interface
At this stage, we have finished the classes needed for data management. Using these classes, it is an
easy task to create a platform-dependent user interface. We need to create user interfaces for MIDP and
PDAP. The core of both application interfaces is the chart that is used to display the daily logs.

In the MIDP user interface, the chart class is realized using the low-level
javax.microedition.lcdui.Canvas. The corresponding PDAP class is derived from
java.awt.Component, the PDAP base class for components.

In both cases, the first step is to create the coordinate system and to draw borderlines for critical values.

To draw the actual data points on the chart, we can use the DayLog methods getXPoints() and
getYPoints() previously implemented for that purpose.

The remaining UI components for both platforms are quite straightforward. For a general discussion of
the MIDP UI components, refer to Chapter 3, "MIDP Programming." PDAP UI components are
described in Chapter 4, "PDAP Programming."

 221

The user interfaces for MIDP and PDAP are shown in Listings 9.1 and 9.2. In addition, Figure 9.3
shows a BloodSugarPDAP screenshot.

Figure 9.3. The running BloodSugarPdap application showing the logged blood sugar
values of the current day.

Listing 9.1 BloodSugarMidp.java—The BloodSugarMidp MIDlet

import javax.microedition.midlet.*;
import javax.microedition.lcdui.*;
import javax.microedition.rms.*;

import java.util.*;
import java.io.*;

public class BloodSugarMidp extends MIDlet implements CommandListener
{

 LogStorage log;
 DayLog dayLog;
 Display display;

 Chart chart;
 ValueForm valueForm;
 DateForm dateForm;

 class Chart extends Canvas {

 public void paint (Graphics g) {
 g.setColor (0x00FFFFFF);
 g.fillRect (0, 0, getWidth(), getHeight());
 g.setColor (0x00000000);

 int charWidth = g.getFont().charWidth ('0');
 int xSpace = 3*charWidth;
 int ySpace = g.getFont().getHeight();

 int h = getHeight() - 2*ySpace;
 int w = getWidth() - xSpace;

 String title = dayLog.getTitle();
 int tw = g.getFont().stringWidth (title);

TE
AM
FL
Y

Team-Fly®

 222

 g.drawString (title, getWidth() / 2 - tw / 2, 0,
g.TOP|g.LEFT);

 g.drawString (""+DayLog.MAX_VALUE, 0, ySpace,
g.TOP|g.LEFT);
 g.drawString (""+DayLog.MIN_VALUE, charWidth, h,
g.TOP|g.LEFT);

 g.drawRect (xSpace, ySpace, w-1, h);

 g.translate (xSpace, h);
 g.drawString (""+(DayLog.MIN_TIME/60), 0, ySpace,
g.TOP|g.LEFT);
 g.drawString (""+(DayLog.MAX_TIME+DayLog.MIN_TIME)/120,
 w/2-charWidth, ySpace, g.TOP|g.LEFT);
 g.drawString (""+(DayLog.MAX_TIME/60),
 w-2*charWidth, ySpace, g.TOP|g.LEFT);

 int mnb = DayLog.getY (DayLog.MIN_BORDER, h);
 int mxb = DayLog.getY (DayLog.MAX_BORDER, h);

 g.setColor (0x00FF0000);
 g.drawLine (0, mnb, w + 2, mnb);
 g.drawLine (0, mxb, w + 2, mxb);
 g.setColor (0x000000FF);

 int[] x = dayLog.getXPoints (w);
 int[] y = dayLog.getYPoints (h);

 int count = dayLog.getCount();

 if (count == 1) {
 g.drawArc (x[0] - 2, y[0] - 2, 4, 4, 0, 360);
 }
 else {
 for (int i = 0; i < count - 1; i++) {
 g.drawLine(x[i], y[i],
 x[i+1], y[i+1]);

 g.drawArc (x[i] -2 , y[i] - 2, 4, 4, 0, 360);
 g.drawArc (x[i+1] -2 , y[i+1] - 2, 4, 4, 0, 360);
 }
 }
 }
 }

 class DateForm extends Form {

 DateField dateField = new DateField ("Log date:",
DateField.DATE);

 public DateForm (CommandListener cmdListener) {
 super ("Select");
 append (dateField);
 addCommand (okCommand);
 setCommandListener(cmdListener);
 }
 public Date getDate() {
 return dateField.getDate();

 223

 }
 }

 class ValueForm extends Form {
 TextField measuredMgDl =
 new TextField ("mg/dl", "", 3, TextField.NUMERIC);
 TextField measurementTime =
 new TextField ("Measured at:", "", 5, TextField.ANY);

 public ValueForm (CommandListener cmdListener) {
 super ("Enter Value");
 append (measuredMgDl);
 append (measurementTime);
 addCommand (okCommand);
 setCommandListener(cmdListener);
 }

 public String getValue() {
 return measuredMgDl.getString();
 }

 public int getTime() {
 return DayLog.parseTime (measurementTime.getString());
 }
 }

 static final Command okCommand = new Command ("OK",
Command.SCREEN, 1);
 static final Command exitCommand = new Command ("Exit",
Command.SCREEN, 1);
 static final Command setCommand = new Command ("Set",
Command.SCREEN, 2);
 static final Command removeCommand =
 new Command ("Remove", Command.SCREEN, 2);
 static final Command dateCommand =
 new Command ("Date...", Command.SCREEN, 2);

 public BloodSugarMidp() throws RecordStoreException, IOException
{
 log = new LogStorage();
 dayLog = log.getDayLog (LogStorage.dateToInt (new Date()));
 valueForm = new ValueForm (this);
 dateForm = new DateForm (this);
 chart = new Chart();

 chart.addCommand (exitCommand);
 chart.addCommand (setCommand);
 chart.addCommand (removeCommand);
 chart.addCommand (dateCommand);

 chart.setCommandListener(this);
 }

 public void startApp() {
 display = Display.getDisplay (this);
 display.setCurrent (chart);

 224

 }

 public void pauseApp() {
 }

 public void destroyApp (boolean unconditional) {
 }

 public void commandAction (Command c, Displayable d) {

 if (c == exitCommand) {
 notifyDestroyed();
 }
 else if (c == setCommand) {
 display.setCurrent (valueForm);
 }
 else if (c == dateCommand) {
 display.setCurrent (dateForm);
 }
 else {
 try {
 if (c == okCommand && d == valueForm) {
 dayLog.set (valueForm.getTime(),
 Integer.parseInt
(valueForm.getValue()));
 log.storeDayLog (dayLog);
 display.setCurrent (chart);
 chart.repaint();
 }
 else if (c == okCommand && d == dateForm) {
 dayLog = log.getDayLog (LogStorage.dateToInt
 (dateForm.getDate()));
 display.setCurrent (chart);
 }
 else if (c == removeCommand) {
 dayLog.remove (valueForm.getTime());
 log.storeDayLog (dayLog);
 }
 }
 catch (Exception e) {
 Alert inputError = new Alert ("Invalid Value:");
 inputError.setString (e.toString());
 display.setCurrent (inputError);
 }
 }
 }
}

Listing 9.2 BloodSugarPdap.java—The BloodSugarPdap Application

import java.util.*;
import java.io.*;
import java.awt.*;
import java.awt.event.*;

import javax.microedition.midlet.*;
import javax.microedition.rms.*;

public class BloodSugarPdap extends MIDlet implements ActionListener
{

 225

 public class ErrorDialog extends Dialog implements ActionListener
{

 private Button okButton = new Button ("Ok");

 public ErrorDialog(String error) {
 super (frame, "Error", true);
 add("Center", new Label (error));
 Panel buttonPanel = new Panel();
 buttonPanel.add(okButton);
 okButton.addActionListener(this);
 add("South", buttonPanel);

 addWindowListener(new WindowAdapter() {
 public void windowClosing (WindowEvent ev) {
 setVisible (false);
 dispose();
 }
 });

 pack();
 }

 public void actionPerformed (ActionEvent e) {
 setVisible (false);
 dispose();
 }
 }

 Frame frame = new Frame();
 LogStorage log;
 DayLog dayLog;

 Button setButton = new Button ("set");
 Button removeButton = new Button ("remove");
 Button dateButton = new Button ("date...");

 TextField timeField = new TextField();
 TextField valueField = new TextField();

 Chart chart = new Chart();

 class Chart extends Canvas {

 public void paint (Graphics g) {

 FontMetrics fm = g.getFontMetrics();
 Dimension size = getSize();

 int cw = fm.stringWidth ("0");
 int lw = 3*cw;
 int lh = fm.getHeight();
 int w = size.width - lw;
 int h = size.height - lh;

 g.drawString (""+DayLog.MAX_VALUE, 0, fm.getAscent());
 g.drawString (""+DayLog.MIN_VALUE, cw, h -
fm.getDescent());

 g.translate (lw, h);

 226

 g.drawString (""+(DayLog.MIN_TIME/60), 0, fm.getAscent());
 g.drawString (""+(DayLog.MAX_TIME+DayLog.MIN_TIME)/120,
 w/2-cw, fm.getAscent());
 g.drawString (""+(DayLog.MAX_TIME/60), w-2*cw,
fm.getAscent());

 g.drawLine (-2, 0, w + 2, 0);
 g.drawLine (0, 2, 0, - (h + 2));

 int mnb = DayLog.getY (DayLog.MIN_BORDER, h);
 int mxb = DayLog.getY (DayLog.MAX_BORDER, h);

 g.setColor (Color.red);
 g.drawLine (-2, mnb, w + 2, mnb);
 g.drawLine (-2, mxb, w + 2, mxb);

 g.setColor (Color.blue);

 int[] x = dayLog.getXPoints (w);
 int[] y = dayLog.getYPoints (h);

 for (int i = 0; i < dayLog.getCount(); i++)
 g.drawOval (x [i]-1, y[i]-1, 2, 2);

 g.drawPolyline (x, y, dayLog.getCount());
 }

 public Dimension getPreferredSize() {
 return new Dimension (200, 200);
 }
 }

 public BloodSugarPdap() throws RecordStoreException, IOException
{
 log = new LogStorage();
 dayLog = log.getDayLog (LogStorage.dateToInt (new Date()));
 frame.setTitle (dayLog.getTitle());
 Panel inputPane = new Panel (new BorderLayout());

 Panel labelPane = new Panel (new GridLayout (0,1));
 labelPane.add(new Label ("Time (hh:mm)"));
 labelPane.add(new Label ("Value (mg/dl)"));
 inputPane.add("West", labelPane);

 Panel fieldPane = new Panel (new GridLayout (0,1));
 fieldPane.add(timeField);
 fieldPane.add(valueField);
 inputPane.add("Center", fieldPane);

 Panel buttonPane = new Panel();
 buttonPane.add(setButton);
 setButton.addActionListener(this);
 buttonPane.add(removeButton);
 removeButton.addActionListener(this);
 buttonPane.add(dateButton);
 dateButton.addActionListener(this);
 inputPane.add("South", buttonPane);

 227

 frame.add("Center", chart);
 frame.add("South", inputPane);
 frame.pack();

 frame.addWindowListener(new WindowAdapter() {
 public void windowClosing (WindowEvent ev) {
 frame.dispose();
 notifyDestroyed();
 }
 });
 }

 public void startApp() {
 frame.show();
 }

 public void pauseApp() {
 }
 public void destroyApp (boolean conditional) {
 frame.dispose();
 }

 public void actionPerformed (ActionEvent action) {
 try {
 if (action.getSource() == setButton) {
 dayLog.set (DayLog.parseTime (timeField.getText()),
 Integer.parseInt (valueField.getText()));

 log.storeDayLog (dayLog);
 }
 else if (action.getSource() == removeButton) {
 dayLog.remove (DayLog.parseTime
(timeField.getText()));
 log.storeDayLog (dayLog);
 }
 else if (action.getSource() == dateButton) {
 dayLog = log.getDayLog
 (LogStorage.dateToInt
 (new DateDialog (frame).getDate (new Date())));

 frame.setTitle (dayLog.getTitle());
 }
 }
 catch (Exception e) {
 new ErrorDialog (e.toString()).show();
 }

 chart.repaint();
 }
}

The source codes of the classes CalendarComponent and CalendarCanvas shown in Listings
9.3, 9.4 and 9.5 contain helper components providing a date dialog and the correspondig helper classes.

Listing 9.3 DateDialog.java—The DateDialog Class Source Code

import java.util.*;
import java.awt.*;

 228

import java.awt.event.*;

public class DateDialog extends Dialog implements ActionListener {
 CalendarComponent calendarComponent = new CalendarComponent();
 Button okButton = new Button ("Ok");
 Button cancelButton = new Button ("Cancel");
 boolean ok;

 public DateDialog (Frame owner) {
 super (owner, "Set Date", true);
 Panel buttons = new Panel();
 buttons.add(okButton);
 buttons.add(cancelButton);
 okButton.addActionListener(this);
 cancelButton.addActionListener(this);
 add("Center", calendarComponent);
 add("South", buttons);

 addWindowListener(new WindowAdapter() {
 public void windowClosing (WindowEvent e) {
 setVisible (false);
 }
 });

 pack();
 }

 public Date getDate (Date d) {
 show();
 return ok ? calendarComponent.getDate() : d;
 }

 public void actionPerformed (ActionEvent e) {
 ok = e.getSource() == okButton;
 setVisible (false);
 }
}

Listing 9.4 CalendarComponent.java—The CalendarComponent Class Source Code

import java.awt.*;
import java.awt.event.*;
import java.util.*;
public class CalendarComponent extends Panel implements
ActionListener, ItemListener {

 Calendar calendar = Calendar.getInstance();
 Choice monthChoice = new Choice();
 Label yearLabel = new Label ("9999");
 Button buttonPlus = new Button ("+");
 Button buttonMinus = new Button ("-");
 CalendarCanvas calendarCanvas = new CalendarCanvas();

 public CalendarComponent() {

 super (new BorderLayout());

 monthChoice.add("Jan");

 229

 monthChoice.add("Feb");
 monthChoice.add("Mar");
 monthChoice.add("Apr");
 monthChoice.add("May");
 monthChoice.add("Jun");
 monthChoice.add("Jul");
 monthChoice.add("Aug");
 monthChoice.add("Sep");
 monthChoice.add("Oct");
 monthChoice.add("Nov");
 monthChoice.add("Dec");
 monthChoice.addItemListener(this);

 Panel top = new Panel();
 top.add(monthChoice);
 top.add(yearLabel);
 top.add(buttonMinus);
 top.add(buttonPlus);
 buttonPlus.addActionListener(this);
 buttonMinus.addActionListener(this);

 add("North", top);
 add("Center", calendarCanvas);

 propagate();
 }
 public void setDate (Date date) {
 calendar.setTime (date);
 propagate();
 }

 void propagate() {
 calendar.set
 (Calendar.DAY_OF_MONTH,
 calendarCanvas.getCalendar().get
 (Calendar.DAY_OF_MONTH));

 calendarCanvas.setDate (calendar.getTime());

 yearLabel.setText (""+calendar.get(Calendar.YEAR));

 monthChoice.select
 (calendar.get (Calendar.MONTH)-Calendar.JANUARY);
 repaint();
 }

 public Date getDate() {

 calendar.set (Calendar.DAY_OF_MONTH,
 calendarCanvas.getCalendar().get
 (Calendar.DAY_OF_MONTH));

 return calendar.getTime();
 }

 public void itemStateChanged (ItemEvent ev) {

 230

 calendar.set (Calendar.MONTH,
 monthChoice.getSelectedIndex() +
Calendar.JANUARY);

 propagate();
 }

 public void actionPerformed (ActionEvent ev) {
 if (ev.getSource() == buttonPlus)
 calendar.set (Calendar.YEAR, calendar.get (Calendar.YEAR)
+ 1);
 else if (ev.getSource() == buttonMinus)
 calendar.set (Calendar.YEAR, calendar.get (Calendar.YEAR)
- 1);

 propagate();
 }
}

Listing 9.5 CalendarCanvas.java—The CalendarCanvas Class Source Code

import java.awt.*;
import java.awt.event.*;
import java.util.*;

public class CalendarCanvas extends Component implements
MouseListener {

 Calendar calendar = Calendar.getInstance();

 private static String[] days
 = {"Su", "Mo", "Tu", "We", "Th", "Fr", "Sa"} ;

 private static int daysInMonth[]
 = {31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31} ;

 int cellWidth;
 int cellHeight;
 int totalWidth;
 int totalHeight;
 int left;
 int top;
 int firstDay;

 public CalendarCanvas() {
 addMouseListener(this);
 }

 public void paint(Graphics g) {

 cellWidth = (getWidth() - 1) / 7;
 cellHeight = (getHeight() - 1) / 7;
 totalWidth = 7 * cellWidth + 1;
 totalHeight = 7 * cellHeight + 1;

 left = (getWidth() - totalWidth) / 2;
 top = (getHeight() - totalHeight) / 2;

 231

 g.translate (left, top);

 for (int i = 0; i < 8; i++)
 g.drawLine
 (cellWidth * i, cellHeight,
 cellWidth * i, 7 * cellHeight - 1);

 for (int i = 1; i < 8; i++)
 g.drawLine
 (0, cellHeight * i,
 totalWidth - 1, cellHeight * i);

 FontMetrics font = g.getFontMetrics();
 int textHeight = font.getHeight();
 int ascent = font.getAscent();

 for (int i = 0; i < 7; i++) {
 String name = days [i];
 int textWidth = font.stringWidth(name);
 g.drawString
 (name, cellWidth * i + (cellWidth - textWidth) / 2,
 cellHeight - 1);
 }

 int day = calendar.get (Calendar.DAY_OF_MONTH);
 calendar.set(Calendar.DAY_OF_MONTH, 1);
 firstDay = calendar.get(Calendar.DAY_OF_WEEK) - 1;
 calendar.set(Calendar.DAY_OF_MONTH, day);

 int dayOfWeek = firstDay;

 int days = daysInMonth (calendar);
 int weekOfMonth = 1;

 for (int i = 1; i <= days; i++) {
 String s = String.valueOf(i);
 int textWidth = font.stringWidth(s);
 int cellLeft = cellWidth * dayOfWeek;
 int cellTop = cellHeight * weekOfMonth;

 if (i == day) {
 g.fillRect (cellLeft, cellTop,
 cellWidth, cellHeight);
 g.setColor (Color.white);
 }

 g.drawString (s,
 cellLeft + (cellWidth - textWidth) / 2,
 cellTop + ascent + (cellHeight - textHeight)
/ 2);

 g.setColor (Color.black);

 dayOfWeek++;
 if (dayOfWeek == 7) {
 weekOfMonth++;
 dayOfWeek = 0;
 }
 }

TE
AM
FL
Y

Team-Fly®

 232

 }

 public static int daysInMonth (Calendar calendar) {
 int year = calendar.get (Calendar.YEAR);
 int month = calendar.get (Calendar.MONTH);
 int days = daysInMonth [month-Calendar.JANUARY];
 if ((month == Calendar.FEBRUARY) && (year % 4 == 0)
 && !(year % 100 == 0) || (year % 400 == 0))
 days++;

 return days;
 }

 public void setDate (Date date) {
 calendar.setTime (date);
 repaint();
 }
 public Calendar getCalendar() {
 return calendar;
 }

 public Date getDate() {
 return calendar.getTime();
 }

 public Dimension getMinimumSize() {
 return getPreferredSize();
 }

 public Dimension getPreferredSize() {

 FontMetrics fm = getFontMetrics (getFont());

 return new Dimension ((fm.stringWidth ("88") + 1) * 7 + 1,
 (fm.getHeight() + 1) * 7 + 1);
 }

 public void mouseEntered (MouseEvent ev) {}
 public void mouseExited (MouseEvent ev) {}
 public void mousePressed (MouseEvent ev) {}
 public void mouseReleased (MouseEvent ev) {}

 public void mouseClicked (MouseEvent ev) {
 int x = (ev.getX() - left) / cellWidth;
 int y = (ev.getY() - top) / cellHeight - 1;

 int index = x + 7 * y - firstDay + 1;

 if (index > 0 && index <= daysInMonth (calendar))
 calendar.set (Calendar.DAY_OF_MONTH, index);

 repaint();
 }

}

 233

Summary

In this chapter, you learned how to create an advanced application using most of the APIs that are
available in MIDP and PDAP. You have learned to split the functionality of one application into a
user interface independent base part in order to use it in an MIDP and PDAP implementation.
Finally, you have learned to create a user interface for the Blood Sugar Logger in order to run it on
MIDP and the PDAP devices.

 234

Chapter 10. Third-Party Libraries
IN THIS CHAPTER

• XML
• Simple Object Access Protocol: SOAP
• MathFP
• The Bouncy Castle Crypto API
• User Interface Extensions

At this point we have discussed the whole CLDC API, including all core packages and the profile-
specific extensions of MIDP and PDAP. You might have noticed that some important APIs aren't
provided in CLDC. However, for several purposes such as parsing XML or fixed-point integer
arithmetic, third-party libraries are available for CLDC.

In this chapter, we will discuss a few important libraries that can be downloaded from the Internet.
In most cases, we will demonstrate their usage by creating a small sample application.

XML
Currently, three different libraries are available for XML parsing. Table 10.1 shows an overview of the
features and limitations of the different APIs. In general, a trade-off exists between the package size
and the features available. None of the XML parsers available for CLDC is a validating XML parser.

Table 10.1. XML Parsers Available for CLDC
Parser JAR

Size
License URL and Remarks

NanoXML KVM
port

9.7KB Libpng http://nanoxml.sourceforge.net

No support for mixed content.

The whole document is parsed to a memory
structure.

Optional SAX interface available. XML writing
support.

TinyXML KVM
port

7.9KB GPL http://www.microjava.com

SAX-like callback interface.

No XML writing support.
KXML 19.9KB Enhydra

License
http://www.kxml.org

Namespace support.

Optional WBXML/WML support.

Optional kDOM support.

XML writing support.

http://nanoxml.sourceforge.net/
http://www.microjava.com/
http://www.kxml.org/

 235

NanoXML

NanoXML is a very small XML parser developed by Marc De Scheemaecker. Eric Giguere has
provided a CLDC port of version 1.6.4 of the parser. The parser parses the whole XML document to a
memory structure that is accessible via the NanoXML API. The advantage of this approach is that
access to the document content is extremely simple. The trade-off is that the device needs enough heap
memory to hold the whole document structure. It isn't possible to access the XML document until it has
been read completely, so progressive display isn't possible.

The NanoXML API consists of only two classes: kXMLElement and XMLParseException (an
exception class). An XML document is parsed by creating an kXMLElement and then invoking
parseFromReader() with a reader as parameter. A kXMLElement object can be written to a
writer or a string using the write() method. Further important methods are
enumerateChildren(), which returns an Enumeration for iterating through all child elements,
and getContents(), which returns the text content of the given kXMLElement. For complete
NanoXML reference, refer to the NanoXML JavaDOC, available at http://nanoxml.sourceforge.net.

As an illustrative example for parsing XML, we will use the NewsForge XML format. NewsForge is a
news Web site with a focus on open source development, and it provides a URL where you can
download the current content in XML format. The NewsForge XML code consists of a
<backslash> element containing a number of <story> elements. The child elements of <story>
contain information about the story such as title, the author, and possibly a short description. Listing
10.1 shows an example of the NewsForge XML code. If you would like to run the demo but cannot
access NewsForge, you can use the example XML code for testing. For more details about NewsForge,
refer to http://www.newsforge.com.

Listing 10.1 newsforge.xml—NewsForge XML Code Example

<?xml version="1.0" encoding="iso-8859-1"?>
<backslash xmlns:backslash="http://www.newsforge.com/backslash.dtd">
 <story>
 <title>Linux 2.4.6-ac2</title>

<url>http://www.newsforge.com/article.pl?sid=01/07/07/169250</url>
 <time>2001-07-07 16:08:37</time>
 <author>tina</author>
 <department></department>
 <topic>gnulinux</topic>
 <comments>0</comments>
 <section>newsvac</section>
 
 <description>"Drop out various bits that
 are 2.5 stuff..."</description>
 </story>
 <story>
 <title>Millions are shut out of Microsoft's
 instant-messaging service</title>

<url>http://www.newsforge.com/article.pl?sid=01/07/07/0854238</url>
 <time>2001-07-07 12:04:23</time>
 <author>cdlu</author>
 <department></department>
 <topic>closedsrc</topic>
 <comments>0</comments>
 <section>newsvac</section>
 
 <description>The Seattle Post-Intelligencer reports that
Microsoft's
 instant-messaging service has been inaccessible

http://nanoxml.sourceforge.net/
http://www.newsforge.com/

 236

 to a third of its users for
 three days. </description>
 </story>
</backslash>

Listing 10.2 contains the code of the NanoNewsreader example MIDlet. When the MIDlet is started,
it reads the XML code from NewsForge and displays a list of the story titles included. When a title is
selected from the list, the description of the story is displayed in a TextBox, if available, otherwise
only the title is displayed. The interesting methods are readNews() and readStory().
readNews() connects to the server using an HttpConnection and constructs a kXMLElement.
Then it opens a reader on the InputStream provided by the connection and passes it to the
parseFromReader() method of the kXMLElement. Now the root element is parsed to the given
kXMLElement. The method enumerateChildren() is used to enumerate all <story> child
elements of the <backslash> root element. For each child, the readStory() method is called.
readStory() again iterates through the child elements, now those of the <story> element. The
content of the <title> and <description> elements is extracted using the getContents()
method of kXMLElement. Figure 10.1 shows the NanoNewsreader.

Figure 10.1. The NanoNewsreader MIDlet.

Listing 10.2 NanoNewsreader.java—NanoXML Newsreader Example

import java.io.*;
import java.util.Vector;
import java.util.Enumeration;

import javax.microedition.midlet.*;
import javax.microedition.lcdui.*;
import javax.microedition.io.*;

import nanoxml.*;

public class NanoNewsreader extends MIDlet implements CommandListener
{

 static final String URL = "http://newsforge.com/newsforge.xml";
 static final String TITLE = "NewsForge";

 Vector descriptions = new Vector();
 List newsList = new List (TITLE, Choice.IMPLICIT);
 TextBox textBox = new TextBox ("", "", 256, TextField.ANY);
 Display display;

 Command backCmd = new Command ("Back", Command.BACK, 0);

 public void startApp() {
 display = Display.getDisplay (this);
 display.setCurrent (newsList);
 newsList.setCommandListener(this);

 237

 textBox.setCommandListener(this);
 textBox.addCommand (backCmd);
 if (descriptions.size() == 0)
 readNews();
 }

 public void readNews() {
 try {
 HttpConnection httpConnection =
 (HttpConnection) Connector.open (URL);

 kXMLElement xml = new kXMLElement();
 xml.parseFromReader (new InputStreamReader
 (httpConnection.openInputStream()));

 for (Enumeration e = xml.enumerateChildren();
 e.hasMoreElements();)
 readStory ((kXMLElement) e.nextElement());
 }
 catch (IOException e) {
 newsList.append ("Error", null);
 descriptions.addElement (e.toString());
 }
 }

 /** Read a story and append it to the list */

 public void readStory (kXMLElement story) {
 String title = null;
 String description = null;
 for (Enumeration e = story.enumerateChildren();
 e.hasMoreElements();) {
 kXMLElement field = (kXMLElement) e.nextElement();

 if (field.getTagName().equals ("title"))
 title = field.getContents();
 else if (field.getTagName().equals ("description"))
 description = field.getContents();
}

 if (title !=null){
 descriptions.addElement
(description !=null ?description :title);
 newsList.append (title,null);
 }
}

 public void pauseApp() {
 }

 public void commandAction (Command c, Displayable d) {

 if (c == List.SELECT_COMMAND) {

 String text = (String) descriptions.elementAt
 (newsList.getSelectedIndex());

 238

 if (textBox.getMaxSize() < text.length())
 textBox.setMaxSize (text.length());

 textBox.setString (text);
 display.setCurrent (textBox);
 }
 else if (c == backCmd)
 display.setCurrent (newsList);
 }

 public void destroyApp (boolean really) {
 }
}

TinyXML

TinyXML was designed by Tom Gibara to be used in applets and other situations in which code size is
important. TinyXML has been ported to CLDC by Christian Sauer. Detailed information about the port
is available at http://www.microjava.com/news/techtalk/tinyxml. In contrast to NanoXML, TinyXML
provides a callback interface similar to the Simple Access Interface to XML (SAX), the de facto Java
parsing standard. In order to parse an XML document, you need to create an XMLParser object,
register a DocumentHandler using the setDocumentHandler() method, and assign an
XMLInputStream using setInputStream(). The DocumentHandler provides the callback
interface mentioned earlier. It contains methods such as elementStart(), charData(), and
elementEnd(), which are called when the parser encounters the corresponding XML code.

You will again use Newsforge XML to build an example application (see Listing 10.3). Unfortunately,
you cannot just use any InputStream or Reader with TinyXML; you must provide an
XMLInputStream that is constructed from a String. Thus, you need to build a string from the
InputStream obtained from the HttpConnection before you can invoke the parser.

Listing 10.3 TinyNewsreader.java—TinyXML Newsreader Example

import java.io.*;
import java.util.Vector;
import java.util.Hashtable;

import tinyxml.*;
import javax.microedition.midlet.*;
import javax.microedition.lcdui.*;
import javax.microedition.io.*;

public class TinyNewsreader extends MIDlet implements CommandListener
{

 static final String URL = "http://newsforge.com/newsforge.xml";
 static final String TITLE = "NewsForge";
 Vector descriptions = new Vector();
 List newsList = new List (TITLE, Choice.IMPLICIT);
 TextBox textBox = new TextBox ("", "", 256, TextField.ANY);
 Display display;

 Command backCmd = new Command ("Back", Command.BACK, 0);

 class NewsHandler extends HandlerBase {
 StringBuffer title;
 StringBuffer description;
 String currentElement = "";

http://www.microjava.com/news/techtalk/tinyxml

 239

 public void elementStart (String name, Hashtable attributes)
{
 currentElement = name;
 if (name.equals ("story")) {
 title = new StringBuffer();
 description = new StringBuffer();
 }

 }

 public void charData (String s) {
 if (currentElement.equals ("title"))
 title.append (s);
 else if (currentElement.equals ("description"))
 description.append (s);
}

 public void elementEnd (String name){
 currentElement ="";
 if (name.equals ("story ")){
 newsList.append (title.toString(),null);
 String d =description.toString();
 descriptions.addElement
(d.length()==0 ?title.toString():d);
 }
}

 public void readNews() {
 try {
 HttpConnection httpConnection =
 (HttpConnection) Connector.open (URL);
 InputStream is = httpConnection.openInputStream();

 ByteArrayOutputStream bos = new ByteArrayOutputStream();
 byte [] buf = new byte [256];

 while (true) {
 int cnt = is.read (buf, 0, 256);
 if (cnt < 0) break;
 bos.write (buf, 0, cnt);
 }

 XMLParser parser = new XMLParser();
 parser.setInputStream
 (new XMLInputStream (new String (bos.toByteArray())));
 parser.setDocumentHandler (new NewsHandler());
 parser.parse();
 }
 catch (ParseException e) {
 newsList.append ("Error", null);
 descriptions.addElement (e.toString());
 }
 catch (IOException e) {
 newsList.append ("Error", null);
 descriptions.addElement (e.toString());
 }
 }

 public void startApp() {

 240

 display = Display.getDisplay (this);
 display.setCurrent (newsList);
 newsList.setCommandListener(this);
 textBox.setCommandListener(this);
 textBox.addCommand (backCmd);
 if (descriptions.size() == 0) readNews();
 }

 public void pauseApp() {
 }

 public void commandAction (Command c, Displayable d) {

 if (c == List.SELECT_COMMAND) {

 String text = (String) descriptions.elementAt
 (newsList.getSelectedIndex());

 if (textBox.getMaxSize() < text.length())
 textBox.setMaxSize (text.length());

 textBox.setString (text);
 display.setCurrent (textBox);
 }
 else if (c == backCmd)
 display.setCurrent (newsList);
 }

 public void destroyApp (boolean really) {
 }
}

The most interesting part of the example is the inner class NewsHandler. Instead of implementing
the full DocumentHandler interface, you derive your class from the convenience class
HandlerBase, which provides empty implementations for all DocumentHandler methods. Thus,
you only need to implement the callback methods for events you are actually interested in. For parsers
with a callback (push) interface, you need some representation of the current state in order to know
what to do with the incoming events. For that purpose, you save the name of the element in
currentElement when the start of an element is indicated by a call to elementStart(). If a
new <story> element starts, the title and description buffer variables are initialized. When a text
event is received, it is ignored or appended to the title or description, depending on the current element.

Note that the implemented handling of the currentElement name isn't sufficient for nested
structures; it works only for elements that have no further sub-elements. However, in this case it is
sufficient. Finally, when an element end is detected and the name of the element is story, the title and
description are appended to the corresponding lists.

kXML

kXML is larger than NanoXML and TinyXML, but it is the only XML parser for CLDC that provides
XML namespace support. In addition, optional kDOM and WBXML packages are available for kXML.

In contrast to the other parsers, kXML is a pull-based parser. The motivation for pull parsers is to
provide an easier handling mechanism than a centralized callback interface without needing to build an
explicit XML memory structure. Push parsers such as TinyXML; push all XML events to a few
centralized callback methods. Inside the callback methods, the application needs to look up its internal
state before being able to handle the event correctly. For the Newsforge XML example, it is relatively
simple to keep track of the state; but for highly nested structures, doing so becomes quite a problem.

 241

For that reason, many implementers prefer to have a complete object tree such as the NanoXML
kXMLElement structure before actually processing an XML document.

A pull parser such as kXML works similar to a reader, where the application is in control of reading
data. The advantage is that parsing can be performed in recursive functions, following the tree structure
of the document. Instead of having an explicit global state object, the program state reflects the parsing
state in a natural way.

The kXML pull parser is implemented in the XmlParser object. The next parse event can be queried
with the peek() method or read with the read() method. Both methods return a ParseEvent
object. ParseEvent provides access methods such as getType(), getName(), and getText().
The getType() method returns the type of the event—for example, Xml.START_TAG,
Xml.END_TAG, or Xml.TEXT. The getName() method returns the name of the element if the
event is an element start or element end event. The corresponding namespace can be obtained with
getNamespace(). For text events, getText() returns the corresponding text strings. The parser
also provides some convenience methods. For example, XmlParser.skip() skips over events that
are ignorable in most cases, such as whitespace or comments. Special versions of peek() and read()
also test for a certain type of event. For example, peek(Xml.START_TAG, null, "story")
returns true if the next event is a start tag with the name story in any namespace.

As you did for the other two parsers, you will implement an MIDP client for the Newsforge XML
service (see Listing 10.4). kXML accepts any reader as a source for the XML input, so you just need to
wrap an InputStreamReader around the InputStream obtained from the HttpConnection.
This feature enables you to begin processing the XML code while still receiving data. The advantage is
that you can display the first news titles while still reading data from the server, reducing the time users
need to wait before they can start reading. In order to use this feature, you just need to put the parsing
process in a separate thread. Note that this approach would make sense for the TinyXML example, too,
if the CLDC port would accept a regular InputStream for reading.

Note

This section handles kXML version 1.x. Version 2.0 will have a slightly different interface, similar to
the XML parser available from kobjects.org. The kobjects parser is a pull parser as well, but it does not
support XML namespaces.

Listing 10.4 KxmlNewsreader.java—kXML Newsreader Example

import java.io.*;
import java.util.Vector;

import org.kxml.*;
import org.kxml.parser.*;
import javax.microedition.midlet.*;
import javax.microedition.lcdui.*;
import javax.microedition.io.*;

public class KxmlNewsreader extends MIDlet implements CommandListener
{

 static final String URL = "http://newsforge.com/newsforge.xml";
 static final String TITLE = "NewsForge";

 Vector descriptions = new Vector();
 List newsList = new List (TITLE, Choice.IMPLICIT);
 TextBox textBox = new TextBox ("", "", 256, TextField.ANY);

TE
AM
FL
Y

Team-Fly®

http://kobjects.org/

 242

 Display display;

 Command backCmd = new Command ("Back", Command.BACK, 0);

 class ReadThread extends Thread {

 public void run() {
 try {
 HttpConnection httpConnection =
 (HttpConnection) Connector.open (URL);

 XmlParser parser = new XmlParser (new
InputStreamReader
 (httpConnection.openInputStream()));

 parser.skip();
 parser.read (Xml.START_TAG, null, "backslash");

 while (true) {
 parser.skip();

 if (parser.peek (Xml.START_TAG, null, "story"))
 readStory (parser);
 else if (parser.peek (Xml.END_TAG, null,
"backslash")) {
 parser.read();
 break;
 }
 else throw new RuntimeException
 ("XML error: Unexpected event: "+
parser.peek());
 }
 }
 catch (Exception e) {
 newsList.append ("Error", null);
 descriptions.addElement (e.toString());
 }
 }

 /** Read a story and append it to the list */

 void readStory (XmlParser parser) throws IOException {
 parser.read (Xml.START_TAG, "", "story");

 String title = null;
 String description = null;

 while (true) {
 parser.skip();
 ParseEvent event = parser.peek();

 if (event.getType() == Xml.START_TAG) {
 String name = event.getName();
 parser.read();
 String text = parser.readText();
 parser.read (Xml.END_TAG, "", name);

 if (name.equals ("title"))
 title = text;
 else if (name.equals ("description"))

 243

 description = text;
 }
 else if (event.getType() == Xml.END_TAG) {
 parser.read (Xml.END_TAG, "", "story");
 break;
 }
 else throw new RuntimeException ("unexpected event:
"+event);
 }

}

 if (title !=null){
 descriptions.addElement
(description !=null ?description
 :title);
 newsList.append (title,null);
 }
 }

 public void startApp() {
 if (display == null) {
 display = Display.getDisplay (this);
 newsList.setCommandListener(this);
 textBox.setCommandListener(this);
 textBox.addCommand (backCmd);
 new ReadThread().start();
 }
 display.setCurrent (newsList);
 }

 public void pauseApp() {
 }

 public void commandAction (Command c, Displayable d) {

 if (c == List.SELECT_COMMAND) {

 String text = (String) descriptions.elementAt
 (newsList.getSelectedIndex());

 if (textBox.getMaxSize() < text.length())
 textBox.setMaxSize (text.length());

 textBox.setString (text);
 display.setCurrent (textBox);
 }
 else if (c == backCmd)
 display.setCurrent (newsList);
 }

 public void destroyApp (boolean really) {
 }
}

In the example, the run() method of the ReadThread class connects to the server and creates an
XmlParser object from the corresponding input stream. Then the XML processing instruction and
whitespace at the beginning of the document are skipped using the skip() method. After the

 244

<backslash> is read, the code enters the main loop for reading the <story> elements. Depending
on the event type, the program descends into the readStory() method for reading a story or leaves
the loop.

Simple Object Access Protocol: SOAP
The Simple Object Access Protocol (SOAP) is an XML-based protocol for remote method invocation.
The SOAP protocol allows you to access Web services such as weather forecasts, stock quotes, or
flight-booking information in a machine readable manner. Possible applications are clients adding
value by combining different related services, or providing an user interface appropriate for mobile
devices.

SOAP calls consist of a request sent from a client to a server and a response from the server. Listing
10.5 shows an example SOAP request, taken from the delayed stock quote example available at
http://www.xmethods.org. The <getQuote> element in the body of the message represents the
method to be called on the server, and the embedded symbol element contains the only method
parameter: the name of the symbol to be queried. The corresponding server response example is shown
in Listing 10.6. The <getQuoteResponse> element contains the return value in the <return>
element.

Note

The XMethods Web site (http://www.xmethods.org) also provides a nice overview of SOAP resources
available on the Net.

Listing 10.5 SampleSoapRequest.xml—Sample SOAP Stock Quote Request

<SOAP-ENV:Envelope
 xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
 xmlns:xsi="http://www.w3.org/1999/XMLSchema-instance"
 xmlns:xsd="http://www.w3.org/1999/XMLSchema">

 <SOAP-ENV:Body>
 <ns1:getQuote
 xmlns:ns1="urn:xmethods-delayed-quotes"
 SOAP-
ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">

 <symbol xsi:type="xsd:string">IBM</symbol>
 </ns1:getQuote>
 </SOAP-ENV:Body>
</SOAP-ENV:Envelope>

Listing 10.6 SampleSoapResponse.xml—Sample Server Response to the Stock Quote
Request

<SOAP-ENV:Envelope
 xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
 xmlns:xsi="http://www.w3.org/1999/XMLSchema-instance"
 xmlns:xsd="http://www.w3.org/1999/XMLSchema">

 <SOAP-ENV:Body>
 <ns1:getQuoteResponse

http://www.xmethods.org/
http://www.xmethods.org/

 245

 xmlns:ns1="urn:xmethods-delayed-quotes"
 SOAP-
ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">
 <return xsi:type="xsd:float">133.625</return>
 </ns1:getQuoteResponse>
 </SOAP-ENV:Body>
</SOAP-ENV:Envelope>

SOAP Serialization

In addition to an XML call envelope, the SOAP specification includes a simple XML-based data
serialization format. The serialization formats standardized transmission of complex objects via SOAP
remote method calls. It serializes the top-level object to an XML element corresponding to the
classname, with embedded elements representing the properties. The following shows an example
SOAP serialization of a Person class. The nsp: prefix is an XML namespace prefix, determining the
namespace of the Person element. (XML namespaces can be compared to Java package names to
some extent. For more details about XML namespaces, refer to the W3C recommendation found on
http://www.w3.org/TR/1999/REC-xml-names-19990114/ or to Sams Teach Yourself XML in 21 Days,
Second Edition.)

Java class:

class Person {
 String familyName;
 String givenName;
}

SOAP serialized instance:

<nsp:Person>
 <familyName>Turing</familyName>
 <givenName>Adam</givenName>
</nsp:Person>

The SOAP serialization format is able to serialize complex object graphs. Related objects can be
serialized in a linked or embedded form. Single-referenced objects can be embedded in the referenced
object, whereas multi-referenced objects should be linked. The following shows a simple example of a
referenced object, serialized in both embedded and linked forms. Note that for embedded objects, there
is no separate element for the classname, reducing the nesting depth and keeping the format human
readable. However, for polymorphic properties, the classname must be contained in a type attribute of
the corresponding element. In SOAP, the remote method call and the response are also serialized as if
they were objects. For more details about SOAP, refer to Sams Publishing's Understanding SOAP: The
Authoritative Solution. The specification is available at http://www.w3.org/TR/SOAP/.

Embedded objects:

<nsp:Person>
 <familyName>Douglas</familyName>
 <givenName>Mike</givenName>
 <father>
 <familyName>Douglas</familyName>
 <givenName>Kirk</givenName>
 </father>
</nsp:Person>

Linked objects:

<nsp:Person>

http://www.w3.org/TR/1999/REC-xml-names-19990114/
http://www.w3.org/TR/SOAP/

 246

 <familyName>Turing</familyName>
 <givenName>Adam</givenName>
 <father href="#P02" />
</nsp:Person>

<nsp:Person>
 <familyName>Turing</familyName>
 <givenName>Adam</givenName>
 <father href="#P02" />
</nsp:Person>

Note

A simple alternative to SOAP is XML-RPC. An XML-RPC package for CLDC is recently available
from http://kxmlrpc.enhydra.org.

kSOAP

The kSOAP API, available at http://www.ksoap.org, contains a kXML-based implementation of the
SOAP protocol and serialization format for CLDC. Because CLDC doesn't provide reflection
capabilities, existing classes must implement the interface KvmSerializable to add SOAP
serialization capabilities. kSOAP already includes serialization support for primitive types and
Vectors. KvmSerializable objects must be registered with a ClassMap object, providing a
mapping between XML namespaces and names and Java classnames. For classes that are needed in the
SOAP call only, you can use the convenience class SoapObject.

Listing 10.7 shows an example MIDlet for querying delayed stock quotes, corresponding to the request
and response code given in Listings 10.5 and 10.6. The SOAP call is performed in the
commandAction() method. First, the SoapObject rpc is created, modeling the method object
getQuote. Then the symbol property is added. The symbol name is retrieved from the
corresponding UI field. Finally, an HttpTransport object is created, and the remote method
invocation is performed by the call() method with the rpc object as a parameter. The returned
value is displayed in the resultItem. Figure 10.2 shows the StockQuoteDemo MIDlet.

Figure 10.2. The StockQuoteDemo MIDlet.

Listing 10.7 StockQuoteDemo.java—A Stock Quote MIDlet Using kSOAP

import javax.microedition.midlet.*;
import javax.microedition.lcdui.*;
import java.io.*;
import javax.microedition.io.*;

import org.ksoap.*;
import org.ksoap.transport.HttpTransport;

http://kxmlrpc.enhydra.org/
http://www.ksoap.org/

 247

public class StockQuoteDemo extends MIDlet implements CommandListener
{

 Form mainForm = new Form ("StockQuotes");
 TextField symbolField = new TextField ("Symbol", "IBM", 5,
TextField.ANY);
 StringItem resultItem = new StringItem ("", "");
 Command getCommand = new Command ("Get", Command.SCREEN, 1);

 public StockQuoteDemo() {
 mainForm.append (symbolField);
 mainForm.append (resultItem);
 mainForm.addCommand (getCommand);
 mainForm.setCommandListener(this);
 }

 public void startApp() {
 Display.getDisplay (this).setCurrent (mainForm);
 }

 public void pauseApp() {
 }

 public void destroyApp (boolean unconditional) {
 }

public void commandAction (Command c, Displayable d) {
 try {
 // build request string

 String symbol = symbolField.getString();
 resultItem.setLabel (symbol);

 SoapObject rpc = new SoapObject
 ("urn:xmethods-delayed-quotes", "getQuote");

 rpc.addProperty ("symbol", symbol);

 HttpTransport transport = new HttpTransport
 ("http://services.xmethods.net:9090/soap",
 "urn:xmethods-delayed-quotes#getQuote");

 Object result = transport.call (rpc);
 resultItem.setText (""+result);

 }
 catch (Exception e) {
 resultItem.setLabel ("Error:");
 resultItem.setText (e.toString());
 }
}

MathFP

Because CLDC doesn't provide the primitive Java types float and double or the corresponding
classes Float and Double, it seems that you cannot write a J2ME CLDC application that performs

 248

mathematical calculations beyond integer calculations. As a substitute for the missing floating-point
arithmetic, Onno Hommes created a library called MathFP providing 32-bit fixed-point integer math
functions. The MathFP library and the corresponding documentation can be downloaded at
http://www.jscience.net.

To perform calculations in the MathFP format, you need to convert an integer or a string representing a
floating-point value to the MathFP format. Those conversions are performed using the static methods
of the class MathFP given in Table 10.4.

Table 10.4. Conversion Methods to the MathFP Format
Method Name Description
toFP(int l) Converts a normal Java int to a fixed-point integer.
toFP(String s) Converts a string input to a fixed-point integer.

The following code snippet shows the conversion on two small examples:

// conversion of an integer to a MathFP integer
int mathFPInt1 = MathFP.toFP (1234);

// conversion of a String to a MathFP integer
int mathFPInt2 = MathFP.toFP("12.9881");

After successful conversion to the MathFP format, you are able to perform mathematical calculations
using the methods supported in the MathFP library. The MathFP functionality ranges from simple
addition, subtraction, multiplication, and division to powerful operations such as sine, cosine, and
tangent of radian values.

To add or subtract two MathFP integers, you can use the methods add() and sub() or use the plus
(+) or minus (-) operators directly:

// adding two MathFP integers using methods
int mathFPResult1 = MathFP.add(mathFPInt1, mathFPInt2);

// adding two MathFP integers using operators
int mathFPResult2 = mathFPInt1 + mathFPInt2;

// subtracting two MathFP integers using methods
int mathFPResult3 = MathFP.sub (mathFPInt1, mathFPInt2);

// subtracting two MathFP integers using operators
int mathFPResult4 = mathFPInt1 - mathFPInt2;

Simplifying the code by using the standard int operators is only possible for the add() and sub()
methods. You can convert the result back to a Java integer or String type (for example, to display the
result) using one of the three methods listed in Table 10.5.

Table 10.5. Conversion Methods from the MathFP Format Back to the Java Standard
Types

Method Name Description
toInt(int x) Converts a MathFP integer back to a normal integer.
toString(int x) Returns the MathFP integer as String.
toString(int x, int d) Returns the MathFP integer as String with rounding.

The following snippet of code demonstrates how the result of a particular MathFP operation can be
converted to a String:

http://www.jscience.net/

 249

int resultOfMathFPMul = MathFP.mul (MathFP.toFP ("1.231"),
 MathFP.toFP ("3.14"));
System.out.println (MathFP.toString (resultOfMathFPMul));

In order to show how the MathFP library can be used in a real-life application, let's implement a small
MIDP calculator. The main functionality of the application is done in the commandAction()
method, where the arithmetic operations take place. MathFP functions are used after the user activates
the equals (=) command, depending on the operator selected for the current calculation.

The complete source code of the CalculatorMidp MIDlet is shown in Listing 10.8. Figure 10.3
shows the application in action.

Figure 10.3. The CalculatorMidp MIDlet.

Listing 10.8 CalculatorMidp.java—The CalculatorMidp Sample Source Code

import javax.microedition.midlet.*;
import javax.microedition.lcdui.*;

import net.jscience.math.kvm.*;

public class CalculatorMidp extends MIDlet implements CommandListener
{

 char operator = '=';
 StringItem operand1Item = new StringItem ("", "");
 TextField operand2Field = new TextField ("", "", 7,
TextField.NUMERIC);
 TextField operand2FField = new TextField (".", "", 5,
TextField.NUMERIC);

 Display display;
 Form list;

 public CalculatorMidp() {
 display = Display.getDisplay (this);
 list = new Form ("Calculator");
 list.append (operand1Item);
 list.append (operand2Field);
 list.append (operand2FField);

 list.addCommand (new Command ("+", Command.SCREEN, 1));
 list.addCommand (new Command ("=", Command.SCREEN, 2));
 list.addCommand (new Command ("-", Command.SCREEN, 3));
 list.addCommand (new Command ("*", Command.SCREEN, 3));
 list.addCommand (new Command ("/", Command.SCREEN, 2));
 list.addCommand (new Command ("CLR", Command.SCREEN, 4));

 list.setCommandListener(this);
 }

 public void startApp() {
 display.setCurrent (list);
 }

 public void pauseApp() {
 }

 250

 public void destroyApp (boolean unconditional) {
 }

 public void commandAction(Command c, Displayable d) {

 if (c.getLabel().equals ("CLR")) {
 operator = '=';
 operand1Item.setText ("");
 operand2Field.setLabel ("");
 operand2Field.setString ("");
 operand2Field.setString ("");
 }
 else {
 // 1. apply op

 int op2 = MathFP.toFP
 (operand2Field.getString()
 + "." + operand2FField.getString());

 if (operator != '=') {
 int op1 = MathFP.toFP (operand1Item.getText());
 switch (operator) {
 case '+': op2 = MathFP.add(op1, op2); break;
 case '-': op2 = MathFP.sub (op1, op2); break;
 case '*': op2 = MathFP.mul (op1, op2); break;
 case '/': op2 = MathFP.div (op1, op2); break;
 }
 }

 String result = MathFP.toString (op2);
 operator = c.getLabel().charAt (0);

 if (operator != '=') {
 operand1Item.setText (MathFP.toString (op2));
 operand2Field.setLabel (c.getLabel());
 operand2Field.setString ("");
 operand2FField.setString ("");
 }
 else {
 operand1Item.setText ("");
 operand2Field.setLabel ("");
 int cut = result.indexOf (".");
 if (cut == -1) {
 operand2Field.setString (result);
 operand2FField.setString ("");
 }
 else {
 operand2Field.setString (result.substring (0,
cut));
 operand2FField.setString (result.substring
(cut+1));
 }
 }
 }
 }
}

 251

The Bouncy Castle Crypto API
An additional feature that is currently unavailable in J2ME CLDC is the Java Cryptography Extension
(JCE). The JCE is a set of packages providing a framework for encryption, key generation and key
agreement, and Message Authentication Code (MAC) algorithms. It supports encryption for symmetric,
asymmetric, block, and stream ciphers.

The Bouncy Castle Crypto API, which is available from http://www.bouncycastle.org, supports the
following features:

• A clean-room implementation of the JCE 1.2.1
• A lightweight cryptography API in Java
• A provider for the JCE and JCA
• Generators for Version 1 and Version 3 X.509 certificates

Because a complete implementation of the JCE is too big for the J2ME CLDC platform, we will focus
on the lightweight API available for the J2ME CLDC platform. It is specially developed for
circumstances in which the complete API and the integration of the JCE aren't required.

The lightweight API provides the following subset of the JCE:

• AsymmetricBlockCipher
• BlockCipher
• BufferedBlockCipher
• BufferedAsymmetricBlockCipher
• BufferedStreamCipher
• Digest
• KeyAgreement
• Mac
• PBE
• StreamCipher

For example, these tools let you cipher a password that needs to be transferred over a network for user
authorization. Listing 10.9 shows an example of how a String can be ciphered using a private key
with the Blowfish encryption algorithm that is part of the Bouncy Castle Crypto API. Encryption and
decryption are performed entirely in the methods encryptText() and decryptText() in order
to providing an easy mechanism for adopting to your own implementations. Figure 10.4 shows the
original and the encrypted text in the MIDlet.

Figure 10.4. The Blowfish MIDlet showing decrypted text on the left and the encrypted
on the right.

Listing 10.9 BlowfishMidp.java—The BlowfishMidp Sample Source Code

import java.io.*;
import java.lang.*;

TE
AM
FL
Y

Team-Fly®

http://www.bouncycastle.org/

 252

import javax.microedition.midlet.*;
import javax.microedition.lcdui.*;

import org.bouncycastle.util.encoders.*;

import org.bouncycastle.crypto.*;
import org.bouncycastle.crypto.engines.*;
import org.bouncycastle.crypto.modes.*;
import org.bouncycastle.crypto.params.*;

public class BlowFishMidp extends MIDlet implements CommandListener {

 private Display display = null;
 private boolean encrypted = false;

 private String key = "abcdefghijklmnopqrstuvwxyz0123456789";
 private String text = "J2ME Crypto";

 private BufferedBlockCipher bfCipher = null;

 private Form mainForm = null;

 private StringItem statusItem = new StringItem ("Status = ",
"init");
 private StringItem keyItem = new StringItem ("Key = ", key);
 private StringItem textItem = new StringItem ("Text = ", text);

 public static Command encrypt = new Command ("Encrypt",
Command.SCREEN, 1);
 public static Command decrypt = new Command ("Decrypt",
Command.SCREEN, 2);

 public BlowFishMidp() throws CryptoException {

 mainForm = new Form("BlowfishMidp");

 mainForm.append (statusItem);
 mainForm.append (textItem);
 mainForm.append (keyItem);

 mainForm.addCommand (encrypt);
 mainForm.addCommand (decrypt);
 mainForm.setCommandListener(this);
 }

 public void startApp() {
 display = Display.getDisplay(this);
 display.setCurrent(mainForm);
 }

 public void pauseApp() {}

 public void destroyApp(boolean unconditional) {}

 public void commandAction (Command c, Displayable d) {

 253

 if (c == encrypt && !encrypted) {
 try {
 textItem.setText (encryptText(key, text));
 statusItem.setText ("encrypted.");
 encrypted = true;
 }
 catch (CryptoException ce) {
 throw new RuntimeException (ce.toString());
 }
 }
 else if (c == decrypt && encrypted) {
 try {
 textItem.setText (decryptText(key,
textItem.getText()));
 statusItem.setText ("decrypted.");
 encrypted = false;
 }
 catch (CryptoException ce) {
 throw new RuntimeException (ce.toString());
 }
 }
 }

 private String encryptText (String key, String text)
 throws CryptoException {

 byte[] keyBytes= Hex.decode(key.getBytes());
 byte[] ptBytes = text.getBytes();
 bfCipher = new PaddedBlockCipher
 (new CBCBlockCipher
 (new BlowfishEngine()));

 bfCipher.init(true, new KeyParameter(keyBytes));
 byte[] result = new
byte[bfCipher.getOutputSize(ptBytes.length)];
 int len = bfCipher.processBytes(ptBytes, 0, ptBytes.length,
result, 0);
 bfCipher.doFinal(result, len);

 return new String(Hex.encode(result));
 }

 private String decryptText(String key, String cipherText)
 throws CryptoException {

 byte[] keyBytes = Hex.decode(key.getBytes());
 byte[] textBytes = Hex.decode(cipherText.getBytes());

 bfCipher.init(false, new KeyParameter(keyBytes));

 byte[] result = new
byte[bfCipher.getOutputSize(textBytes.length)];
 int len = bfCipher.processBytes(textBytes, 0,
 textBytes.length, result, 0);
 bfCipher.doFinal(result, len);
 return new String(result).trim();
 }
}

 254

User Interface Extensions

Although PDAP and MIDP provide user interface APIs appropriate to the corresponding devices,
some extensions are available for both profiles.

For PDAP, kAWT provides some additional widgets such as a tabbed pane, a progress bar, and an
option dialog to overcome some of the limitations in the widget set of AWT when compared to
SWING.

Three different user interface extensions are available for MIDP. The Open Windowing Toolkit
(OWT) provides a set of simple lightweight widgets based on the MIDP Canvas class. OWT is
developed by DigitalFocus for Nextel and Motorola. Motorola itself provides a similar widget
toolkit called the Lightweight Windowing Toolkit (LWT). Unfortunately, LWT is available for
Motorola phones only. Finally, the kAWT toolkit provides an AWT subset on top of the MIDP
canvas toolkit. Table 10.6 contains a brief overview of the APIs available. As with the XML
parsers, there is a tradeoff between size and functionality. Figure 10.5 shows the OWT Grass Seed
sample application; Figure 10.6 shows the KawtDemo MIDlet.

Figure 10.5. The OWT Grass Seed example application.

Figure 10.6. The KawtDemo MIDlet.

Table 10.6. User Interface APIs Available for MIDP
Toolkit JAR File

Size
Remarks

KAWT for
MIDP

75.4KB http://www.kawt.de

AWT subset

Optional additional widgets such as TabbedPane and ProgressBar
available

LWT (native) http://developers.motorola.com/developers/wireless/tools/index.html#lwt

Native implementation available for Motorola Accompli phones only

http://www.kawt.de/
http://developers.motorola.com/developers/wireless/tools/index.html#lwt

 255

OWT 52.7KB http://nextel.sourceforge.net

Summary

In this chapter, you have gained an overview of third-party libraries that overcome some
limitations of the CLD Configuration and its profiles, including various libraries for XML parsing,
kSOAP for remote method invocation, the bouncycastle library for cryptography, and mathFP for
fixed point mathematics.

http://nextel.sourceforge.net/

 256

Appendix A. Class Library: CLDC Packages
IN THIS APPENDIX

• The java.io Package
• The java.lang Package
• The java.lang.ref Package
• The java.util Package
• The javax.microedition.io Package
• MIDP-Specific Packages
• PDAP-Specific Packages

This appendix gives an overview of the API provided in the Connected Limited Device
Configuration (CLDC) version 1.0 and version 1.1 also called CLDC Next Generation (NG). It
also lists profile-related additions to the configurations.

The java.io Package

The java.io package contains all the interfaces, classes, and exceptions that provide a mechanism
for system input and output through data streams.

Interfaces

DataInput The DataInput interface provides methods for reading binary streams and
converting them into Java primitive data types.

DataOutput The DataOutput interface provides methods for writing/converting Java
primitive data types to a binary stream.

Classes

ByteArrayInputStream The ByteArrayInputStream encapsulates an InputStream
that uses a byte array as a buffer that might be read from a
stream.

ByteArrayOutputStream The ByteArrayOutputStream provides an OutputStream
that might be used to write data to a byte array.

DataInputStream The DataInputStream implements the DataInput interface
and provides methods to read primitive Java data types from a
stream.

DataOutputStream The DataOutputStream implements the DataOutput
interface and provides methods to write primitive Java data
types to a stream.

InputStream The InputStream is the abstract superclass of all byte-related
input streams.

InputStreamReader The InputStreamReader closes the gap between byte-related
input streams and character-related input streams. Bytes that
are read using this class are internally converted to characters.

OutputStream The OutputStream is the abstract superclass of all byte-
related output streams.

 257

OutputStreamWriter The OutputStreamWriter closes the gap between byte-
related output streams and character-related output streams.
Characters that are written using this class are internally
converted to bytes.

PrintStream The PrintStream is an extension to an OutputStream. It
adds functionality that lets you print representations of various
data types.

Reader The Reader is the abstract superclass of all character-oriented
InputStreams.

Writer The Writer is the abstract superclass of all character-oriented
OutputStreams.

Exceptions

EOFException The EOFException signals that an unexpected end of
the stream has been reached during input.

InterruptedIOException The InterruptedIOException signals that an I/O
operation has been interrupted.

IOException The IOException signals that an exception of some
kind has occurred.

UnsupportedEncodingException The UnsupportedEncodingException signals that
the character encoding is not supported.

UTFDataFormatException The UTFDataFormatException signals that a
malformed UTF-8 String has been read by a class
implementing the DataInput interface.

 258

The java.lang Package
This package provides classes that are fundamental to the design of the Java programming language.

Interface

The Runnable interface needs to be implemented by a class when its instances are intended for
execution by a thread.

Classes

Boolean The Boolean class is a wrapper class for a value of the primitive Java data
type boolean.

Byte The Byte class is a wrapper class for a value of the primitive Java data type
byte.

Character The Character class is a wrapper class for a value of the primitive Java
data type char.

Class The instances of the class Class represent Java classes and interfaces of a
running Java application.

Double The Double class is a wrapper class for a value of the primitive type
double. This class is part of CLDC since version 1.1.

Float The Float class is a wrapper class for a value of the primitive type float.
This class is part of CLDC since version 1.1.

Integer The Integer class is a wrapper class for a value of the primitive Java data
type int.

Long The Long class is a wrapper class for a value of the primitive Java data type
long.

Math The Math class provides some basic mathematical operations on the Java
primitive data types int,long, float and double.

Object The Object class is the superclass of every Java class in a class hierarchy.
Runtime The Runtime class provides every Java application with an interface for

interacting with the application environment where it is executed. Only one
instance of the Runtime class is available in a running application.

Short The Short class is a wrapper class for a value of the primitive Java data
type short.

String The String class represents character-based strings.
StringBuffer The StringBuffer class represents a mutable sequence of characters.
System The System class provides system-related methods.
Thread The Thread class represents a running thread of a Java application.
Throwable The Throwable class is the superclass of every exception and error in the

Java language.

Exceptions

ArithmeticException The ArithmeticException is thrown if an
unexpected arithmetic exception occurs.

ArrayOutOfBoundsException The ArrayOutOfBoundsException is thrown
when an illegal index of an array is accessed.

ArrayStoreException The ArrayStoreException is thrown to indicate

 259

that the code has tried to store an incorrect object
type in an array of objects.

ClassCastException The ClassCastException is thrown to indicate
that the code has tried to convert the class into a
subclass that it is not an instance of.

ClassNotFoundException The ClassNotFoundException is thrown to
indicate that the code has used the forName()
method to try to load a class that could not be
found.

Exception The Exception class and all its subclasses
indicate conditions that might be watched by an
application.

IllegalAccessException The IllegalAccessException indicates that
an application tried to load in a class, but the
currently executing method did not have access to
the definition of the specified class, because the
class was not public and was in another package.

IllegalArgumentException The IllegalArgumentException is thrown to
indicate that a method has passed an illegal
parameter.

IllegalMonitorStateException The IllegalMonitorStaeException is thrown
to indicate that a thread has attempted to wait on
an object's monitor or to notify other threads
waiting on an object's monitor without owning the
specified monitor.

IllegalStateException The IllegalStateException is an MIDP
extension to CLDC and is available only in MIDP-
conforming Java Virtual Machines. It indicates that
a method has been invoked at an illegal or
inappropriate time. In other words, the Java
environment or Java application is not in an
appropriate state for the requested operation.

IllegalThreadStateException The IllegalThreadStateException is thrown
to indicate that a method has been invoked on a
thread that is not in an appropriate state.

IndexOutOfBoundsException The IndexOutOfBoundsException is thrown in
order to indicate that an index of some sort (such
as to an array, to a string, or to a vector) is out of
range.

InstantiationException The InstantiationException is thrown to
indicate that an application has tried to create an
instance using the newInstance() method for an
instance of an interface or abstract class.

InterrruptedException The InterruptedException is thrown to
indicate when a thread is interrupted while waiting,
sleeping, or otherwise pausing for a long period of
time.

NegativeArraySizeException The NegativeArraySizeException is thrown
to indicate that the application has tried to create
an array of negative size.

NullPointerException The NullPointerException is thrown to
indicate that an application tried to use null in a
case where an Object is required.

NumberFormatException The NumberFormatException is thrown to
indicate that the application has attempted to

 260

convert a string to one of the numeric types, but
the string did not have the appropriate format.

RuntimeException The RuntimeException is the superclass of
those exceptions that can be thrown during the
normal operation of the Java Virtual Machine.

SecurityException The SecurityException is thrown if the
security manager discovers a security violation.

StringIndexOutOfBoundsException The StringIndexOutOfBoundsException is
thrown by the charAt method in the class String
and by other String methods to indicate that an
index is either negative, greater than, or equal to
the size of the string.

Errors

Error The Error class is a subclass of the Throwable class indicating
serious problems that an application should not try to catch.

NoClassDefFoundError The NoClassDefFoundError occurs, if the Java Virtual
Machine tries to load in the definition of a class and no definition
of the class could be found. This error is part of CLDC since
version 1.1.

OutOfMemoryError The OutOfMemoryError is thrown in order to indicate that the
Java Virtual Machine cannot allocate an object, because it is out
of memory, and no more memory could be made available by the
garbage collector.

VirtualMachineError The VirtualMachineError is thrown to indicate that the Java
Virtual Machine is broken or has run out of resources necessary
for it to continue operating.

 261

The java.lang.ref Package
This package contains support for weak references and is part of CLDC since version 1.1.

Classes

Reference The Reference class is the abstract base class for all reference objects
and may not be sub classed directly.

WeakReference The WeakReference class provides support for weak references which
are most often used to implement canonicalizing mappings.

TE
AM
FL
Y

Team-Fly®

 262

The java.util Package
This package contains date and time facilities and miscellaneous utility classes.

Interface

The Enumeration interface provides methods for accessing a series of elements in a class
implementing this interface.

Classes

Calendar The Calendar class is an abstract class for setting and getting dates using a
set of integer fields.

Date The Date class represents a specific point of time in millisecond precision.
Hashtable The Hashtable class implements a hashtable in order to map keys to values.
Random The Random class implements a stream of pseudorandom numbers.
Stack The Stack class implements a last-in-first-out (LIFO) stack of objects.
Timer The Timer class is an MIDP extension to CLDC and is available only in MIDP-

conforming Java Virtual Machines. The class provides a mechanism for threads
to schedule tasks for future executions in a background thread.

TimerTask The TimerTask class is an MIDP extension to CLDC and is available only in
MIDP-conforming Java Virtual Machines. A Timer can schedule a TimerTask
for an one-time or a repeated execution.

TimeZone The TimeZone class represents a time zone offset, and also calculates daylight
savings time changes.

Vector The Vector class implements a mutable array of objects.

Exceptions

EmptyStackException The EmptyStackException is thrown by the methods of the
Stack class to indicate that the stack is empty.

NoSuchElementException The NoSuchElementException is thrown by the
nextElement() method of an Enumeration to indicate that
there are no more elements in the enumeration.

 263

The javax.microedition.io Package
This package contains all interfaces, classes, and exceptions of the generic connection framework.

Interfaces

CommConnection The CommConnection interface is a PDAP extension to
CLDC and is only available in PDAP-conforming Java
Virtual Machines. The CommConnection interface defines
all necessary methods for a logical serial port connection.

Connection The Connection interface is the basic type of generic
connection and a superclass of all connections.

ContentConnection The ContentConnection interface defines methods for a
stream connection over which content is passed.

Datagram The Datagram interface defines generic methods for a
datagram that is used by the DatagramConnection.

DatagramConnection The DatagramConnection interface defines all necessary
methods for datagram connections.

FileConnection The FileConnection interface is a PDAP extension to
CLDC and is available only in PDAP-conforming Java
Virtual Machines. The FileConnection interface defines
all necessary methods to access files that are stored on
removable media.

FileSystemEvent The FileSystemEvent interface is a PDAP extension to
CLDC and is available only in PDAP-conforming Java
Virtual Machines. The FileSystemEvent interface defines
all necessary methods needed for an event used to detect
when a file system is added and removed on a device.

HttpConnection The HttpConnection interface is an MIDP extension to
CLDC and is available only in MIDP-conforming Java Virtual
Machines. The HttpConnection interface defines all
necessary methods and constants for a HTTP connection.

InputConnection The InputConnection interface defines all necessary
methods for an input connection.

OutputConnection The OutputConnection interface defines all necessary
methods for an output connection.

StreamConnection The StreamConnection interface is the combination of the
InputConnection and the OutputConnection.

StreamConnectionNotifier The StreamConnectionNotifier interface defines the
methods that a stream connection notifier must have.

Classes

Connector The Connector class provides a set of static methods for handling
all kinds of connections contained in the generic connection
framework.

FileSystemListener The FileSystemListener is a PDAP extension to CLDC and is
available only in PDAP-conforming Java Virtual Machines. The
FileSystemListener is used for receiving FileSystemEvents
while adding or removing a file system root.

Exception

 264

The ConnectionNotFoundException is thrown to indicate that a particular connection passed
to the Connector.open() methods can not be found.

 265

MIDP-Specific Packages

The MIDP-specific packages javax.microedition.lcdui,
javax.microedition.midlet, and javax.microedition.rms are described in the
following sections.

The javax.microedition.lcdui Package

This package provides a set of features for implementation of user interfaces for MIDP applications.

Interfaces

Choice The Choice interface defines methods for UI components
implementing the capability of selecting elements from a predefined
number of elements.

CommandListener The CommandListener interface defines methods that are used by
applications that want to receive high-level commands from the UI
implementation.

ItemStateListener The ItemStateListener interface defines methods that are used
by applications that want to receive events that indicate changes in
the internal state of the interactive items within a Form screen.

Classes

Alert The Alert class provides a screen that shows data to the user and waits for
a specified period of time before proceeding to the next screen.

AlertType The AlertType class provides an indication of the behavior of alerts.
Canvas The Canvas class is the base class for writing applications that need to

handle low-level events and to issue graphics calls for drawing to the display
at low-level.

ChoiceGroup The ChoiceGroup class is a group of selectable elements that needs to be
appended to a Form.

Command The Command class encapsulates the semantic information of an action.
DateField The DateField class provides a UI component for editing date and time

information. This UI component needs to be appended to a Form.
Display The Display class represents the manager of the display and input devices

of the system.
Displayable The Displayable class encapsulates an object that has the capabilities to

be placed on the Display.
Font The Font class represents a font and font metrics.
Form The Form class is a Screen that contains an arbitrary mixture of all available

high-level UI components.
Gauge The Gauge class represents a bar graph display of a value that needs to be

placed in a Form.
Graphics The Graphics class provides simple 2D geometric rendering in the low-level

API.
Image The Image class is used to hold image data.
ImageItem The ImageItem class provides layout functionality for images that need to be

placed in a Form or Alert.
Item The Item class is the superclass of all UI components that can be appended

 266

to Forms and Alerts.
List The List class provides a Screen containing a list of choices.
Screen The Screen class is the superclass of all high-level user interface classes.
StringItem The StringItem class is an Item containing a String.
TextBox The TextBox class provides a Screen that is capable of entering and editing

text.
TextField The TextField class provides an Item that is capable of entering and

editing text that needs to be appended to a Form.
Ticker The Ticker class implements a UI component where the text scrolls

continuously across the display.

The javax.microedition.midlet Package

This package defines MIDP applications and the interactions between the application and the
environment in which the application is executed.

Class

The MIDlet class provides an application for the MID profile.

Exception

The MIDletStateChangeException signals that a requested MIDlet state change has failed.

The javax.microedition.rms Package

This package provides a mechanism to persistently store data and later retrieve it.

Interfaces

RecordComparator The RecordComparator interface defines methods for a comparator
that compares two records, depending on the application-defined
criteria, in order to see if they match or to determine their relative sort
order.

RecordEnumeration The RecordEnumeration interface defines methods for a
bidirectional record store record enumerator.

RecordFilter The RecordFilter interface defines methods for a filter that
examines a record to see if it matches depending on the application-
defined criteria.

RecordListener The RecordListener interface defines methods for receiving
events indicating that a Record was changed, added, or deleted from
a record store.

Class

The RecordStore class represents one record store.

Exceptions

InvalidRecordIDException The InvalidRecordIDException is thrown to
indicate that an operation could not be completed,
because the record ID was invalid.

 267

RecordStoreException The RecordStoreException is thrown to signal that
a general exception occurred in a record store
operation.

RecordStoreFullException The RecordStoreFullException is thrown to
indicate that an operation could not be completed,
because the record store system storage was full.

RecordStoreNotFoundException The RecordStoreNotFoundException is thrown to
indicate that an operation could not be completed,
because the record store could not be found.

RecordStoreNotOpenException The RecordStoreNotOpenException is thrown to
indicate that an operation was attempted on a closed
record store.

 268

PDAP-Specific Packages

The java.awt, java.awt.event, java.awt.image, javax.microedition.pim and the
additions to the java.io, java.net, java.util packages are available in PDAP only.

The java.awt Package

This package contains all the classes for creating user interfaces and for painting graphics and images
for implementation of user interfaces for PDAP applications.

Interfaces

ActiveEvent ActiveEvent provides an interface for events that know how dispatch
themselves. By implementing this interface, an event can be placed upon
the event queue and its dispatch() method will be called when the
event is dispatched, using the EventDispatchThread.

Adjustable The Adjustable interface is used for objects having an adjustable
numeric value contained within a bounded range of values.

ItemSelectable The ItemSelectable provides an interface for objects containing a set
of items for which zero or more can be selected.

LayotManager The LayoutManager interface defines methods for classes knowing how
to layout Containers.

LayoutManager2 LayoutManager2 provides an interface for classes that know how to
layout Containers based on a layout constraints object. It extends the
LayoutManager interface to handle layouts explicitly in terms of
constraint objects that specify how and where components should be
added to the layout.

MenuContainer The MenuContainer interface provides methods for all menu related
containers.

Shape The Shape interface provides definitions for graphical objects that
represent some kind of geometric shapes.

Classes

AWTEvent The AWTEvent class is the root event for all AWT related
events.

AWTEventMulticaster The AWTEventMulsticaster class provides a mechanism for
efficient and thread-safe multi-cast event dispatching for the
AWT events included in the java.awt.event package.

BorderLayout The BorderLayout lays out a container, arranging and resizing
its components to fit in five regions: north, south, east, west, and
center.

Button The Button class represents a labeled button.
Canvas The Canvas class represents a blank rectangular area of the

screen onto which the application can draw or from which the
application can trap input events from the user.

CardLayout The CardLayout lays out a container, arranging each
component in the container as a card where only one card is
visible at a time.

Checkbox The Checkbox class represents a graphical component that can
be in either an "on" (true) or "off" (false) state.

 269

CheckboxGroup The CheckboxGroup class is used to combine a set
Checkboxes together in a group.

CheckboxMenuItem The CheckboxMenuItem represents a Checkbox that can be
added to a menu.

Choice The Choice class represents a graphical pop-up menu
component of choices.

Color The Color class is used to encapsulate colors in the RGB color
space.

Component The Component class is the abstract super class of objects
having a graphical representation that can be displayed on the
screen and are able to interact with the user.

Container The Container class is a component that can contain other
AWT components.

Cursor The Cursor class provides the bitmap representation of the
mouse cursor.

Dialog A Dialog class is a top-level window with a title and a border
that can be used to take input from the user.

Dimension The Dimension class encapsulates the width and height in
integer precision of a component in a single object.

Event The Event class is a platform-independent implementation of
events that can be dispatched from the platform's Graphical
User Interface in the Java 1.0 event model.

EventQueue The EventQueue class provides a platform-independent
mechanism for queuing events.

FlowLayout The FlowLayout class lays out components in a left-to-right
flow, like lines of text in a paragraph.

Font The Font class represents a font.
FontMetrics The FontMetrics class defines a font metrics object, which

encapsulates information about the rendering of a particular font
on a particular screen.

Frame The Frame class represents a top-level window with a title and a
border.

Graphics The Graphics class is the abstract base class for all graphics
contexts that allow an application to draw onto components that
are realized on various devices, as well as onto off-screen
images.

GraphicsConfiguration The GraphicsConfiguration class describes the capabilities
of a graphics destination.

GraphicsDevice The GraphicsDevice class holds the graphics devices that
might be available in a particular graphics environment.

GraphicsEnvironment The GraphicsEnvironment class describes a set of
GraphicsDevice and Font objects available on a particular
platform.

GridBagConstraints The GridBagConstraints class defines constraints for
components that are laid out in a GridBagLayout.

GridBagLayout The GridBagLayout class provides a flexible layout manager
that is capable of positioning components according to
constraints in the GridBayConstraints class.

GridLayout The GridLayout class lays out the components of a container
in a rectangular grid.

Image The Image class is the super-class of all classes that represent
graphical images.

 270

Insets The Insets class represents the borders of a container. It
specifies the space that a container must leave at each of its
edges.

Label The Label class represents a component for placing text in a
container.

List The List class represents a graphical component with a
scrolling list of text items.

MediaTracker The MediaTracker class is a utility class providing a
mechanism to track the status of media objects such as images.

Menu The Menu class represents an object acting as pull-down menu
component that is deployed in a menu bar.

MenuBar The MenuBar class encapsulates the platform's concept of a
menu bar bound to a frame.

MenuComponent The MenuComponent class is the super-class of all menu-
related components.

MenuItem The MenuItem class represents on item in a menu.
MenuShortcut The MenuShortcut class represents a keyboard accelerator

for a MenuItem.
Panel The Panel class is the simplest container class.
Point The Point class represents a location in (x, y) coordinate

space, specified in integer precision.
Polygon The Polygon class represents a geometric description of a

closed, two-dimensional region within a coordinate space.
PopupMenu The Popup class a menu that can be dynamically popped up at

a specified position within a component.
Rectangle The Rectangle class specifies an area in a coordinate space

that is enclosed by the Rectangle object's top-left point (x, y) in
the coordinate space, its width, and its height.

Scrollbar The Scrollbar class represents a scroll bar user-interface
object.

ScrollPane The ScrollPane class represents a container class which
implements automatic horizontal and/or vertical scrolling for a
single child component.

SystemColor The SystemColor class encapsulates a set symbolic colors
representing the color of GUI objects on a particular platform.

TextArea The TextArea class represents a graphical component capable
of displaying a multi-line region text.

TextComponent The TextComponent class is the super-class of any
component that allows the editing of text.

TextField The TextField class represents a graphical component
allowing the user to edit a single line of text.

Toolkit The Toolkit class is the abstract super-class of all actual
implementations of the Abstract Window Toolkit. Subclasses of
Toolkit are used to bind the various components to particular
native toolkit implementations.

Window The Window class is a top-level window with no borders and no
menubar.

Exceptions

AWTException The AWTException signalizes that an AWT related

 271

excaption occurred.
IllegalComponentStateException The IllegalComponentStateException

signalizes that an AWT component is not in an
appropriate state for the operation.

Error

The java.awt package consists of the AWTError only that signalizes that a serious error in the
Abstract Window Toolkit occurred.

The java.awt.event Package

This package provides interfaces and classes for dealing with different types of events fired by AWT
components.

Interfaces

ActionListener The ActionListener interface provides methods for receiving
action events.

AdjustmentListener The AdjustmentListener interface provides methods for
receiving adjustment events.

AWTEventListener The AWTEventListener interface provides methods for receiving
notification of events dispatched to objects that are instances of
Component or MenuComponent or their subclasses.

ComponentListener The ComponentListener interface provides methods for
receiving component events.

ContainerListener The ContainerListener interface provides methods for
receiving container events.

FocusListener The FocusListener interface provides methods for receiving
keyboard focus events on a component.

ItemListener The ItemListener interface provides methods for receiving item
events.

KeyListener The KeyListener interface provides methods for receiving
keyboard events (keystrokes).

MouseListener The MouseListener interface provides methods for receiving
mouse events such as (press, release, click, enter, and exit) on a
component.

MouseMotionListener The MouseMotionListener interface provides methods for
receiving mouse motion events on a component.

TextListener The TextListener interface provides methods for receiving text
events.

WindowListener The WindowListener interface provides methods for receiving
window events.

Classes

ActionEvent The ActionEvent class represents a semantic event, indicating
that a component-defined action occurred.

AdjustmentEvent The AdjustmentEvent class encapsulates an event emitted by
Adjustable objects.

ComponentAdapter The ComponentAdapter class provides an abstract adapter class
for receiving component events.

TE
AM
FL
Y

Team-Fly®

 272

ComponentEvent The ComponentEvent class encapsulates a low-level event
indicating that a component moved, changed size, or changed
visibility

ContainerAdapter The ContainerAdapter class provides an abstract adapter class
for receiving container events.

ContainerEvent The ContainerEvent class encapsulates a low-level event which
indicates that a container's contents has changed because a
component was added or removed.

FocusAdapter The FocusAdapter class provides an abstract adapter class for
receiving focus events.

FocusEvent The FocusEvent class encapsulates a low-level event indicating
that a component has gained or lost the keyboard focus.

InputEvent The InputEvent class represents the root event class for all
component-level input events.

InvocationEvent The InvocationEvent encapsulates an event executing the
run() method on a Runnable object when dispatched by the AWT
event dispatcher thread.

ItemEvent The ItemEvent encapsulates a semantic event which indicates that
an item was selected or deselected.

KeyAdapter The KeyAdapter class provides an abstract adapter class for
receiving keyboard events.

KeyEvent The KeyEvent class encapsulates an event indicating that a
keystroke occurred in a component.

MouseAdapter The MouseAdapter class provides an abstract adapter class for
receiving mouse events.

MouseEvent The MouseEvent class encapsulates an event indicating that a
mouse action occurred in a component.

MouseMotionAdapter The MouseMotionAdapter class provides an abstract adapter
class for receiving mouse motion events.

PaintEvent The PaintEvent class encapsulates a component-level paint
event.

TextEvent The TextEvent class encapsulates a semantic event indicating that
an object's text changed.

WindowAdapter The WindowAdapter class provides an abstract adapter class for
receiving window events.

WindowEvent The WindowEvent class encapsulates a low-level event indicating
that a window has changed its status.

The java.awt.image Package

This package provides classes for creating and modifying images.

Interfaces

ImageConsumer The ImageConsumer interface is used for expressing interest in image data
through the ImageProducer interfaces.

ImageObserver The ImageObserver interface is asynchronous update interface for
receiving notifications about Image information as the Image is constructed.

ImageProducer The ImageProducer interface defines methods for objects that can produce
the image data for images.

Classes

 273

AreaAveragingScaleFilter The AreaAveragingScaleFilter class is used to scale
images using a simple area averaging algorithm that
produces smoother results than the nearest neighbor
algorithm.

ColorModel The ColorModel class is an abstract class encapsulating
methods for translating a pixel value to color components
and an alpha component.

CropImageFilter The CropImagefilter class is used for cropping images.
DirectColorModel The DirectColorModel is a ColorModel class that

works with pixel values that represent RGB color and alpha
information as separate samples and that pack all samples
for a single pixel into a single int, short, or byte quantity.

FilteredImageSource The FilteredImageSource class is an implementation of
the ImageProducer interface which takes an existing
image and a filter object and uses them to produce image
data for a new filtered version of the original image.

ImageFilter The ImageFilter class implements a filter for the set of
interface methods that are used to deliver data from an
ImageProducer to an ImageConsumer.

IndexColorModel The IndexColorModel class that works with pixel values
consisting of a single sample which is an index into a fixed
colormap.

MemoryImageSource The MemoryImageSource is an implementation of the
ImageProducer interface which uses an array to produce
pixel values for an Image.

PixelGrabber The PixelGrabber class is an implementation of the
ImageConsumer class which can be attached to an Image
or ImageProducer object to retrieve a subset of the pixels
in that image.

ReplicateScaleFilter The ReplicateScaleFilter class is used for scaling
images using the simplest algorithm.

RGBImageFilter The RGBImageFilter class provides an easy way to
create an ImageFilter which modifies the pixels of an
image in the default RGB ColorModel.

The javax.microedition.pim Package

This package contains all of the classes for accessing the Personal Information Manager for PDAP
applications.

Interfaces

Contact The Contact interface defines all methods that need to be implemented by a
Contact object of an address book.

ContactList The ContactList interface defines all methods that need to be implemented
by a ContactList object which is used to store the Contacts of an address
book

Event The Event interface defines all methods that needs to be implemented by an
Event object of a calendar.

EventList The EventList interface defines all methods that needs to be implemented
by a EventList object which is used to store Events of a given calendar.

PIMElement The PIMElement interface defines all methods necessary for an element of a
PIMList. Interfaces extending the PIMElement interface are Contact,

 274

Event and ToDo.
PIMList The PIMList interface defines all methods necessary for a list that is capable

of storing PIMElements. Interfaces extending the PIMList interface are
ContactList, EventList and ToDoList.

ToDo The ToDo interface defines all methods that need to be implemented by an
entry of a ToDoList.

ToDoList The ToDoList interface defines all methods that needs to be implemented by
a ToDoList object which is used to store ToDo elements.

Classes

EventRepeat The EventRepeat class represents a description for a repeating pattern for
an Event element.

PIM The PIM class is used to access all PIM databases which are available on the
device by providing static access methods.

Exception

PimException The PimException is thrown to indicate that a general error in the pim
classes occurred.

PDAP Additions to the java.io package

PDAP adds the PrintWriter class which is used to print formatted representations of objects to a
text-output stream.

PDAP Additions to the java.lang.reflect package

PDAP adds the InvocationTargetException that can be thrown in the java.awt.
EventQueue.invokeAndWait() method.

PDAP Additions to the java.net package

PDAP need to add the following class and exception to the java.net package.

URL The URL class represents a Uniform Resource Locator, a pointer
to a "resource" on the World Wide Web.

MalformedURLException The MalformedURLException is thrown to indicate that a
malformed URL has occurred.

PDAP Additions to the java.util package

PDAP need to add the following class and exception to the java.net package.

Interface

EventListener The EventListener interface is a tagging interface that all event listener
interfaces must extend.

Classes

 275

EventObject The EventObject is the root class from which all event state objects shall be
derived.

Locale The Locale class represents a specific geographical, political, or cultural
region.

Exception

MissingResourceException The MissingResourceException is thrown to indicate
that a resource could not be found.

 276

Appendix B. Comparison Charts
IN THIS APPENDIX

• java.awt
• java.awt.event
• java.awt.image
• java.io
• java.lang
• java.lang.ref
• java.lang.reflect
• java.net
• java.util
• java.util.jar
• java.util.zip
• Packages Not Available in CLDC

This appendix compares J2SE classes (v 1.3) to their J2ME CLDC and CLDC-NG(1.1)/PDAP
counterparts. If a J2SE class is contained in J2ME, but methods are omitted, a detailed comparison
is given in the sections following the package descriptions.

 277

java.awt

The java.awt package and its sub packages java.awt.event and java.awt.image are
available in PDAP only.

For a discussion of the MIDP counterpart, the javax.microedition.lcdui package, refer to Chapter 3,
"MIDP Programming."

Table B.1. Interfaces of the java.awt Package
J2SE Interface Availability in PDAP
ActiveEvent All J2SE Methods are available in PDAP.
Adjustable All J2SE Methods are available in PDAP.
Composite Not available in PDAP.
CompositeContext Not available in PDAP.
ItemSelectable All J2SE Methods are available in PDAP.
LayotManager All J2SE Methods are available in PDAP.
LayoutManager2 All J2SE Methods are available in PDAP.
MenuContainer All J2SE Methods are available in PDAP.
Paint Not available in PDAP.
PaintContext Not available in PDAP.
PrintGraphics Not available in PDAP.
Shape Partly contained; see Table B.5 for details.
Stroke Not available in PDAP.
Transparency Not available in PDAP.

Table B.2. Classes of the java.awt Package
J2SE Class Availability in PDAP
AlphaComposite Not available in PDAP.
AWTEvent Fully available in PDAP.
AWTEventMulticaster Partially contained; see Table B.6 for details.
AWTPermission Not available in PDAP.
BasicStroke Not available in PDAP.
BorderLayout All J2SE Methods are available in PDAP.
Button Partially contained; see Table B.7 for details.
Canvas Partially contained; see Table B.8 for details.
CardLayout All J2SE Methods are available in PDAP.
Checkbox Partially contained; see Table B.9 for details.
CheckboxGroup All J2SE Methods are available in PDAP.
CheckboxMenuItem Partly contained; see Table B.10 for details.
Choice Partially contained; see Table B.11 for details.
Color Partially contained; see Table B.12 for details.
Component Partially contained; see Table B.13 for details.
ComponentOrientation Not available in PDAP.
Container Partially contained; see Table B.14 for details.
Cursor Partly contained; see Table B.15 for details.
Dialog Partially contained; see Table B.16 for details.
Dimension Partially contained; see Table B.17 for details.
Event All J2SE Methods are available in PDAP.
EventQueue All J2SE Methods are available in PDAP.

 278

FileDialog Partially contained; see Table B.18 for details.
FlowLayout All J2SE Methods are available in PDAP.
Font Partially contained; see Table B.19 for details.
FontMetrics Partially contained; see Table B.20 for details.
Frame Partially contained; see Table B.21 for details.
GradientPaint Not available in PDAP.
Graphics Partially contained; see Table B.22 for details.
Graphics2D Not available in PDAP, please use Graphics instead.
GraphicsConfigTemplate Not available in PDAP.
GraphicsConfiguration Partially contained; see Table B.23 for details.
GraphicsDevice Partially contained; see Table B.24 for details.
GraphicsEnvironment Partially contained; see Table B.25 for details.
GridBagConstraints Partially contained; see Table B.26 for details.
GridBayLayout Partially contained; see Table B.27 for details.
GridLayout All J2SE methods are available in PDAP.
Image All J2SE methods are available in PDAP.
Insets Partially contained; see Table B.28 for details.
JobAttributes Not available in PDAP.
Label Partially contained; see Table B.29 for details.
List Partially contained; see Table B.30 for details.
MediaTracker All J2SE methods are available in PDAP.
Menu Partially contained; see Table B.31 for details.
MenuBar Partially contained; see Table B.32 for details.
MenuComponent Partially contained; see Table B.33 for details.
MenuItem Partially contained; see Table B.34 for details.
MenuShortcut All J2SE methods are available in PDAP.
PageAttributes Not available in PDAP.
Panel Partially contained; see Table B.35 for details.
Point Partially contained; see Table B.36 for details.
Polygon Partially contained; see Table B.37 for details.
PopupMenu Partially contained; see Table B.38 for details.
PrintJob Not available in PDAP.
Rectangle Partially contained; see Table B.39 for details.
RenderingHints Not available in PDAP.
Robot Not available in PDAP.
Scrollbar Partially contained; see Table B.40 for details.
ScrollPane Partially contained; see Table B.41 for details.
SystemColor Partially contained; see Table B.42 for details.
TextArea Partially contained; see Table B.43 for details.
TextComponent Partially contained; see Table B.44 for details.
TextField Partially contained; see Table B.45 for details.
TexturePaint Not available in PDAP.
Toolkit Partially contained; see Table B.46 for details.
Window Partially contained; see Table B.47 for details.

Table B.3. Exceptions of the java.awt Package
J2SE Exception Availability in PDAP
AWTException Available in PDAP.

 279

FontFormatException Not available in PDAP.
IllegalComponentStateException Available in PDAP.

Table B.4. Errors of the java.awt Package
J2SE Error Availability in PDAP
AWTError Available in PDAP.

Shape

Table B.5. Methods ofthe Class Shape
Method Alternative/Workaround
boolean contains(double x, double y) Not available in PDAP.
boolean contains(double x, double y, double w,
double h)

Not available in PDAP.

boolean contains(Point2D p) Not available in PDAP.
boolean contains(Rectangle2D r) Not available in PDAP.
Rectangle getBounds() Available in PDAP.
Rectangle2D getBounds2D() Not available in PDAP.
PathIterator getPathIterator (AffineTransform at) Not available in PDAP.
PathIterator getPathIterator (AffineTransform at,
double flatness)

Not available in PDAP.

boolean intersects(double x, double y, double w,
double h)

Not available in PDAP.

boolean intersects(Rectangle2D r) Not available in PDAP.

AWTEventMulticaster

Table B.6. Methods of the Class AWTEventMulticaster
Method Alternative/Workaround
Protected AWTEventMulticaster (EventListener a,
EventListener b)

Available in PDAP.

void actionPerformed(ActionEvent e) Available in PDAP.
static ActionListener add(ActionListener a,
ActionListener b)

Available in PDAP.

static AdjustmentListener add(AdjustmentListener
a, AdjustmentListener b)

Available in PDAP.

static ComponentListener add(ComponentListener a,
ComponentListener b)

Available in PDAP.

static ContainerListener add(ContainerListener a,
ContainerListener b)

Available in PDAP.

static FocusListener add(FocusListener a,
FocusListener b)

Available in PDAP.

static HierarchyBoundsListener
add(HierarchyBoundsListener a,
HierarchyBoundsListener b)

Not available in PDAP.

static HierarchyListener add(HierarchyListener a,
HierarchyListener b)

Not available in PDAP.

static InputMethodListener
add(InputMethodListener a, InputMethodListener b)

Not available in PDAP.

static ItemListener add(ItemListener a,
ItemListener b)

Available in PDAP.

static KeyListener add(KeyListener a, KeyListener Available in PDAP.

 280

b)
static MouseListener add(MouseListener a,
MouseListener b)

Available in PDAP.

static MouseMotionListener
add(MouseMotionListener a, MouseMotionListener b)

Available in PDAP.

static TextListener add(TextListener a,
TextListener b)

Available in PDAP.

static WindowListener add(WindowListener a,
WindowListener b)

Available in PDAP.

protected static EventListener addInternal
(EventListener a, EventListener b)

Available in PDAP.

void adjustmentValueChanged(AdjustmentEvent e) Available in PDAP.
void ancestorMoved(HierarchyEvent e) Not available in PDAP.
void ancestorResized(HierarchyEvent e) Not available in PDAP.
void caretPositionChanged(InputMethodEvent e) Not available in PDAP.
void componentAdded(ContainerEvent e) Available in PDAP.
void componentHidden(ComponentEvent e) Available in PDAP.
void componentMoved(ComponentEvent e) Available in PDAP.
void componentRemoved(ContainerEvent e) Available in PDAP.
void componentResized(ComponentEvent e) Available in PDAP.
void componentShown(ComponentEvent e) Available in PDAP.
void focusGained(FocusEvent e) Available in PDAP.
void focusLost(FocusEvent e) Available in PDAP.
void hierarchyChanged(HierarchyEvent e) Not available in PDAP.
void inputMethodTextChanged(InputMethodEvent e) Not available in PDAP.
void itemStateChanged(ItemEvent e) Available in PDAP.
void keyPressed(KeyEvent e) Available in PDAP.
void keyReleased(KeyEvent e) Available in PDAP.
void keyTyped(KeyEvent e) Available in PDAP.
void mouseClicked(MouseEvent e) Available in PDAP.
void mouseDragged(MouseEvent e) Available in PDAP.
void mouseEntered(MouseEvent e) Available in PDAP.
void mouseExited(MouseEvent e) Available in PDAP.
void mouseMoved(MouseEvent e) Available in PDAP.
void mousePressed(MouseEvent e) Available in PDAP.
void mouseReleased(MouseEvent e) Available in PDAP.
static ActionListener remove (ActionListener l,
ActionListener oldl)

Available in PDAP.

static AdjustmentListener remove
(AdjustmentListener l, AdjustmentListener oldl)

Available in PDAP.

static ComponentListener remove
(ComponentListener l, ComponentListener oldl)

Available in PDAP.

static ContainerListener remove
(ContainerListener l, ContainerListener oldl)

Available in PDAP.

protected EventListener remove (EventListener
oldl)

Available in PDAP.

static FocusListener remove (FocusListener l,
FocusListener oldl)

Available in PDAP.

static HierarchyBoundsListener remove
(HierarchyBoundsListener l,

Not available in PDAP.

 281

HierarchyBoundsListener oldl)
static HierarchyListener remove
(HierarchyListener l, HierarchyListener oldl)

Not available in PDAP.

static InputMethodListener remove
(InputMethodListener l, InputMethodListener oldl)

Not available in PDAP.

static ItemListener remove (ItemListener l,
ItemListener oldl)

Available in PDAP.

static KeyListener remove (KeyListener l,
KeyListener oldl)

Available in PDAP.

static MouseListener remove (MouseListener l,
MouseListener oldl)

Available in PDAP.

static MouseMotionListener remove
(MouseMotionListener l, MouseMotionListener oldl)

Available in PDAP.

static TextListener remove (TextListener l,
TextListener oldl)

Available in PDAP.

static WindowListener remove (WindowListener l,
WindowListener oldl)

Available in PDAP.

protected static EventListener removeInternal
(EventListener l, EventListener oldl)

Available in PDAP.

protected static void save (ObjectOutputStream s,
String k, EventListener l)

Not available in PDAP.

protected void saveInternal (ObjectOutputStream
s, String k)

Not available in PDAP.

void textValueChanged(TextEvent e) Available in PDAP.
void windowActivated(WindowEvent e) Available in PDAP.
void windowClosed(WindowEvent e) Available in PDAP.
void windowClosing(WindowEvent e) Available in PDAP.
void windowDeactivated(WindowEvent e) Available in PDAP.
void windowDeiconified(WindowEvent e) Available in PDAP.
void windowIconified(WindowEvent e) Available in PDAP.
void windowOpened(WindowEvent e) Available in PDAP.

Button

Table B.7. Methods of the Class Button
Method Alternative/Workaround
Button() Available in PDAP.
Button(String label) Available in PDAP.
Void addActionListener(ActionListener l) Available in PDAP.
void addNotify() Not available in PDAP.
AccessibleContext getAccessibleContext() Not available in PDAP.
String getActionCommand() Available in PDAP.
String getLabel() Available in PDAP.
EventListener[] getListeners(Class listenerType) Not available in PDAP.
Protected String paramString() Available in PDAP.
protected void processActionEvent(ActionEvent e) Available in PDAP.
protected void processEvent(AWTEvent e) Available in PDAP.
void removeActionListener(ActionListener l) Available in PDAP.
void setActionCommand(String command) Available in PDAP.
void setLabel(String label) Available in PDAP.

TE
AM
FL
Y

Team-Fly®

 282

Canvas

Table B.8. Methodsof the Class Canvas
Method Alternative/Workaround
Canvas() Available in PDAP.
Canvas(GraphicsConfiguration config) Available in PDAP.
void addNotify() Not available in PDAP.
AccessibleContext getAccessibleContext() Not available in PDAP.
void paint(Graphics g) Available in PDAP.

Checkbox

Table B.9. Methods of the Class Checkbox
Method Alternative/Workaround
Checkbox() Available in PDAP.
Checkbox(String label) Available in PDAP.
Checkbox(String label, boolean state) Available in PDAP.
Checkbox(String label, boolean state,
CheckboxGroup group)

Available in PDAP.

Checkbox(String label, CheckboxGroup group,
boolean state)

Available in PDAP.

void addItemListener(ItemListener l) Available in PDAP.
void addNotify() Not available in PDAP.
AccessibleContext getAccessibleContext() Not available in PDAP.
CheckboxGroup getCheckboxGroup() Available in PDAP.
String getLabel() Available in PDAP.
EventListener[] getListeners(Class listenerType) Not available in PDAP.
Object[] getSelectedObjects() Available in PDAP.
Boolean getState() Available in PDAP.
Protected String paramString() Available in PDAP.
protected void processEvent(AWTEvent e) Available in PDAP.
protected void processItemEvent(ItemEvent e) Available in PDAP.
Void removeItemListener(ItemListener l) Available in PDAP.
Void setCheckboxGroup(CheckboxGroup g) Available in PDAP.
void setLabel(String label) Available in PDAP.
void setState(boolean state) Available in PDAP.

CheckboxMenuItem

Table B.10. Methods of the Class CheckboxMenuItem
Method Alternative/Workaround
CheckboxMenuItem() Available in PDAP.
CheckboxMenuItem(String label) Available in PDAP.
CheckboxMenuItem(String label, boolean state) Available in PDAP.
Void addItemListener(ItemListener l) Available in PDAP.
void addNotify() Not available in PDAP.
AccessibleContext getAccessibleContext() Not available in PDAP.
EventListener[] getListeners(Class listenerType) Not available in PDAP.

 283

Object[] getSelectedObjects() Available in PDAP.
boolean getState() Available in PDAP.
String paramString() Available in PDAP.
Protected void processEvent(AWTEvent e) Available in PDAP.
protected void processItemEvent(ItemEvent e) Available in PDAP.
Void removeItemListener(ItemListener l) Available in PDAP.
void setState(boolean b) Available in PDAP.

Choice

Table B.11. Methods of the Class Choice
Method Alternative/Workaround
Choice() Available in PDAP.
void add(String item) Available in PDAP.
void addItem(String item) Available in PDAP.
void addItemListener(ItemListener l) Available in PDAP.
void addNotify() Not available in PDAP.
int countItems() Available in PDAP.
AccessibleContext getAccessibleContext() Not available in PDAP.
String getItem(int index) Available in PDAP.
int getItemCount() Available in PDAP.
EventListeners[] getListeners(Class listenerType) Not available in PDAP.
int getSelectedIndex() Available in PDAP.
String getSelectedItem() Available in PDAP.
Object[] getSelectedObjects() Available in PDAP.
void insert(String item, int index) Available in PDAP.
protected String paramString() Available in PDAP.
protected void processEvent(AWTEvent e) Available in PDAP.
protected void processItemEvent(ItemEvent e) Available in PDAP.
void remove(int position) Available in PDAP.
void remove(String item) Available in PDAP.
void removeAll() Available in PDAP.
void removeItemListener(ItemListener l) Available in PDAP.
void select(int pos) Available in PDAP.
void select(String str) Available in PDAP.

Color

Table B.12. Methods of the Class Color
Method Alternative/Workaround
Color(ColorSpace cspace, float[] components,
float alpha)

Not available in PDAP.

Color(float r, float g, float b) Available in PDAP.
Color(float r, float g, float b, float a) Available in PDAP.
Color(int rgb) Available in PDAP.
Color(int rgba, boolean hasalpha) Available in PDAP.
Color(int r, int g, int b) Available in PDAP.
Color(int r, int g, int b, int a) Available in PDAP.

 284

Color brighter() Available in PDAP.
PaintContext createContext(ColorModel cm,
Rectangle r, Rectangle2D r2d, AffineTransform
xform, RenderingHints hints)

Not available in PDAP.

Color darker() Available in PDAP.
static Color decode(String nm) Available in PDAP.
boolean equals(Object obj) Available in PDAP.
int getAlpha() Available in PDAP.
int getBlue() Available in PDAP.
static Color getColor (String nm) Available in PDAP.
static Color getColor(String nm, Color v) Available in PDAP.
static Color getColor(String nm, int v) Available in PDAP.
float[] getColorComponents (ColorSpace cspace,
float[] compArray)

Not available in PDAP.

float[] getColorComponents(float[] compArray) Available in PDAP.
ColorSpace getColorSpace() Not available in PDAP.
float[] getComponents (ColorSpace cspace, float[]
compArray)

Not available in PDAP.

float[] getComponents(float[] compArray) Available in PDAP.
int getGreen() Available in PDAP.
static Color getHSBColor (float h, float s, float
b)

Available in PDAP.

int getRed() Available in PDAP.
int getRGB() Available in PDAP.
float[] getRGBColorComponents(float[] compArray) Available in PDAP.
float[] getRGBComponents(float[] compArray) Available in PDAP.
int getTransparency() Not available in PDAP.
int hashCode() Available in PDAP.
static int HSBtoRGB (float hue, float saturation,
float brightness)

Available in PDAP.

static float[] RGBtoHSB (int r, int g, int b,
float[] hsbvals)

Available in PDAP.

String toString() Available in PDAP.

Component

Table B.13. Methods of the Class Component
Method Alternative/Workaround
protected Component() Available in PDAP.
boolean action(Event evt, Object what) Aavailable in PDAP.
void add(PopupMenu popup) Available in PDAP.
void addComponentListener(ComponentListener l) Available in PDAP.
void addFocusListener(FocusListener l) Available in PDAP.
void
addHierarchyBoundsListener(HierarchyBoundsListener l)

Not available in PDAP.

void addHierarchyListener(HierarchyListener l) Not available in PDAP.
void addInputMethodListener(InputMethodListener l) Not available in PDAP.
void addKeyListener(KeyListener l) Available in PDAP.
void addMouseListener(MouseListener l) Available in PDAP.

 285

void addMouseMotionListener(MouseMotionListener l) Available in PDAP.
void addNotify() Available in PDAP.
void dddPropertyChangeListener(PropertyChangeListener
listener)

Not available in PDAP.

void addPropertyChangeListener(String propertyName,
PropertyChangeListener listener)

Not available in PDAP.

Rectangle bounds() Available in PDAP.
int checkImage(Image image, ImageObserver observer) Available in PDAP.
int checkImage(Image image, int width, int height,
ImageObserver observer)

Available in PDAP.

protected AWTEvent coalesceEvents (AWTEvent
existingEvent, AWTEvent newEvent)

Available in PDAP.

boolean contains(int x, int y) Available in PDAP.
boolean contains(Point p) Available in PDAP.
Image createImage(ImageProducer producer) Available in PDAP.
Image createImage(int width, int height) Available in PDAP.
void deliverEvent(Event e) Available in PDAP.
void disable() Available in PDAP.
protected void disableEvents(long eventsToDisable) Available in PDAP.
void dispatchEvent(AWTEvent e) Available in PDAP.
void doLayout() Available in PDAP.
void enable() Available in PDAP.
void enable(boolean b) Available in PDAP.
protected void enableEvents(long eventsToEnable) Available in PDAP.
void enableInputMethods(boolean enable) Not available in PDAP.
protected void firePropertyChange (String
propertyName, Object oldValue, Object newValue)

Not available in PDAP.

AccessibleContext getAccessibleContext() Not available in PDAP.
float getAlignmentX() Available in PDAP.
float getAlignmentY() Available in PDAP.
Color getBackground() Available in PDAP.
Rectangle getBounds() Available in PDAP.
Rectangle getBounds(Rectangle rv) Not available in PDAP.
ColorModel getColorModel() Available in PDAP.
Component getComponentAt(int x, int y) Available in PDAP.
Component getComponentAt(Point p) Available in PDAP.
ComponentOrientation getComponentOrientation() Not available in PDAP.
Cursor getCursor() Available in PDAP.
DropTarget getDropTarget() Not available in PDAP.
Font getFont() Available in PDAP.
FontMetrics getFontMetrics(Font font) Available in PDAP.
Color getForeground() Available in PDAP.
Graphics getGraphics() Available in PDAP.
GraphicsConfiguration getGraphicsConfiguration() Available in PDAP.
int getHeight() Available in PDAP.
InputContext getInputContext() Not available in PDAP.
InputMethodRequests getInputMethodRequests() Not available in PDAP.
EventListener[] getListeners(Class listenerType) Not available in PDAP.
Locale getLocale() Available in PDAP.

 286

Point getLocation() Available in PDAP.
Point getLocation(Point rv) Available in PDAP.
Point getLocationOnScreen() Available in PDAP.
Dimension getMaximumSize() Available in PDAP.
Dimension getMinimumSize() Available in PDAP.
String getName() Available in PDAP.
Container getParent() Available in PDAP.
java.awt.peer.ComponentPeer getPeer() Not available in PDAP

(deprecated J2SE
method).

Dimension getPreferredSize() Available in PDAP.
Dimension getSize() Available in PDAP.
Dimension getSize(Dimension rv) Available in PDAP.
Toolkit getToolkit() Available in PDAP.
Object getTreeLock() Available in PDAP.
int getWidth() Available in PDAP.
int getX() Available in PDAP.
int getY() Available in PDAP.
boolean gotFocus(Event evt, Object what) Available in PDAP.
boolean handleEvent(Event evt) Available in PDAP.
boolean hasFocus() Available in PDAP.
void hide() Available in PDAP.
boolean imageUpdate(Image img, int infoflags, int x,
int y, int w, int h)

Available in PDAP.

boolean inside(int x, int y) Available in PDAP.
void invalidate() Available in PDAP.
boolean isDisplayable() Available in PDAP.
boolean isDoubleBuffered() Available in PDAP.
boolean isEnabled() Available in PDAP.
boolean isFocusTraversable() Available in PDAP.
boolean isLightweight() Available in PDAP.
boolean isOpaque() Available in PDAP.
boolean isShowing() Available in PDAP.
boolean isValid() Available in PDAP.
boolean isVisible() Available in PDAP.
boolean keyDown(Event evt, int key) Available in PDAP.
boolean keyUp(Event evt, int key) Available in PDAP.
void layout() Available in PDAP.
void list() Available in PDAP.
void list(PrintStream out) Available in PDAP.
void list(PrintStream out, int indent) Available in PDAP.
void list(PrintWriter out) Available in PDAP.
void list(PrintWriter out, int indent) Available in PDAP.
Component locate(int x, int y) Available in PDAP.
Point location() Available in PDAP.
boolean lostFocus(Event evt, Object what) Available in PDAP.
Dimension minimumSize() Available in PDAP.
boolean mouseDown(Event evt, int x, int y) Available in PDAP.

 287

boolean mouseDrag(Event evt, int x, int y) Available in PDAP.
boolean mouseEnter(Event evt, int x, int y) Available in PDAP.
boolean mouseExit(Event evt, int x, int y) Available in PDAP.
boolean mouseMove(Event evt, int x, int y) Available in PDAP.
boolean mouseUp(Event evt, int x, int y) Available in PDAP.
void move(int x, int y) Available in PDAP.
void nextFocus() Available in PDAP.
void paint(Graphics g) Available in PDAP.
void paintAll(Graphics g) Available in PDAP.
protected String paramString() Available in PDAP.
boolean postEvent(Event e) Available in PDAP.
Dimension preferredSize() Available in PDAP.
boolean prepareImage (Image image, ImageObserver
observer)

Available in PDAP.

boolean prepareImage(Image image, int width, int
height, ImageObserver observer)

Available in PDAP.

void print(Graphics g) Available in PDAP.
void printAll(Graphics g) Available in PDAP.
protected void processComponentEvent (ComponentEvent
e)

Available in PDAP.

Protected void processEvent(AWTEvent e) Available in PDAP.
Protected void processFocusEvent(FocusEvent e) Available in PDAP.
protected void processHierarchyBoundsEvent
(HierarchyEvent e)

Not available in PDAP.

protected void processHierarchyEvent (HierarchyEvent
e)

Not available in PDAP.

protected void processInputMethodEvent
(InputMethodEvent e)

Not available in PDAP.

Protected void processKeyEvent(KeyEvent e) Available in PDAP.
Protected void processMouseEvent(MouseEvent e) Available in PDAP.
Protected void processMouseMotionEvent (MouseEvent e) Available in PDAP.
void remove(MenuComponent popup) Available in PDAP.
void removeComponentListener(ComponentListener l) Available in PDAP.
void removeFocusListener(FocusListener l) Available in PDAP.
void
removeHierarchyBoundsListener(HierarchyBoundsListener
l)

Not available in PDAP.

void removeHierarchyListener(HierarchyListener l) Not available in PDAP.
void removeInputMethodListener(InputMethodListener l) Not available in PDAP.
void removeKeyListener(KeyListener l) Available in PDAP.
void removeMouseListener(MouseListener l) Available in PDAP.
void removeMouseMotionListener(MouseMotionListener l) Available in PDAP.
void removeNotify() Available in PDAP.
void
removePropertyChangeListener(PropertyChangeListener
listener)

Not available in PDAP.

void removePropertyChangeListener(String
propertyName, PropertyChangeListener listener)

Not available in PDAP.

void repaint() Available in PDAP.
void repaint(int x, int y, int width, int height) Available in PDAP.

 288

void repaint(long tm) Available in PDAP.
void repaint(long tm, int x, int y, int width, int
height)

Available in PDAP.

void requestFocus() Available in PDAP.
void reshape(int x, int y, int width, int height) Available in PDAP.
void resize(Dimension d) Available in PDAP.
void resize(int width, int height) Available in PDAP.
void setBackground(Color c) Available in PDAP.
void setBounds(int x, int y, int width, int height) Available in PDAP.
void setBounds(Rectangle r) Available in PDAP.
void setComponentOrientation (ComponentOrientation o) Not available in PDAP.
void setCursor(Cursor cursor) Available in PDAP.
void setDropTarget(DropTarget dt) Not available in PDAP.
void setEnabled(boolean b) Available in PDAP.
void setFont(Font f) Available in PDAP.
void setForeground(Color c) Available in PDAP.
void setLocale(Locale l) Available in PDAP.
void setLocation(int x, int y) Available in PDAP.
void setLocation(Point p) Available in PDAP.
void setName(String name) Available in PDAP.
void setSize(Dimension d) Available in PDAP.
void setSize(int width, int height) Available in PDAP.
void setVisible(boolean b) Available in PDAP.
void show() Available in PDAP.
void show(boolean b) Available in PDAP.
Dimension size() Available in PDAP.
String toString() Available in PDAP.
void transferFocus() Available in PDAP.
void update(Graphics g) Available in PDAP.
void validate() Available in PDAP.

Container

Table B.14. Methods of the Class Container
Method Alternative/Workaround
Container() Available in PDAP.
Component add(Component comp) Available in PDAP.
Component add(Component comp, int index) Available in PDAP.
void add(Component comp, Object constraints) Available in PDAP.
void add(Component comp, Object constraints, int
index)

Available in PDAP.

Component add(String name, Component comp) Available in PDAP.
void addContainerListener(ContainerListener l) Available in PDAP.
protected void addImpl(Component comp, Object
constraints, int index)

Available in PDAP.

void addNotify() Not available in PDAP.
int countComponents() Available in PDAP.
void deliverEvent(Event e) Available in PDAP.

 289

void doLayout() Available in PDAP.
Component findComponentAt(int x, int y) Available in PDAP.
Component findComponentAt(Point p) Available in PDAP.
float getAlignmentX() Available in PDAP.
float getAlignmentY() Available in PDAP.
Component getComponent(int n) Available in PDAP.
Component getComponentAt(int x, int y) Available in PDAP.
Component getComponentAt(Point p) Available in PDAP.
int getComponentCount() Available in PDAP.
Component[] getComponents() Available in PDAP.
Insets getInsets() Available in PDAP.
LayoutManager getLayout() Available in PDAP.
EventListener[] getListeners(Class listenerType) Not available in PDAP.
Dimension getMaximumSize() Available in PDAP.
Dimension getMinimumSize() Available in PDAP.
Dimension getPreferredSize() Available in PDAP.
Insets insets() Available in PDAP.
void invalidate() Available in PDAP.
boolean isAncestorOf(Component c) Available in PDAP.
void layout() Available in PDAP.
void list(PrintStream out, int indent) Available in PDAP.
void list(PrintWriter out, int indent) Available in PDAP.
Component locate(int x, int y) Available in PDAP.
Dimension minimumSize() Available in PDAP.
void paint(Graphics g) Available in PDAP.
void paintComponents(Graphics g) Available in PDAP.
protected String paramString() Available in PDAP.
Dimension preferredSize() Available in PDAP.
void print(Graphics g) Available in PDAP.
void printComponents(Graphics g) Available in PDAP.
protected void processContainerEvent
(ContainerEvent e)

Available in PDAP.

protected void processEvent(AWTEvent e) Available in PDAP.
void remove(Component comp) Available in PDAP.
void remove(int index) Available in PDAP.
void removeAll() Available in PDAP.
void removeContainerListener(ContainerListener l) Available in PDAP.
void removeNotify() Not available in PDAP.
void setFont(Font f) Available in PDAP.
void setLayout(LayoutManager mgr) Available in PDAP.
void update(Graphics g) Available in PDAP.
void validate() Available in PDAP.
protected void validateTree() Available in PDAP.

Cursor

Table B.15. Methods of the Class Cursor
Method Alternative/Workaround

 290

Cursor(int type) Available in PDAP.
protected Cursor(String name) Not available in PDAP.
protected void finalize() Available in PDAP.
static Cursor getDefaultCursor() Available in PDAP.
String getName() Not available in PDAP.
static Cursor getPredefinedCursor(int type) Not available in PDAP.
static Cursor getSystemCustomCursor(String name) Not available in PDAP.
int getType() Available in PDAP.
String toString() Not available in PDAP.

Dialog

Table B.16. Methods of the Class Dialog
Method Alternative/Workaround
Dialog(Dialog owner) Not available in PDAP.
Dialog(Dialog owner, String title) Not available in PDAP.
Dialog(Dialog owner, String title, boolean modal) Not available in PDAP.
Dialog(Frame owner) Available in PDAP.
Dialog(Frame owner, boolean modal) Available in PDAP.
Dialog(Frame owner, String title) Available in PDAP.
Dialog(Frame owner, String title, boolean modal) Available in PDAP.
void addNotify() Not available in PDAP.
void dispose() Available in PDAP.
AccessibleContext getAccessibleContext() Not available in PDAP.
String getTitle() Available in PDAP.
void hide() Available in PDAP.
boolean isModal() Available in PDAP.
boolean isResizable() Available in PDAP.
protected String paramString() Available in PDAP.
void setModal(boolean b) Available in PDAP.
void setResizable(boolean resizable) Available in PDAP.
void setTitle(String title) Available in PDAP.
void show() Available in PDAP.

Dimension

Table B.17. Methods of the Class Dimension
Method Alternative/Workaround
Dimension() Available in PDAP.
Dimension(Dimension d) Available in PDAP.
Dimension(int width, int height) Available in PDAP.
boolean equals(Object obj) Available in PDAP.
double getHeight() Not available in PDAP.
Dimension getSize() Available in PDAP.
double getWidth() Not available in PDAP.
int hashCode() Available in PDAP.
void setSize(Dimension d) Available in PDAP.
void setSize(double width, double height) Not available in PDAP.

 291

void setSize(int width, int height) Available in PDAP.
String toString() Available in PDAP.

FileDialog

Table B.18. Methods of the Class FileDialog
Method Alternative/Workaround
FileDialog(Frame parent) Available in PDAP.
FileDialog(Frame parent, String title) Available in PDAP.
FileDialog(Frame parent, String title, int mode) Available in PDAP.
void addNotify() Not available in PDAP.
String getDirectory() Available in PDAP.
String getFile() Available in PDAP.
FilenameFilter getFilenameFilter() Not available in PDAP.
int getMode() Available in PDAP.
protected String paramString() Available in PDAP.
void setDirectory(String dir) Available in PDAP.
void setFile(String file) Available in PDAP.
void setFilenameFilter(FilenameFilter filter) Not available in PDAP.
void setMode(int mode) Available in PDAP.

Font

Table B.19. Methods of the Class Font
Method Alternative/Workaround
Font(Map attributes) Not available in PDAP.
Font(String name, int style, int size) Available in PDAP.
boolean canDisplay(char c) Not available in PDAP.
int canDisplayUpTo (char[] text, int start, int
limit)

Not available in PDAP.

int canDisplayUpTo (CharacterIterator iter, int
start, int limit)

Not available in PDAP.

int canDisplayUpTo(String str) Not available in PDAP.
static Font createFont (int fontFormat,
InputStream fontStream)

Not available in PDAP.

GlyphVector createGlyphVector
(FontRenderContext frc, char[] chars)

Not available in PDAP.

GlyphVector createGlyphVector
(FontRenderContext frc, CharacterIterator ci)

Not available in PDAP.

GlyphVector createGlyphVector
(FontRenderContext frc, int[] glyphCodes)

Not available in PDAP.

GlyphVector createGlyphVector
(FontRenderContext frc, String str)

Not available in PDAP.

static Font decode(String str) Available in PDAP.
Font deriveFont(AffineTransform trans) Not available in PDAP.
Font deriveFont(float size) Not available in PDAP.
Font deriveFont(int style) Not available in PDAP.
Font deriveFont(int style, AffineTransform
trans)

Not available in PDAP.

Font deriveFont(int style, float size) Not available in PDAP.

TE
AM
FL
Y

Team-Fly®

 292

Font deriveFont(Map attributes) Not available in PDAP.
boolean equals(Object obj) Available in PDAP.
protected void finalize() Not available in PDAP.
Map getAttributes()
AttributedCharacterIterator.Attribute[]

Not available in PDAP.

getAvailableAttributes() Not available in PDAP.
byte getBaselineFor(char c) Not available in PDAP.
String getFamily() Available in PDAP.
String getFamily(Locale l) Not available in PDAP.
static Font getFont(Map attributes) Not available in PDAP.
static Font getFont(String nm) Available in PDAP.
static Font getFont(String nm, Font font) Available in PDAP.
String getFontName() Not available in PDAP.
String getFontName(Locale l) Not available in PDAP.
float getItalicAngle() Not available in PDAP.
LineMetrics getLineMetrics(char[] chars, int
beginIndex, int limit, FontRenderContext frc)

Not available in PDAP.

LineMetrics getLineMetrics(CharacterIterator
ci, int beginIndex, int limit,
FontRenderContext frc)

Not available in PDAP.

LineMetrics getLineMetrics (String str,
FontRenderContext frc)

Not available in PDAP.

LineMetrics getLineMetrics(String str, int
beginIndex, int limit, FontRenderContext frc)

Not available in PDAP.

Rectangle2D getMaxCharBounds(FontRenderContext
frc)

Not available in PDAP.

int getMissingGlyphCode() Not available in PDAP.
String getName() Available in PDAP.
int getNumGlyphs() Not available in PDAP.
java.awt.peer.FontPeer getPeer() Not available in PDAP

(deprecated J2SE method).
String getPSName() Not available in PDAP.
int getSize() Available in PDAP.
float getSize2D() Not available in PDAP.
Rectangle2D getStringBounds(char[] chars, int
beginIndex, int limit, FontRenderContext frc)

Not available in PDAP.

Rectangle2D getStringBounds(CharacterIterator
ci, int beginIndex, int limit,
FontRenderContext frc)

Not available in PDAP.

Rectangle2D getStringBounds String str,
FontRenderContext frc)

Not available in PDAP.

Rectangle2D getStringBounds(String str, int
beginIndex, int limit, FontRenderContext frc)

Not available in PDAP.

int getStyle() Available in PDAP.
AffineTransform getTransform() Not available in PDAP.
int hashCode() Available in PDAP.
boolean hasUniformLineMetrics() Not available in PDAP.
boolean isBold() Available in PDAP.
boolean isItalic() Available in PDAP.
boolean isPlain() Available in PDAP.

 293

String toString() Not available in PDAP.

FontMetrics

Table B.20. Methods of the Class FontMetrics
Method Alternative/Workaround
protected FontMetrics(Font font) Available in PDAP.
int bytesWidth(byte[] data, int off, int len) Available in PDAP.
int charsWidth(char[] data, int off, int len) Available in PDAP.
int charWidth(char ch) Available in PDAP.
int charWidth(int ch) Available in PDAP.
int getAscent() Available in PDAP.
int getDescent() Available in PDAP.
Font getFont() Available in PDAP.
int getHeight() Available in PDAP.
int getLeading() Available in PDAP.
LineMetrics getLineMetrics(char[] chars, int
beginIndex, int limit, Graphics context)

Not available in PDAP.

LineMetrics getLineMetrics(CharacterIterator ci,
int beginIndex, int limit, Graphics context)

Not available in PDAP.

LineMetrics getLineMetrics (String str, Graphics
context)

Not available in PDAP.

LineMetrics getLineMetrics(String str, int
beginIndex, int limit, Graphics context)

Not available in PDAP.

int getMaxAdvance() Available in PDAP.
int getMaxAscent() Available in PDAP.
Rectangle2D getMaxCharBounds(Graphics context) Not available in PDAP.
int getMaxDecent() Available in PDAP.
int getMaxDescent() Available in PDAP.
Rectangle2D getStringBounds(char[] chars, int
beginIndex, int limit, Graphics context)

Not available in PDAP.

Rectangle2D getStringBounds(CharacterIterator ci,
int beginIndex, int limit, Graphics context)

Not available in PDAP.

Rectangle2D getStringBounds (String str, Graphics
context)

Not available in PDAP.

Rectangle2D getStringBounds(String str, int
beginIndex, int limit, Graphics context)

Not available in PDAP.

int[] getWidths() Available in PDAP.
boolean hasUniformLineMetrics() Not available in PDAP.
int stringWidth(String str) Available in PDAP.
String toString() Available in PDAP.

Frame

Table B.21. Methods of the Class Frame
Method Alternative/Workaround
Frame() Available in PDAP.
Frame(GraphicsConfiguration gc) Available in PDAP.
Frame(String title) Available in PDAP.
Frame(String title, GraphicsConfiguration gc) Available in PDAP.

 294

void addNotify() Not available in PDAP.
protected void finalize() Available in PDAP.
AccessibleContext getAccessibleContext() Not available in PDAP.
int getCursorType() Available in PDAP.
static Frame[] getFrames() Not available in PDAP.
Image getIconImage() Available in PDAP.
MenuBar getMenuBar() Available in PDAP.
int getState() Available in PDAP.
String getTitle() Available in PDAP.
boolean isResizable() Available in PDAP.
protected String paramString() Available in PDAP.
void remove(MenuComponent m) Available in PDAP.
void removeNotify() Not available in PDAP.
void setCursor(int cursorType) Available in PDAP.
void setIconImage(Image image) Available in PDAP.
void setMenuBar(MenuBar mb) Available in PDAP.
void setResizable(boolean resizable) Available in PDAP.
void setState(int state) Available in PDAP.
void setTitle(String title) Available in PDAP.

Graphics

Table B.22. Methods of the Class Graphics
Method Alternative/Workaround
protected Graphics() Available in PDAP.
abstract void clearRect(int x, int y, int width,
int height)

Available in PDAP.

abstract void clipRect(int x, int y, int width,
int height)

Available in PDAP.

abstract void copyArea(int x, int y, int width,
int height, int dx, int dy)

Available in PDAP.

Abstract Graphics create() Available in PDAP.
Graphics create(int x, int y, int width, int
height)

Available in PDAP.

abstract void dispose() Available in PDAP.
void draw3DRect(int x, int y, int width, int
height, boolean raised)

Available in PDAP.

abstract void drawArc(int x, int y, int width,
int height, int startAngle, int arcAngle)

Available in PDAP.

void drawBytes(byte[] data, int offset, int
length, int x, int y)

Available in PDAP.

void drawChars(char[] data, int offset, int
length, int x, int y)

Available in PDAP.

abstract boolean drawImage(Image img, int x, int
y, Color bgcolor, ImageObserver observer)

Available in PDAP.

abstract boolean drawImage(Image img, int x, int
y, ImageObserver observer)

Available in PDAP.

abstract boolean drawImage(Image img, int x, int
y, int width, int height, Color bgcolor,
ImageObserver observer)

Available in PDAP.

 295

abstract boolean drawImage(Image img, int x, int
y, int width, int height, ImageObserver observer)

Available in PDAP.

abstract boolean drawImage(Image img, int dx1,
int dy1, int dx2, int dy2, int sx1, int sy1, int
sx2, int sy2, Color bgcolor, ImageObserver
observer)

Available in PDAP.

abstract boolean drawImage(Image img, int dx1,
int dy1, int dx2, int dy2, int sx1, int sy1, int
sx2, int sy2, ImageObserver observer)

Available in PDAP.

abstract void drawLine(int x1, int y1, int x2,
int y2)

Available in PDAP.

abstract void drawOval(int x, int y, int width,
int height)

Available in PDAP.

abstract void drawPolygon(int[] xPoints, int[]
yPoints, int nPoints)

Available in PDAP.

void drawPolygon(Polygon p) Available in PDAP.
abstract void drawPolyline(int[] xPoints, int[]
yPoints, int nPoints)

Available in PDAP.

void drawRect(int x, int y, int width, int
height)

Available in PDAP.

abstract void drawRoundRect(int x, int y, int
width, int height, int arcWidth, int arcHeight)

Available in PDAP.

abstract void drawString
(AttributedCharacterIterator iterator, int x, int
y)

Not available in PDAP.

abstract void drawString(String str, int x, int
y)

Available in PDAP.

void fill3DRect(int x, int y, int width, int
height, boolean raised)

Available in PDAP.

abstract void fillArc(int x, int y, int width,
int height, int startAngle, int arcAngle)

Available in PDAP.

abstract void fillOval(int x, int y, int width,
int height)

Available in PDAP.

abstract void fillPolygon(int[] xPoints, int[]
yPoints, int nPoints)

Available in PDAP.

void fillPolygon(Polygon p) Available in PDAP.
abstract void fillRect(int x, int y, int width,
int height)

Available in PDAP.

abstract void fillRoundRect(int x, int y, int
width, int height, int arcWidth, int arcHeight)

Available in PDAP.

void finalize() Available in PDAP.
abstract Shape getClip() Available in PDAP.
abstract Rectangle getClipBounds() Available in PDAP.
Rectangle getClipBounds(Rectangle r) Available in PDAP.
Rectangle getClipRect() Available in PDAP.
abstract Color getColor() Available in PDAP.
abstract Font getFont() Available in PDAP.
FontMetrics getFontMetrics() Available in PDAP.
abstract FontMetrics getFontMetrics(Font f) Available in PDAP.
boolean hitClip(int x, int y, int width, int
height)

Available in PDAP.

abstract void setClip(int x, int y, int width,
int height)

Available in PDAP.

 296

abstract void setClip(Shape clip) Available in PDAP.
abstract void setColor(Color c) Available in PDAP.
abstract void setFont(Font font) Available in PDAP.
abstract void setPaintMode() Available in PDAP.
abstract void setXORMode(Color c1) Available in PDAP.
String toString() Available in PDAP.
abstract void translate(int x, int y) Available in PDAP.

GraphicsConfiguration

Table B.23. Class GraphicsConfiguration
Method Alternative/Workaround
Protected GraphicsConfiguration() Available in PDAP.
abstract BufferedImage createCompatibleImage (int
width, int height)

Not available in PDAP.

abstract BufferedImage createCompatibleImage (int
width, int height, int transparency)

Not available in PDAP.

abstract Rectangle getBounds() Available in PDAP.
abstract ColorModel getColorModel() Available in PDAP.
abstract ColorModel getColorModel (int
transparency)

Not available in PDAP.

abstract AffineTransform getDefaultTransform() Not available in PDAP.
abstract GraphicsDevice getDevice() Available in PDAP.
abstract AffineTransform
getNormalizingTransform()

Not available in PDAP.

GraphicsDevice

Table B.24. Class GraphicsDevice
Method Alternative/Workaround
protected GraphicsDevice() Available in PDAP.
GraphicsConfiguration getBestConfiguration
(GraphicsConfigTemplate gct)

Not available in PDAP.

abstract GraphicsConfiguration[]
getConfigurations()

Available in PDAP.

abstract GraphicsConfiguration
getDefaultConfiguration()

Available in PDAP.

abstract String getIDstring() Available in PDAP.
abstract int getType() Available in PDAP.

GraphicsEnvironment

Table B.25. Class GraphicsEnvironment
Method Alternative/Workaround
Protected GraphicsEnvironment() Available in PDAP.
abstract Graphics2D createGraphics (BufferedImage
img)

Not available in PDAP.

abstract Font[] getAllFonts() Not available in PDAP.
abstract String[] getAvailableFontFamilyNames() Available in PDAP.
abstract String[] getAvailableFontFamilyNames Available in PDAP.

 297

(Locale l)
abstract GraphicsDevice getDefaultScreenDevice() Available in PDAP.
static GraphicsEnvironment
getLocalGraphicsEnvironment()

Available in PDAP.

abstract GraphicsDevice[] getScreenDevices() Available in PDAP.

GridBagConstraints

Table B.26. Methods of the Class GridBagConstraints
Method Alternative/Workaround
GridBagConstraints() Available in PDAP.
GridBagConstraints(int gridx, int gridy, int
gridwidth, int gridheight, double weightx, double
weighty, int anchor, int fill, Insets insets, int
ipadx, int ipady)

Not available in PDAP.

Object clone() Not available in PDAP.

GridBagLayout

Table B.27. Methods of the Class GridBagLayout
Method Alternative/Workaround
GridBagLayout() Available in PDAP.
void addLayoutComponent (Component comp, Object
constraints)

Available in PDAP.

void addLayoutComponent (String name, Component
comp)

Available in PDAP.

protected void AdjustForGravity
(GridBagConstraints constraints, Rectangle r)

Available in PDAP.

protected void ArrangeGrid(Container parent) Available in PDAP.
GridBagConstraints getConstraints (Component
comp)

Available in PDAP.

float getLayoutAlignmentX(Container parent) Available in PDAP.
float getLayoutAlignmentY(Container parent) Available in PDAP.
int[][] getLayoutDimensions() Available in PDAP.
protected ava.awt.GridBagLayoutInfo
GetLayoutInfo(Container parent, int sizeflag)

Not available in PDAP.

Point getLayoutOrigin() Available in PDAP.
double[][] getLayoutWeights() Available in PDAP.
protected Dimension GetMinSize (Container parent,
java.awt.GridBagLayoutInfo info)

Not available in PDAP.

void invalidateLayout(Container target) Available in PDAP.
void layoutContainer(Container parent) Available in PDAP.
Point location(int x, int y) Available in PDAP.
protected GridBagConstraints lookupConstraints
(Component comp)

Available in PDAP.

Dimension maximumLayoutSize(Container target) Available in PDAP.
Dimension
minimumLayoutSize(Container parent) Available in PDAP.
Dimension preferredLayoutSize(Container parent) Available in PDAP.
void removeLayoutComponent(Component comp) Available in PDAP.

 298

void setConstraints(Component comp,
GridBagConstraints constraints)

Available in PDAP.

String toString() Available in PDAP.

Insets

Table B.28. Methods of the Class Insets
Method Alternative/Workaround
Insets(int top, int left, int bottom, int right) Available in PDAP.
Object clone() Not available in PDAP.
boolean equals(Object obj) Available in PDAP.
int hashCode() Available in PDAP.
String toString() Available in PDAP.

Label

Table B.29. Methods of the Class Label
Method Alternative/Workaround
Label() Available in PDAP.
Label(String text) Available in PDAP.
Label(String text, int alignment) Available in PDAP.
void addNotify() Not available in PDAP.
AccessibleContext getAccessibleContext() Not available in PDAP.
int getAlignment() Available in PDAP.
String getText() Available in PDAP.
protected String paramString() Available in PDAP.
void setAlignment(int alignment) Available in PDAP.
void setText(String text) Available in PDAP.

List

Table B.30. Methods of the Class List
Method Alternative/Workaround
List() Available in PDAP.
List(int rows) Available in PDAP.
List(int rows, Boolean multipleMode) Available in PDAP.
void add(String item) Available in PDAP.
void add(String item, int index) Available in PDAP.
void addActionListener(ActionListener l) Available in PDAP.
void addItem(String item) Available in PDAP.
void addItem(String item, int index) Available in PDAP.
void addItemListener(ItemListener l) Available in PDAP.
void addNotify() Not available in PDAP.
boolean allowsMultipleSelections() Available in PDAP.
void clear() Available in PDAP.
int countItems() Available in PDAP.
void delItem(int position) Available in PDAP.
void delItems(int start, int end) Available in PDAP.

 299

void deselect(int index) Available in PDAP.
AccessibleContext getAccessibleContext() Not available in PDAP.
String getItem(int index) Available in PDAP.
int getItemCount() Available in PDAP.
String[] getItems() Available in PDAP.
EventListener[] getListeners(Class listenerType) Not available in PDAP.
Dimension getMinimumSize() Available in PDAP.
Dimension getMinimumSize(int rows) Available in PDAP.
Dimension getPreferredSize() Available in PDAP.
Dimension getPreferredSize(int rows) Available in PDAP.
int getRows() Available in PDAP.
int getSelectedIndex() Available in PDAP.
int[] getSelectedIndexes() Available in PDAP.
String getSelectedItem() Available in PDAP.
String[] getSelectedItems() Available in PDAP.
Object[] getSelectedObjects() Available in PDAP.
int getVisibleIndex() Available in PDAP.
boolean isIndexSelected(int index) Available in PDAP.
boolean isMultipleMode() Available in PDAP.
boolean isSelected(int index) Available in PDAP.
void makeVisible(int index) Available in PDAP.
Dimension minimumSize() Available in PDAP.
Dimension minimumSize(int rows) Available in PDAP.
protected String paramString() Available in PDAP.
Dimension preferredSize() Available in PDAP.
Dimension preferredSize(int rows) Available in PDAP.
protected void processActionEvent(ActionEvent e) Available in PDAP.
protected void processEvent(AWTEvent e) Available in PDAP.
protected void processItemEvent(ItemEvent e) Available in PDAP.
void remove(int position) Available in PDAP.
void remove(String item) Available in PDAP.
void removeActionListener(ActionListener l) Available in PDAP.
void removeAll() Available in PDAP.
void removeItemListener(ItemListener l) Available in PDAP.
void removeNotify() Not available in PDAP.
void replaceItem(String newValue, int index) Available in PDAP.
void select(int index) Available in PDAP.
void setMultipleMode(boolean b) Available in PDAP.
void setMultipleSelections(boolean b) Available in PDAP.

Menu

Table B.31. Methods of the Class Menu
Method Alternative/Workaround
Menu() Available in PDAP.
Menu(String label) Available in PDAP.
Menu(String label, Boolean tearOff) Available in PDAP.
MenuItem add(MenuItem mi) Available in PDAP.

 300

void add(String label) Available in PDAP.
void addNotify() Not available in PDAP.
void addSeparator() Available in PDAP.
int countItems() Available in PDAP.
AccessibleContext getAccessibleContext() Not available in PDAP.
MenuItem getItem(int index) Available in PDAP.
int getItemCount() Available in PDAP.
void insert(MenuItem menuitem, int index) Available in PDAP.
void insert(String label, int index) Available in PDAP.
void insertSeparator(int index) Available in PDAP.
boolean isTearOff() Available in PDAP.
String paramString() Available in PDAP.
void remove(int index) Available in PDAP.
void remove(MenuComponent item) Available in PDAP.
void removeAll() Available in PDAP.
void removeNotify() Not available in PDAP.

MenuBar

Table B.32. Methods of the Class MenuBar
Method Alternative/Workaround
MenuBar() Available in PDAP.
Menu add(Menu m) Available in PDAP.
void addNotify() Not available in PDAP.
int countMenus() Available in PDAP.
void deleteShortcut(MenuShortcut s) Available in PDAP.
AccessibleContext getAccessibleContext() Not available in PDAP.
Menu getHelpMenu() Available in PDAP.
Menu getMenu(int i) Available in PDAP.
int getMenuCount() Available in PDAP.
MenuItem getShortcutMenuItem(MenuShortcut s) Available in PDAP.
void remove(int index) Available in PDAP.
void remove(MenuComponent m) Available in PDAP.
void removeNotify() Not available in PDAP.
void setHelpMenu(Menu m) Available in PDAP.
Enumeration shortcuts() Available in PDAP.

MenuComponent

Table B.33. Methods of the Class MenuComponent
Method Alternative/Workaround
MenuComponent() Available in PDAP.
void dispatchEvent(AWTEvent e) Available in PDAP.
AccessibleContext
getAccessibleContext()

Not available in PDAP.

Font getFont() Available in PDAP.
String getName() Available in PDAP.
MenuContainer getParent() Available in PDAP.

 301

java.awt.peer.MenuComponentPeer
getPeer() Not available in PDAP (deprecated J2SE

method).
protected Object Object getTreeLock() Available in PDAP.
protected String paramString() Available in PDAP.
boolean postEvent(Event evt) Available in PDAP.
protected void processEvent(AWTEvent
e)

Available in PDAP.

void removeNotify() Not available in PDAP.
void setFont(Font f) Available in PDAP.
void setName(String name) Available in PDAP.
String toString() Available in PDAP.

MenuItem

Table B.34. Methods of the Class MenuItem
Method Alternative/Workaround
MenuItem() Available in PDAP.
MenuItem(String label) Available in PDAP.
MenuItem(String label, MenuShortcut s) Available in PDAP.
void addActionListener(ActionListener l) Available in PDAP.
void addNotify() Not available in PDAP.
void deleteShortcut() Available in PDAP.
void disable() Available in PDAP.
protected void disableEvents (long
eventsToDisable)

Available in PDAP.

void enable() Available in PDAP.
void enable(boolean b) Available in PDAP.
protected void enableEvents(long eventsToEnable) Available in PDAP.
AccessibleContext getAccessibleContext() Not available in PDAP.
String getActionCommand() Available in PDAP.
String getLabel() Available in PDAP.
EventListener[] getListeners(Class listenerType) Not available in PDAP.
MenuShortcut getShortcut() Available in PDAP.
boolean isEnabled() Available in PDAP.
String paramString() Available in PDAP.
protected void processActionEvent(ActionEvent e) Available in PDAP.
protected void processEvent(AWTEvent e) Available in PDAP.
void removeActionListener(ActionListener l) Available in PDAP.
void setActionCommand(String command) Available in PDAP.
void setEnabled(boolean b) Available in PDAP.
void setLabel(String label) Available in PDAP.
void setShortcut(MenuShortcut s) Available in PDAP.

Panel

Table B.35. Methods of the Class Panel
Method Alternative/Workaround

TE
AM
FL
Y

Team-Fly®

 302

Panel() Available in PDAP.
Panel(LayoutManager layout) Available in PDAP.
void addNotify() Not available in PDAP.
AccessibleContext getAccessibleContext() Not available in PDAP.

Point

Table B.36. Methods of the Class Point
Method Alternative/Workaround
Point() Available in PDAP.
Point(int x, int y) Available in PDAP.
Point(Point p) Available in PDAP.
Boolean equals(Object obj) Available in PDAP.
Point getLocation() Available in PDAP.
double getX() Not available in PDAP.
double getY() Not available in PDAP.
void move(int x, int y) Available in PDAP.
void setLocation(double x, double y) Not available in PDAP.
void setLocation(int x, int y) Not available in PDAP.
void setLocation(Point p) Available in PDAP.
String toString() Available in PDAP.
void translate(int x, int y Available in PDAP.

Polygon

Table B.37. Methods of the Class Polygon
Method Alternative/Workaround
Polygon() Available in PDAP.
Polygon (int[] xpoints, int[] ypoints, int
npoints)

Available in PDAP.

void addPoint(int x, int y) Available in PDAP.
boolean contains(double x, double y) Not available in PDAP.
boolean contains (double x, double y, double w,
double h)

Not available in PDAP.

boolean contains(int x, int y) Available in PDAP.
boolean contains(Point p) Available in PDAP.
boolean contains(Point2D p) Not available in PDAP.
boolean contains(Rectangle2D r) Not available in PDAP.
Rectangle getBoundingBox() Available in PDAP.
Rectangle getBounds() Available in PDAP.
Rectangle2D getBounds2D() Not available in PDAP.
PathIterator getPathIterator(AffineTransform at) Not available in PDAP.
PathIterator getPathIterator (AffineTransform at,
double flatness)

Not available in PDAP.

boolean inside(int x, int y) Available in PDAP.
boolean intersects (double x, double y, double w,
double h)

Not available in PDAP.

boolean intersects(Rectangle2D r) Not available in PDAP.
void translate(int deltaX, int deltaY) Available in PDAP.

 303

PopupMenu

Table B.38. Methods of the Class PopupMenu
Method Alternative/Workaround
PopupMenu() Available in PDAP.
PopupMenu(String label) Available in PDAP.
void addNotify() Not available in PDAP.
AccessibleContext getAccessibleContext() Not available in PDAP.
void show(Component origin, int x, int y) Available in PDAP.

Rectangle

Table B.39. Methods of the Class Rectangle
Method Alternative/Workaround
Rectangle() Available in PDAP.
Rectangle(Dimension d) Available in PDAP.
Rectangle(int width, int height) Available in PDAP.
Rectangle(int x, int y, int width, int height) Available in PDAP.
Rectangle(Point p) Available in PDAP.
Rectangle(Point p, Dimension d) Available in PDAP.
Rectangle(Rectangle r) Available in PDAP.
void add(int newx, int newy) Available in PDAP.
void add(Point pt) Available in PDAP.
void add(Rectangle r) Available in PDAP.
boolean contains(int x, int y) Available in PDAP.
boolean contains(int X, int Y, int W, int H) Available in PDAP.
boolean contains(Point p) Available in PDAP.
boolean contains(Rectangle r) Available in PDAP.
Rectangle2D createIntersection(Rectangle2D r) Not available in PDAP.
Rectangle2D createUnion(Rectangle2D r) Not available in PDAP.
boolean equals(Object obj) Available in PDAP.
Rectangle getBounds() Available in PDAP.
Rectangle2D getBounds2D() Not available in PDAP.
double getHeight() Not available in PDAP.
Point getLocation() Available in PDAP.
Dimension getSize() Available in PDAP.
double getWidth() Not available in PDAP.
double getX() Not available in PDAP.
double getY() Not available in PDAP.
void grow(int h, int v) Available in PDAP.
boolean inside(int x, int y) Available in PDAP.
Rectangle intersection(Rectangle r) Available in PDAP.
boolean intersects(Rectangle r) Available in PDAP.
boolean isEmpty() Available in PDAP.
void move(int x, int y) Available in PDAP.
int outcode(double x, double y) Not available in PDAP.
void reshape(int x, int y, int width, int height) Available in PDAP.
void resize(int width, int height) Available in PDAP.

 304

void setBounds(int x, int y, int width, int
height)

Available in PDAP.

void setBounds(Rectangle r) Available in PDAP.
void setLocation(int x, int y) Available in PDAP.
void setLocation(Point p) Available in PDAP.
void setRect(double x, double y, double width,
double height)

Not available in PDAP.

void setSize(Dimension d) Available in PDAP.
void setSize(int width, int height) Available in PDAP.
String toString() Available in PDAP.
void translate(int x, int y) Available in PDAP.
Rectangle union(Rectangle r) Available in PDAP.

Scrollbar

Table B.40. Methods of the Class Scrollbar
Method Alternative/Workaround
Scrollbar() Available in PDAP.
Scrollbar(int orientation) Available in PDAP.
Scrollbar(int orientation, int value, int
visible, int minimum, int maximum)

Available in PDAP.

void addAdjustmentListener(AdjustmentListener l) Available in PDAP.
void addNotify() Not available in PDAP.
AccessibleContext getAccessibleContext() Not available in PDAP.
int getBlockIncrement() Available in PDAP.
int getLineIncrement() Available in PDAP.
EventListener[] getListeners(Class listenerType) Not available in PDAP.
int getMaximum() Available in PDAP.
int getMinimum() Available in PDAP.
int getOrientation() Available in PDAP.
int getPageIncrement() Available in PDAP.
int getUnitIncrement() Available in PDAP.
int getValue() Available in PDAP.
int getVisible() Available in PDAP.
int getVisibleAmount() Not available in PDAP.
protected String paramString() Available in PDAP.
protected void processAdjustmentEvent
(AdjustmentEvent e)

Available in PDAP.

protected void processEvent(AWTEvent e) Available in PDAP.
void removeAdjustmentListener(AdjustmentListener
l)

Available in PDAP.

void setBlockIncrement(int v) Available in PDAP.
void setLineIncrement(int v) Available in PDAP.
void setMaximum(int newMaximum) Available in PDAP.
void setMinimum(int newMinimum) Available in PDAP.
void setOrientation(int orientation) Available in PDAP.
void setPageIncrement(int v) Available in PDAP.
void setUnitIncrement(int v) Available in PDAP.
void setValue(int newValue) Available in PDAP.

 305

void setValues(int value, int visible, int
minimum, int maximum)

Available in PDAP.

void setVisibleAmount(int newAmount) Available in PDAP.

ScrollPane

Table B.41. Methods of the Class ScrollPane
Method Alternative/Workaround
ScrollPane() Available in PDAP.
ScrollPane(int scrollbarDisplayPolicy) Available in PDAP.
protected void addImpl (Component comp, Object
constraints, int index)

Available in PDAP.

void addNotify() Not available in PDAP.
void doLayout() Available in PDAP.
AccessibleContext getAccessibleContext() Not available in PDAP.
Adjustable getHAdjustable() Available in PDAP.
int getHScrollbarHeight() Available in PDAP.
int getScrollbarDisplayPolicy() Available in PDAP.
Point getScrollPosition() Available in PDAP.
Adjustable getVAdjustable() Available in PDAP.
Dimension getViewportSize() Available in PDAP.
int getVScrollbarWidth() Available in PDAP.
void layout() Available in PDAP.
String paramString() Available in PDAP.
void printComponents(Graphics g) Available in PDAP.
void setLayout(LayoutManager mgr) Available in PDAP.
void setScrollPosition(int x, int y) Available in PDAP.
void setScrollPosition(Point p) Available in PDAP.

SystemColor

Table B.42. Methods of the Class SystemColor
Method Alternative/Workaround
PaintContext createContext(ColorModel cm,
Rectangle r, Rectangle2D r2d, AffineTransform
xform, RenderingHints hints)

Not available in PDAP.

int getRGB() Available in PDAP.
String toString() Available in PDAP.

TextArea

Table B.43. Methods of the Class TextArea
Method Alternative/Workaround
TextArea() Available in PDAP.
TextArea(int rows, int columns) Available in PDAP.
TextArea(String text) Available in PDAP.
TextArea(String text, int rows, int columns) Available in PDAP.
TextArea(String text, int rows, int columns, int
scrollbars)

Available in PDAP.

 306

void addNotify() Not available in PDAP.
void append(String str) Available in PDAP.
void appendText(String str) Available in PDAP.
AccessibleContext getAccessibleContext() Not available in PDAP.
int getColumns() Available in PDAP.
Dimension getMinimumSize() Available in PDAP.
Dimension getMinimumSize(int rows, int columns) Available in PDAP.
Dimension getPreferredSize() Available in PDAP.
Dimension getPreferredSize(int rows, int columns) Available in PDAP.
int getRows() Available in PDAP.
int getScrollbarVisibility() Available in PDAP.
void insert(String str, int pos) Available in PDAP.
void insertText(String str, int pos) Available in PDAP.
Dimension minimumSize() Available in PDAP.
Dimension minimumSize(int rows, int columns) Available in PDAP.
protected String paramString() Available in PDAP.
Dimension preferredSize() Available in PDAP.
Dimension preferredSize(int rows, int columns) Available in PDAP.
void replaceRange(String str, int start, int end) Available in PDAP.
void replaceText(String str, int start, int end) Available in PDAP.
void setColumns(int columns) Available in PDAP.
void setRows(int rows) Available in PDAP.

TextComponent

Table B.44. Methods of the Class TextComponent
Method Alternative/Workaround
void addNotify() Not available in PDAP.
void addTextListener(TextListener l) Available in PDAP.
void enableInputMethods(boolean enable) Not available in PDAP.
AccessibleContext getAccessibleContext() Not available in PDAP.
Color getBackground() Not available in PDAP.
int getCaretPosition() Available in PDAP.
EventListener[] getListeners(Class listenerType) Not available in PDAP.
String getSelectedText() Available in PDAP.
int getSelectionEnd() Available in PDAP.
int getSelectionStart() Available in PDAP.
String getText() Available in PDAP.
boolean isEditable() Available in PDAP.
protected String paramString() Available in PDAP.
protected void processEvent(AWTEvent e) Available in PDAP.
protected void processTextEvent(TextEvent e) Available in PDAP.
void removeNotify() Not available in PDAP.
void removeTextListener(TextListener l) Available in PDAP.
void select(int selectionStart, int selectionEnd) Available in PDAP.
void selectAll() Available in PDAP.
void setBackground(Color c) Not available in PDAP.
void setCaretPosition(int position) Available in PDAP.

 307

void setEditable(boolean b) Available in PDAP.
void setSelectionEnd(int selectionEnd) Available in PDAP.
void setSelectionStart(int selectionStart) Available in PDAP.
void setText(String t) Available in PDAP.

TextField

Table B.45. Methods of the Class TextField
Method Alternative/Workaround
TextField() Available in PDAP.
TextField(int columns) Available in PDAP.
TextField(String text) Available in PDAP.
TextField(String text, int columns) Available in PDAP.
void addActionListener(ActionListener l) Available in PDAP.
void addNotify() Available in PDAP.
boolean echoCharIsSet() Available in PDAP.
AccessibleContext getAccessibleContext() Not available in PDAP.
int getColumns() Available in PDAP.
char getEchoChar() Available in PDAP.
EventListener[] getListeners(Class listenerType) Not available in PDAP.
Dimension getMinimumSize() Available in PDAP.
Dimension getMinimumSize(int columns) Available in PDAP.
Dimension getPreferredSize() Available in PDAP.
Dimension getPreferredSize(int columns) Available in PDAP.
Dimension minimumSize() Available in PDAP.
Dimension minimumSize(int columns) Available in PDAP.
protected String paramString() Available in PDAP.
Dimension preferredSize() Available in PDAP.
Dimension preferredSize(int columns) Available in PDAP.
protected void processActionEvent(ActionEvent e) Available in PDAP.
protected void processEvent(AWTEvent e) Available in PDAP.
void removeActionListener(ActionListener l) Available in PDAP.
void setColumns(int columns) Available in PDAP.
void setEchoChar(char c) Available in PDAP.
void setEchoCharacter(char c) Available in PDAP.
void setText(String t) Not available in PDAP.

Toolkit

Table B.46. Methods of the Class Toolkit
Method Alternative/Workaround
Toolkit() Available in PDAP.
void addAWTEventListener(AWTEventListener
listener, long eventMask)

Available in PDAP.

void addPropertyChangeListener(String name,
PropertyChangeListener pcl)

Not available in PDAP.

abstract void beep() Available in PDAP.
abstract int checkImage(Image image, int width, Available in PDAP.

 308

int height, ImageObserver observer)
protected abstract java.awt.peer.ButtonPeer
createButton(Button target)

Not available in PDAP.

protected abstract java.awt.peer.CanvasPeer
createCanvas(Canvas target)

Not available in PDAP.

protected abstract java.awt.peer.CheckboxPeer
createCheckbox(Checkbox target)

Not available in PDAP.

protected abstract java.awt.peer.
CheckboxMenuItemPeer createCheckboxMenuItem
(CheckboxMenuItem target)

Not available in PDAP.

protected abstract java.awt.peer.ChoicePeer
createChoice(Choice target)

Not available in PDAP.

protected java.awt.peer.LightweightPeer
createComponent(Component target)

Not available in PDAP.

Cursor createCustomCursor (Image cursor, Point
hotSpot, String name)

Not available in PDAP.

DragGestureRecognizer createDragGestureRecognizer
(Class abstractRecognizerClass, DragSource ds,
Component c, int srcActions, DragGestureListener
dgl)

Not available in PDAP.

abstract java.awt.dnd.peer.DragSourceContextPeer
createDragSourceContextPeer(DragGestureEvent dge)

Not available in PDAP.

protected abstract java.awt.peer.FileDialogPeer
createFileDialog(FileDialog target)

Not available in PDAP.

protected abstract java.awt.peer.FramePeer
createFrame(Frame target)

Not available in PDAP.

Image createImage(byte[] imagedata) Available in PDAP.
abstract Image createImage(byte[] imagedata, int
imageoffset, int imagelength)

Available in PDAP.

abstract Image createImage(ImageProducer
producer)

Available in PDAP.

abstract Image createImage(String filename) Available in PDAP.
abstract Image createImage(URL url) Available in PDAP.
protected abstract java.awt.peer.LabelPeer
createLabel(Label target)

Not available in PDAP.

protected abstract java.awt.peer.ListPeer
createList(List target)

Not available in PDAP.

protected abstract java.awt.peer.MenuPeer
createMenu(Menu target)

Not available in PDAP.

protected abstract java.awt.peer.MenuBarPeer
createMenuBar(MenuBar target)

Not available in PDAP.

protected abstract java.awt.peer.MenuItemPeer
createMenuItem(MenuItem target)

Not available in PDAP.

protected abstract java.awt.peer.PanelPeer
createPanel(Panel target)

Not available in PDAP.

protected abstract java.awt.peer.PopupMenuPeer
createPopupMenu(PopupMenu target)

Not available in PDAP.

protected abstract java.awt.peer.ScrollbarPeer
createScrollbar(Scrollbar target)

Not available in PDAP.

protected abstract java.awt.peer.ScrollPanePeer
createScrollPane(ScrollPane target)

Not available in PDAP.

protected abstract java.awt.peer.TextAreaPeer
createTextArea(TextArea target)

Not available in PDAP.

 309

protected abstract java.awt.peer.TextFieldPeer
createTextField(TextField target)

Not available in PDAP.

protected abstract java.awt.peer.WindowPeer
createWindow(Window target)

Not available in PDAP.

Dimension getBestCursorSize(int preferredWidth,
int preferredHeight)

Not available in PDAP.

abstract ColorModel getColorModel() Available in PDAP.
static Toolkit getDefaultToolkit() Available in PDAP.
Object getDesktopProperty(String propertyName) Not available in PDAP.
abstract String[] getFontList() Available in PDAP.
abstract FontMetrics getFontMetrics(Font font) Available in PDAP.
protected abstract java.awt.peer.FontPeer
getFontPeer(String name, int style)

Not available in PDAP.

abstract Image getImage(String filename) Available in PDAP.
abstract Image getImage(URL url) Not available in PDAP.
boolean getLockingKeyState(int keyCode) Not available in PDAP.
int getMaximumCursorColors() Not available in PDAP.
int getMenuShortcutKeyMask() Available in PDAP.
protected static Container getNativeContainer
(Component c)

Not available in PDAP.

PrintJob getPrintJob(Frame frame, String
jobtitle, JobAttributes jobAttributes,
PageAttributes pageAttributes)

Not available in PDAP.

abstract PrintJob getPrintJob(Frame frame, String
jobtitle, Properties props)

Not available in PDAP.

static String getProperty (String key, String
defaultValue)

Available in PDAP.

abstract int getScreenResolution() Available in PDAP.
abstract Dimension getScreenSize() Available in PDAP.
abstract Clipboard getSystemClipboard() Not available in PDAP.
EventQueue getSystemEventQueue() Available in PDAP.
protected abstract EventQueue
getSystemEventQueueImpl()

Available in PDAP.

protected void initializeDesktopProperties() Not available in PDAP.
protected Object lazilyLoadDesktopProperty
(String name)

Not available in PDAP.

protected void loadSystemColors(int[]
systemColors)

Available in PDAP.

abstract Map mapInputMethodHighlight
(InputMethodHighlight highlight)

Not available in PDAP.

abstract boolean prepareImage(Image image, int
width, int height, ImageObserver observer)

Available in PDAP.

void removeAWTEventListener(AWTEventListener
listener)

Available in PDAP.

void removePropertyChangeListener(String name,
PropertyChangeListener pcl)

Not available in PDAP.

protected void setDesktopProperty(String name,
Object newValue)

Not available in PDAP.

void setLockingKeyState(int keyCode, boolean on) Not available in PDAP.
abstract void sync() Available in PDAP.

Window

 310

Table B.47. Methods of the Class Window
Method Alternative/Workaround
Window() Not available in PDAP.
Window(Frame owner) Available in PDAP.
Window(Window owner) Available in PDAP.
Window(Window owner, GraphicsConfiguration gc) Available in PDAP.
void addNotify() Not available in PDAP.
void addWindowListener(WindowListener l) Available in PDAP.
void applyResourceBundle(ResourceBundle rb) Not available in PDAP.
void applyResourceBundle(String rbName) Not available in PDAP.
void dispose() Available in PDAP.
protected void finalize() Not available in PDAP.
AccessibleContext getAccessibleContext() Not available in PDAP.
Component getFocusOwner() Available in PDAP.
GraphicsConfiguration getGraphicsConfiguration() Not available in PDAP.
InputContext getInputContext() Not available in PDAP.
EventListener[] getListeners(Class listenerType) Not available in PDAP.
Locale getLocale() Available in PDAP.
Window[] getOwnedWindows() Not available in PDAP.
Window getOwner() Not available in PDAP.
Toolkit getToolkit() Available in PDAP.
String getWarningString() Available in PDAP.
void hide() Not available in PDAP.
boolean isShowing() Available in PDAP.
void pack() Available in PDAP.
boolean postEvent(Event e) Available in PDAP.
protected void processEvent(AWTEvent e) Available in PDAP.
protected void processWindowEvent(WindowEvent e) Available in PDAP.
void removeWindowListener(WindowListener l) Available in PDAP.
void setCursor(Cursor cursor) Available in PDAP.
void show() Available in PDAP.
void toBack() Available in PDAP.
void toFront() Available in PDAP.

 311

java.awt.event

Table B.48. Interfaces of the java.awt.event Package
J2SE Interface Availability in PDAP
ActionListener Available in PDAP.
AdjustmentListener Available in PDAP.
AWTEventListener Available in PDAP.
ComponentListener Available in PDAP.
ContainerListener Available in PDAP.
FocusListener Available in PDAP.
HierarchyBoundsListener Not available in PDAP.
HierarchyListener Not available in PDAP.
InputMethodListener Not available in PDAP.
ItemListener Available in PDAP.
KeyListener Available in PDAP.
MouseListener Available in PDAP.
MouseMotionListener Available in PDAP.
TextListener Available in PDAP.
WindowListener Available in PDAP.

Table B.49. Classes of the java.awt.event Package
J2SE Interface Availability in PDAP
ActionEvent All J2SE methods are available in PDAP.
AdjustmentEvent All J2SE methods are available in PDAP.
ComponentAdapter All J2SE methods are available in PDAP.
ComponentEvent All J2SE methods are available in PDAP.
ContainerAdapter All J2SE methods are available in PDAP.
ContainerEvent All J2SE methods are available in PDAP.
FocusAdapter All J2SE methods are available in PDAP.
FocusEvent All J2SE methods are available in PDAP.
HierarchyBoundsAdapter Not available in PDAP.
HierarchyEvent Not available in PDAP.
InputEvent All J2SE methods are available in PDAP.
InputMethodEvent Not available in PDAP.
InvocationEvent All J2SE methods are available in PDAP.
ItemEvent All J2SE methods are available in PDAP.
KeyAdapter All J2SE methods are available in PDAP.
KeyEvent All J2SE methods are available in PDAP.
MouseAdapter All J2SE methods are available in PDAP.
MouseEvent All J2SE methods are available in PDAP.
MouseMotionAdapter All J2SE methods are available in PDAP.
PaintEvent All J2SE methods are available in PDAP.
TextEvent All J2SE methods are available in PDAP.
WindowAdapter All J2SE methods are available in PDAP.
WindowEvent All J2SE methods are available in PDAP.

TE
AM
FL
Y

Team-Fly®

 312

java.awt.image

Table B.50. Interfaces of the java.awt.image Package
J2SE Interface Availability in PDAP
BufferedImageOp Not available in PDAP.
ImageConsumer All J2SE methods are available.
ImageObserver All J2SE methods are available.
ImageProducer All J2SE methods are available.
RasterOp Not available in PDAP.
RenderedImage Not available in PDAP.
TileObserver Not available in PDAP.
WritableRenderedImage Not available in PDAP.

Table B.51. Classes of the java.awt.image Package
J2SE Class Availability in PDAP
AffineTransformOp Not available in PDAP.
AreaAveragingScaleFilter All J2SE methods are available.
BandCombineOp Not available in PDAP.
BandedSampleModel Not available in PDAP.
BufferedImage Not available in PDAP.
BufferedImageFilter Not available in PDAP.
ByteLookupTable Not available in PDAP.
ColorConvertOp Not available in PDAP.
ColorModel Partially contained; see Table B.53 for details.
ComponentColorModel Not available in PDAP.
ComponentSampleModel Not available in PDAP.
ConvolveOp Not available in PDAP.
CropImageFilter All J2SE methods are available.
DataBuffer Not available in PDAP.
DataBufferByte Not available in PDAP.
DataBufferInt Not available in PDAP.
DataBufferShort Not available in PDAP.
DataBufferUShort Not available in PDAP.
DirectColorModel Partially contained; see Table B.54 for details.
FilteredImageSource All J2SE methods are available.
ImageFilter Partially contained; see Table B.55 for details.
IndexColorModel Partially contained; see Table B.56 for details.
Kernel Not available in PDAP.
LookupOp Not available in PDAP.
LookupTable Not available in PDAP.
MemoryImageSource All J2SE methods are available.
MultiPixelPackedSampleModel Not available in PDAP.
PackedColorModel Not available in PDAP.
PixelGrabber All J2SE methods are available.
PixelInterleavedSampleModel Not available in PDAP.
Raster Not available in PDAP.
ReplicateScaleFilter All J2SE methods are available.

 313

RescaleOp Not available in PDAP.
RGBImageFilter All J2SE methods are available.
SampleModel Not available in PDAP.
ShortLookupTable Not available in PDAP.
SinglePixelPackedSampleModel Not available in PDAP.
WritableRaster Not available in PDAP.

Table B.52. Exceptions of the java.awt.image Package
J2SE Exception Availability in PDAP
ImagingOpException Not available in PDAP.
RasterFormatException Not available in PDAP.

ColorModel

Table B.53. Methods of the Class ColorModel
Method Alternative/Workaround
ColorModel(int bits) Available in PDAP.
protected ColorModel(int pixel_bits, int[] bits,
ColorSpace cspace, boolean hasAlpha, boolean
isAlphaPremultiplied, int transparency, int
transferType)

Not available in PDAP.

ColorModel coerceData(WritableRaster raster,
boolean isAlphaPremultiplied)

Not available in PDAP.

SampleModel createCompatibleSampleModel (int w,
int h)

Not available in PDAP.

WritableRaster createCompatibleWritableRaster
(int w, int h)

Not available in PDAP.

boolean equals(Object obj) Available in PDAP.
void finalize() Available in PDAP.
abstract int getAlpha(int pixel) Available in PDAP.
int getAlpha(Object inData) Not available in PDAP.
WritableRaster getAlphaRaster(WritableRaster
raster)

Not available in PDAP.

abstract int getBlue(int pixel) Available in PDAP.
int getBlue(Object inData) Not available in PDAP.
ColorSpace getColorSpace() Not available in PDAP.
int[] getComponents(int pixel, int[] components,
int offset)

Not available in PDAP.

int[] getComponents(Object pixel, int[]
components, int offset)

Not available in PDAP.

int[] getComponentSize() Not available in PDAP.
int getComponentSize(int componentIdx) Not available in PDAP.
int getDataElement(int[] components, int offset) Not available in PDAP.
Object getDataElements(int[] components, int
offset, Object obj)

Not available in PDAP.

Object getDataElements(int rgb, Object pixel) Not available in PDAP.
abstract int getGreen(int pixel) Available in PDAP.
int getGreen(Object inData) Not available in PDAP.
float[] getNormalizedComponents(int[] components,
int offset, float[] normComponents, int
normOffset)

Not available in PDAP.

 314

int getNumColorComponents() Not available in PDAP.
int getNumComponents() Not available in PDAP.
int getPixelSize() Available in PDAP.
abstract int getRed(int pixel) Available in PDAP.
int getRed(Object inData) Not available in PDAP.
int getRGB(int pixel) Not available in PDAP.
int getRGB(Object inData) Not available in PDAP.
static ColorModel getRGBdefault() Available in PDAP.
int getTransferType() Not available in PDAP.
int getTransparency() Not available in PDAP.
int[] getUnnormalizedComponents(float[]
normComponents, int normOffset, int[] components,
int offset)

Not available in PDAP.

boolean hasAlpha() Available in PDAP.
int hashCode() Available in PDAP.
boolean isAlphaPremultiplied() Available in PDAP.
boolean isCompatibleRaster(Raster raster) Not available in PDAP.
boolean isCompatibleSampleModel(SampleModel sm) Not available in PDAP.
String toString() Available in PDAP.

DirectColorModel

Table B.54. Methods of the Class DirectColorModel
Method Alternative/Workaround
DirectColorModel(ColorSpace space, int bits, int
rmask, int gmask, int bmask, int amask, boolean
isAlphaPremultiplied, int transferType)

Not available in PDAP.

DirectColorModel(int bits, int rmask, int gmask,
int bmask)

Available in PDAP.

DirectColorModel(int bits, int rmask, int gmask,
int bmask, int amask)

Available in PDAP.

ColorModel coerceData(WritableRaster raster,
boolean isAlphaPremultiplied)

Not available in PDAP.

WritableRaster createCompatibleWritableRaster
(int w, int h)

Not available in PDAP.

int getAlpha(int pixel) Available in PDAP.
int getAlpha(Object inData) Not available in PDAP.
int getAlphaMask() Available in PDAP.
int getBlue(int pixel) Available in PDAP.
int getBlue(Object inData) Not available in PDAP.
int getBlueMask() Available in PDAP.
int[] getComponents(int pixel, int[] components,
int offset)

Not available in PDAP.

int[] getComponents(Object pixel, int[]
components, int offset)

Not available in PDAP.

int getDataElement(int[] components, int offset) Not available in PDAP.
Object getDataElements(int[] components, int
offset, Object obj)

Not available in PDAP.

Object getDataElements(int rgb, Object pixel) Not available in PDAP.
int getGreen(int pixel) Available in PDAP.

 315

int getGreen(Object inData) Not available in PDAP.
int getGreenMask() Available in PDAP.
int getRed(int pixel) Available in PDAP.
int getRed(Object inData) Not available in PDAP.
int getRedMask() Available in PDAP.
int getRGB(int pixel) Available in PDAP.
int getRGB(Object inData) Not available in PDAP.
boolean isCompatibleRaster(Raster raster) Not available in PDAP.
String toString() Available in PDAP.

ImageFilter

Table B.55. Methods of the Class ImageFilter
Method Alternative/Workaround
ImageFilter() Available in PDAP.
Object clone() Not available in PDAP.
ImageFilter getFilterInstance(ImageConsumer ic) Available in PDAP.
void imageComplete(int status) Available in PDAP.
Void resendTopDownLeftRight(ImageProducer ip) Available in PDAP.
void setColorModel(ColorModel model) Available in PDAP.
void setDimensions(int width, int height) Available in PDAP.
void setHints(int hints) Available in PDAP.
void setPixels(int x, int y, int w, int h,
ColorModel model, byte[] pixels, int off, int
scansize)

Available in PDAP.

void setPixels(int x, int y, int w, int h,
ColorModel model, int[] pixels, int off, int
scansize)

Available in PDAP.

void setProperties(Hashtable props) Available in PDAP.

IndexColorModel

Table B.56. Methods of the Class IndexColorModel
Method Alternative/Workaround
IndexColorModel(int bits, int size, byte[] r,
byte[] g, byte[] b)

Available in PDAP.

IndexColorModel(int bits, int size, byte[] r,
byte[] g, byte[] b, byte[] a)

Available in PDAP.

IndexColorModel(int bits, int size, byte[] r,
byte[] g, byte[] b, int trans)

Available in PDAP.

IndexColorModel(int bits, int size, byte[] cmap,
int start, boolean hasalpha)

Available in PDAP.

IndexColorModel(int bits, int size, byte[] cmap,
int start, boolean hasalpha, int trans)

Available in PDAP.

IndexColorModel(int bits, int size, int[] cmap,
int start, boolean hasalpha, int trans, int
transferType)

Not available in PDAP.

IndexColorModel(int bits, int size, int[] cmap,
int start, int transferType, BigInteger
validBits)

Not available in PDAP.

BufferedImage convertToIntDiscrete (Raster Not available in PDAP.

 316

raster, boolean forceARGB)
SampleModel createCompatibleSampleModel (int w,
int h)

Not available in PDAP.

WritableRaster createCompatibleWritableRaster
(int w, int h)

Not available in PDAP.

void finalize() Available in PDAP.
int getAlpha(int pixel) Available in PDAP.
void getAlphas(byte[] a) Available in PDAP.
int getBlue(int pixel) Available in PDAP.
void getBlues(byte[] b) Available in PDAP.
int[] getComponents (int pixel, int[] components,
int offset)

Not available in PDAP.

int[] getComponents (Object pixel, int[]
components, int offset)

Not available in PDAP.

int[] getComponentSize() Not available in PDAP.
int getDataElement(int[] components, int offset) Not available in PDAP.
Object getDataElements (int[] components, int
offset, Object pixel)

Not available in PDAP.

Object getDataElements(int rgb, Object pixel) Not available in PDAP.
int getGreen(int pixel) Available in PDAP.
void getGreens(byte[] g) Available in PDAP.
int getMapSize() Available in PDAP.
int getRed(int pixel) Available in PDAP.
void getReds(byte[] r) Available in PDAP.
int getRGB(int pixel) Available in PDAP.
void getRGBs(int[] rgb) Available in PDAP.
int getTransparency() Not available in PDAP.
int getTransparentPixel() Available in PDAP.
BigInteger getValidPixels() Not available in PDAP.
boolean isCompatibleRaster(Raster raster) Not available in PDAP.
boolean isCompatibleSampleModel(SampleModel sm) Not available in PDAP.
boolean isValid() Not available in PDAP.
boolean isValid(int pixel) Not available in PDAP.
String toString() Available in PDAP.

 317

java.io

Table B.57. Interfaces of the java.io Package
J2SE Interface Availability in CLDC
DataInput Partially contained; see Table B.60 for details.
DataOutput Partially contained; see Table B.61 for details.
Externalizable Not available in CLDC.
FileFilter Not available in CLDC.
FilenameFilter Not available in CLDC.
ObjectInput Not available in CLDC.
ObjectInputValidation Not available in CLDC.
ObjectOutput Not available in CLDC.
ObjectStreamConstants Not available in CLDC.
Serializable Not available in CLDC.

Table B.58. Classes of the java.io Package
J2SE Class Availability in CLDC
BufferedInputStream,
BufferedOutputStream

Not available in CLDC.

BufferedReader, BufferedWriter Not available in CLDC.

Workaround for readLine() using PC and UNIX
encoding:

static String readLine (Reader
reader) throws IOException {
 StringBuffer buf = new
StringBuffer();
 while (true) {
 int c = reader.read();
 if (c == -1) {
 if (buf.length() == 0) return
null;
 break;
 }
 if (c == '\n') break;
 if (c != '\r') buf.append ((char)
c);
 }
 return buf.toString();
}

ByteArrayInputStream All J2SE methods are available in CLDC.
ByteArrayOutputStream Partially contained; see Table B.62 for details.
CharArrayReader,
CharArrayWriter

Not available in CLDC.

DataInputStream,
DataOutputStream

Partially contained; see Table B.63 and B.64 for
details.

File, FileDescriptor,
FileInputStream,
FilePermission, FileReader,
FileWriter

Files not available in CLDC. Use the classes of the
javax.microedition.rms as an alternative. For
accessing files on memory cards, some devices
may provide a file:// protocol implementation in the
generic connection framework (see Chapter 6,
"Networking: The Generic Connection Framework").

 318

FilterInputStream,
FilterOutputStream

Not available in CLDC.

FilterReader, FilterWriter Not available in CLDC.
InputStream All J2SE methods are available in CLDC.
InputStreamReader Partially contained; see Table B.65 for details.
LineNumberInputStream Not available in CLDC.
LineNumberReader Not available in CLDC.
ObjectInputStream Not available in CLDC.
ObjectInputStream.GetField Not available in CLDC.
ObjectOutputStream Not available in CLDC.
ObjectOutputStream.PutField Not available in CLDC.
ObjectStreamClass Not available in CLDC.
ObjectStreamField Not available in CLDC.
OutputStream All J2SE methods are available in CLDC.
OutputStreamWriter Partially contained; see Table B.66 details.
PipedInputStream,
PipedOutputStream

Not available in CLDC.

PipedReader Not available in CLDC.
PipedWriter Not available in CLDC.
PrintStream Partially contained; see Table B.67 for details.
PrintWriter Not available in CLDC.
PushbackInputStream Not available in CLDC.
PushbackReader Not available in CLDC. kXML contains a

LookAheadReader that is comparable to some
extent.

RandomAccessFile Files are not available in CLDC. Use the classes of
the javax.microedition.rms as an alternative.
For accessing files on memory cards, some devices
may provide a file:// protocol implementation in
the generic connection framework (see Chapter 6).

Reader Fully available in CLDC.
SequenceInputStream Not available in CLDC.
SerializablePermission Not available in CLDC.
StreamTokenizer Not available in CLDC.
StringBufferInputStream Not available in CLDC. See StringReader for a

workaround.
StringReader Not available in CLDC.

Use

new InputStreamReader
(new ByteArrayInputStream
(s.getBytes()));

instead of

new StringReader (s);
StringWriter Not available in CLDC.

Use

 319

 ByteArrayOutputStream bos = new
ByteArrayOutputStream();
 OutputStreamWriter sw = new
OutputStreamWriter (bos);
 // ... write to sw
 String s = new String
(bos.getByteArray
());

instead of

StringWriter sw = new StringWriter();
// ... write to sw
String s = sw.toString();

Writer Fully available in CLDC.
Table B.59. Exceptions of the java.io Package

J2SE Exception Availability in CLDC
CharConversionException Not available in CLDC.
EOFException Available in CLDC.
FileNotFoundException Not available in CLDC.
InterruptedIOException Available in CLDC.
InvalidClassException Not available in CLDC.
InvalidObjectException Not available in CLDC.
IOException Available in CLDC.
NotActiveException Not available in CLDC.
NotSerializableException Not available in CLDC.
ObjectStreamException Not available in CLDC.
OptionalDataException Not available in CLDC.
StreamCorruptedException Not available in CLDC.
SyncFailedException Not available in CLDC.
UnsupportedEncodingException Available in CLDC.
UTFDataFormatException Available in CLDC.
WriteAbortedException Not available in CLDC.

DataInput

Table B.60. Methods of the Class DataInput
Method Alternative/Workaround
DataInputStream(InputStream in) Available in CLDC.
boolean readBoolean() Available in CLDC.
byte readByte() Available in CLDC.
char readChar() Available in CLDC.
double readDouble() Available in CLDC-NG.
float readFloat() Available in CLDC-NG.
void readFully(byte[] b) Available in CLDC.
void readFully(byte[] b, int off, int len) Available in CLDC.
int readInt() Available in CLDC.
String readLine() Not available in CLDC.
long readLong() Available in CLDC.
short readShort() Available in CLDC.

 320

int readUnsignedByte() Available in CLDC.
int readUnsignedShort() Available in CLDC.
String readUTF() Available in CLDC.
int skipBytes(int n) Available in CLDC.

DataOutput

Table B.61. Methods of the Class DataOutput
Method Alternative/Workaround
void write(byte[] b) Available in CLDC.
void write(byte[] b, int off, int len) Available in CLDC.
void write(int b) Available in CLDC.
void writeBoolean(boolean v) Available in CLDC.
void writeByte(int v) Available in CLDC.
void writeBytes(String s) Not available in CLDC.
void writeChar(int v) Available in CLDC.
void writeChars(String s) Available in CLDC.
void writeDouble(double v) Available in CLDC-NG.
void writeFloat(float v) Available in CLDC-NG.
void writeInt(int v) Available in CLDC.
void writeLong(long v) Available in CLDC.
void writeShort(int v) Available in CLDC.
void writeUTF(String str) classesAvailable in CLDC.

Table B.62. Methods of the Class ByteArrayOutputStream
Method Alternative/Workaround
ByteArrayOutputStream() Available in CLDC.
ByteArrayOutputStream(int size) Available in CLDC.
void close() Available in CLDC.
void reset() Available in CLDC.
void flush() Available in CLDC.
int size() Available in CLDC.
byte [] toByteArray() Available in CLDC.
String toString() Available in CLDC.
String toString(int hibyte) Not available in CLDC (deprecated J2SE

method).
String toString(String enc) Not available in CLDC.
void write(byte[] b) Available in CLDC.
void write(byte[] b, int off,
int len)

Available in CLDC.

void write(int b) Available in CLDC.
void writeTo(OutputStream out) Not available in CLDC.

Workaround:

new DataOutputStream (out).write

(byteOutputStream.toByteArray());

DataInputStream

 321

Table B.63. Methods of the Class DataInputStream
Method Alternative/Workaround
DataInputStream(InputStream in) Available in CLDC.
int available() Available in CLDC.
void close() Available in CLDC.
void mark(int readlimit) Available in CLDC.
Boolean markSupported() Available in CLDC.
int read() Available in CLDC.
int read(byte[] b) Available in CLDC.
int read(byte[] b, int off, int len) Available in CLDC.
boolean readBoolean() Available in CLDC.
byte readByte() Available in CLDC.
char readChar() Available in CLDC.
double readDouble() Available in CLDC-NG.
float readFloat() Available in CLDC-NG.
void readFully(byte[] b) Available in CLDC.
void readFully(byte[] b, int off, int
len)

Available in CLDC.

int readInt() Available in CLDC.
String readLine() Not available in CLDC (deprecated J2SE

method).
long readLong() Available in CLDC.
short readShort() Available in CLDC.
int readUnsignedByte() Available in CLDC.
int readUnsignedShort() Available in CLDC.
String readUTF() Available in CLDC.
static String readUTF(DataInputin) Not available in CLDC.

Workaround:

in.readUTF()
void reset() Available in CLDC.
long skip(long n) Available in CLDC.
int skipBytes(int n) Available in CLDC.

DataOutputStream

Table B.64. Methods of the Class DataOutputStream
Method Alternative/Workaround
DataOutputStream(OutputStream
out)

Available in CLDC.

void close() Available in CLDC.
void flush() Available in CLDC.
int size() Not available in CLDC.
void write(byte[] b) Available in CLDC.
void write(byte[] b, int off,
int len)

Available in CLDC.

void write(int b) Available in CLDC.
void writeBoolean(boolean v) Available in CLDC.

TE
AM
FL
Y

Team-Fly®

 322

void writeByte(int v) Available in CLDC.
void writeBytes(String s) Not available in CLDC. Please note: This method

writes 8-bit chars only and differs from

write (s.getBytes());
void writeChar(int v) Available in CLDC.
void writeChars(String s) Available in CLDC.
void writeDouble(double v) Available in CLDC-NG.
void writeFloat(float v) Available in CLDC-NG.
void writeInt(int v) Available in CLDC.
void writeLong(long v) Available in CLDC.
void writeShort(int v) Available in CLDC.
void writeUTF(String str) Available in CLDC.

InputStreamReader

Table B.65. Methods of the Class InputStreamReader
Method Alternative/Workaround
InputStreamReader(InputStream in) Available in CLDC.
InputStreamReader(InputStream in, String enc) Available in CLDC.
void close() Available in CLDC.
String getEncoding() Not available in CLDC.
void mark(int readAheadLimit) Available in CLDC.
boolean markSupported() Available in CLDC.
int read(char[] cbuf) Available in CLDC.
int read() Available in CLDC.
int read(char[] cbuf, int off, int len) Available in CLDC.
boolean ready() Available in CLDC.
void reset() Available in CLDC.
long skip(long n) Available in CLDC.

OutputStreamWriter

Table B.66. Methods of the Class OutputStreamWriter
Method Alternative/Workaround
OutputStreamWriter(OutputStream out) Available in CLDC.
OutputStreamWriter(OutputStream out, String enc) Available in CLDC.
void close() Available in CLDC.
void flush() Available in CLDC.
String getEncoding() Not available in CLDC.
void write(char[] cbuf) Available in CLDC.
void write(String str) Available in CLDC.
void write(char[] cbuf, int off, int len) Available in CLDC.
void write(int c) Available in CLDC.
void write(String str, int off, int len) Available in CLDC.

PrintStream

 323

Table B.67. Methods of the Class PrintStream
Method Alternative/Workaround
PrintStream(OutputStream out) Available in CLDC.
PrintStream(OutputStream out, boolean autoFlush) Not available in CLDC.
boolean checkError() Available in CLDC.
void close() Available in CLDC.
void flush() Available in CLDC.
void print(boolean b) Available in CLDC.
void print(char c) Available in CLDC.
void print(char[] s) Available in CLDC.
void print(double d) Not available in CLDC.
void print(float f) Not available in CLDC.
void print(int i) Available in CLDC.
void print(long l) Available in CLDC.
void print(Object obj) Available in CLDC.
void print(String s) Available in CLDC.
void println() Available in CLDC.
void println(boolean x) Available in CLDC.
void println(char x) Available in CLDC.
void println(char[] x) Available in CLDC.
void println(double x) Not available in CLDC.
void println(float x) Not available in CLDC.
void println(int x) Available in CLDC.
void println(long x) Available in CLDC.
void println(Object x) Available in CLDC.
void println(String x) Available in CLDC.
protected void setError() Available in CLDC.
void write(byte[] buf, int off, int len) Available in CLDC.
void write(int b) Available in CLDC.

 324

java.lang

Table B.68. Interfaces of the java.lang Package
J2SE Interface Availability in CLDC
Clonable Not available in CLDC.
Comparable Not available in CLDC.
Runnable Fully available in CLDC.

Table B.69. Classes of the java.lang Package
J2SE Class Availability in CLDC
Boolean Partially contained; see Table B.72 for details.
Byte Partially contained; see Table B.73 for details.
Character Partially contained; see Table B.74 for details.
Character.Subset Not available in CLDC.
Character.UnicodeBlock Not available in CLDC.
Class Partially contained; see Table B.75 for details.
ClassLoader Not available in CLDC.
Compiler Not available in CLDC.
Double Partially contained in CLDC-NG; see Table B.76 for details.
Float Partially contained in CLDC-NG; see Table B.77 for details.
InheritableThreadLocal Not available in CLDC.
Integer Partially contained; see Table B.78 for details.
Long Partially contained; see Table B.79 for details.
Math Partially contained; see Table B.80 for details.
Number Not available in CLDC.
Object Partially contained. The CLDC version lacks the clone() and

finalize() methods that are provided in J2SE.
Package Not available in CLDC.
Process Not available in CLDC.
Runtime Partially contained; see the section "Runtime" for details.
RuntimePermission Not available in CLDC.
SecurityManager Not available in CLDC.
Short Partially contained; see Table B.81 for details.
StrictMath Not available in CLDC.
String Partially contained; see Table B.82 for details.
StringBuffer Partially contained; see Table B.83 for details.
System Partially contained; see Table B.84 for details.
Thread Partially contained; see Table B.85 for details.
ThreadGroup Not available in CLDC.
ThreadLocal Not available in CLDC.
Throwable Partially contained; see Table B.86 for details.
Void Not available in CLDC.

Table B.70. Exceptions of the java.lang Package
J2SE Exception Availability in CLDC
ArithmeticException Fully available in CLDC, except the missing

methods of the Throwable class.
ArrayIndexOutOfBoundsException Fully available in CLDC, except the missing

 325

methods of the Throwable class.
ArrayStoreException Fully available in CLDC, except the missing

methods of the Throwable class.
ClassCastException Fully available in CLDC, except the missing

methods of the Throwable class.
ClassNotFoundException Fully available in CLDC, except the missing

methods of the Throwable class.
CloneNotSupportedException Not available in CLDC.
Exception Fully available in CLDC, except the missing

methods of the Throwable class.
IllegalAccessException Fully available in CLDC, except the missing

methods of the Throwable class.
IllegalArgumentException Fully available in CLDC, except the missing

methods of the Throwable class.
IllegalMonitorStateException Fully available in CLDC, except the missing

methods of the Throwable class.
IllegalStateException Fully available in CLDC, except the missing

methods of the Throwable class.
IllegalThreadStateException Fully available in CLDC, except the missing

methods of the Throwable class.
IndexOutOfBoundsException Fully available in CLDC, except the missing

methods of the Throwable class.
InstantiationException Fully available in CLDC, except the missing

methods of the Throwable class.
InterruptedException Fully available in CLDC, except the missing

methods of the Throwable class.
NegativeArraySizeException Fully available in CLDC, except the missing

methods of the Throwable class.
NoSuchFieldException Fully available in CLDC, except the missing

methods of the Throwable class.
NoSuchMethodException Fully available in CLDC, except the missing

methods of the Throwable class.
NullPointerException Fully available in CLDC, except the missing

methods of the Throwable class.
NumberFormatException Fully available in CLDC, except the missing

methods of the Throwable class.
RuntimeException Fully available in CLDC, except the missing

methods of the Throwable class.
SecurityException Fully available in CLDC, except the missing

methods of the Throwable class.
StringIndexOutOfBoundsException Fully available in CLDC, except the missing

methods of the Throwable class.
UnsupportedOperationException Not available in CLDC.

Table B.71. Errors of the java.lang Package
J2SE Error Availability in CLDC
AbstractMethodError Not available in CLDC.
ClassCircularityError Not available in CLDC.
ClassFormatError Not available in CLDC.
Error Fully available in CLDC, except the missing methods

of the Throwable class.

 326

ExceptionInInitializerError Not available in CLDC.
IllegalAccessError Not available in CLDC.
IncompatibleClassChangeError Not available in CLDC.
InstantiationError Not available in CLDC.
InternalError Not available in CLDC.
LinkageError Not available in CLDC.
NoClassDefFoundError Available in CLDC-NG.
NoSuchFieldError Not available in CLDC.
NoSuchMethodError Not available in CLDC.
OutOfMemoryError Fully available in CLDC, except the missing methods

of the Throwable class.
StackOverflowError Not available in CLDC.
ThreadDeath Not available in CLDC.
UnknownError Not available in CLDC.
UnsatisfiedLinkError Not available in CLDC.
UnsupportedClassVersionError Not available in CLDC.
VerifyError Not available in CLDC.
VirtualMachineError Fully available in CLDC, except the missing methods

of the Throwable class.

Boolean

Table B.72. Methods of the Class Boolean
Method Availability in CLDC
Boolean(boolean value) Available in CLDC.
Boolean(String s) Not available in CLDC.

Workaround:

 Boolean (s != null &&
s.toLowerCase().
equals ("true"));

Boolean booleanValue() Available in CLDC.
Boolean equals(Object obj) Available in CLDC.
static boolean getBoolean(String
name)

Not available in CLDC.

Workaround:

 (name != null &&
name.toLowerCase().
equals ("true"));

int hashCode() Available in CLDC.
String toString() Available in CLDC.
static Boolean valueOf(String s) Not available in CLDC.

Workaround:

 new Boolean (s != null && s.
toLowerCase().equals ("true"));

Byte

 327

Table B.73. Methods of the Class Byte
Method Availability in CLDC
Byte(byte value) Available in CLDC.
Byte(String s) Not available in CLDC.
byte byteValue() Available in CLDC.
int compareTo(Byte
anotherByte)

Not available in CLDC. Workaround: compare the return
values of byteValue()

int compareTo(Object o) Not available in CLDC.
static Byte decode(String
nm)

Not available in CLDC.

Workaround: Determine radix using
String.startsWith(), then apply parseByte() with
the corresponding radix.

double doubleValue() Not available in CLDC.
boolean equals(Object
obj)

Available in CLDC.

float floatValue() Not available in CLDC.
int hashCode() Available in CLDC.
int intValue() Not available in CLDC.

Workaround:

(int) byteValue()
long longValue() Not available in CLDC.

Workaround:

(long) byteValue()
static byte
parseByte(String s)

Available in CLDC.

static byte
parseByte(String s, int
radix)

Available in CLDC.

Short shortValue() Not available in CLDC.

Workaround:

(short) byteValue()
String toString() Available in CLDC.
static String
toString(byte b)

Not available in CLDC.

Workaround:

""+b

or

new Byte (b).toString()
static Byte
valueOf(String s)

Not available in CLDC.

Workaround:

 328

new Byte (Byte.parseByte (s));
static Byte valueOf
(String s, intradix)

Not available in CLDC.

Workaround:

new Byte (Byte.parseByte (s, radix);

Character

Table B.74. Methods of the Class Character
Method Availability in CLDC
Character(char value) Available in CLDC.
Char charValue() Available in CLDC.
int compareTo(Character
anotherCharacter)

Not available in CLDC.

Workaround: Compare the return values of
charValue()

int compareTo(Object o) Not available in CLDC.
static int digit(char ch, int radix) Available in CLDC.
boolean equals(Object obj) Available in CLDC.
static char forDigit(int digit, int
radix)

Not available in CLDC.

Workaround:

(char) (digit > 9
 ? ((int) 'a') + digit – 10
 : ((int) '0') + digit)

static int getNumericValue (char ch) Not available in CLDC.

Incomplete workaround:

((int) ch) – ((int) '0')
static int getType(char ch) Not available in CLDC.

Workaround: For limited cases,
isDigit() may help.

int hashCode() Available in CLDC.
static boolean isDefined(char ch) Not available in CLDC.
static boolean isDigit (char ch) Available in CLDC.
static boolean
isIdentifierIgnorable(char ch)

Not available in CLDC.

static boolean isISOControl (char ch) Not available in CLDC.
static boolean
isJavaIdentifierPart(char ch)

Not available in CLDC.

static boolean
isJavaIdentifierStart(char ch)

Not available in CLDC.

static boolean isJavaLetter (char ch) Not available in CLDC(deprecated
J2SE method).

static boolean isJavaLetterOrDigit
(char ch)

Not available in CLDC (deprecated
J2SE method).

static boolean isLetter(char ch) Not available in CLDC.
static boolean isLetterOrDigit (char Not available in CLDC.

 329

ch)
static boolean isLowerCase (char ch) Available in CLDC.
static boolean isSpace(char ch) Not available in CLDC (deprecated

J2SE method).
static boolean isSpaceChar(char ch) Not available in CLDC.
static boolean isTitleCase(char ch) Not available in CLDC.
static boolean
isUnicodeIdentifierPart(char ch)

Not available in CLDC.

static boolean
isUnicodeIdentifierStart(char ch)

Not available in CLDC.

static boolean isUpperCase(char ch) Available in CLDC.
static boolean isWhitespace (char ch) Not available in CLDC.

Incomplete workaround:

ch <= ' '
static char toLowerCase(char ch) Available in CLDC.
String toString() Available in CLDC.
static char toTitleCase(char ch) Not available in CLDC.
static char toUpperCase(char ch) Available in CLDC.

Class

Table B.75. Methods of the Class Class
Method Availability in

CLDC
static Class forName(String className) Available in

CLDC.
static Class forName(String name, boolean initialize,
ClassLoaderloader)

Not available in
CLDC.

Class[] getClasses() Not available in
CLDC.

ClassLoader getClassLoader() Not available in
CLDC.

Class getComponentType() Not available in
CLDC.

Constructor getConstructor(Class[] parameterTypes) Not available in
CLDC.

Constructor[] getConstructors() Not available in
CLDC.

Class[] getDeclaredClasses() Not available in
CLDC.

Constructor getDeclaredConstructor (Class[]
parameterTypes)

Not available in
CLDC.

Constructor[] getDeclaredConstructors() Not available in
CLDC.

Field getDeclaredField(String name) Not available in
CLDC.

Field[] getDeclaredFields() Not available in
CLDC.

Method getDeclaredMethod(String name, Class[]
parameterTypes)

Not available in
CLDC.

 330

Method[] getDeclaredMethods() Not available in
CLDC.

Class getDeclaringClass() Not available in
CLDC.

Field getField(String name) Not available in
CLDC.

Field[] getFields() Not available in
CLDC.

Class[] getInterfaces() Not available in
CLDC.

Method getMethod(String name, Class[] parameterTypes) Not available in
CLDC.

Method[] getMethods() Not available in
CLDC.

int getModifiers() Not available in
CLDC.

String getName() Available in
CLDC.

Package getPackage() Not available in
CLDC.

ProtectionDomain getProtectionDomain() Not available in
CLDC.

URL getResource(String name) Not available in
CLDC.

InputStream getResourceAsStream(String name) Available in
CLDC.

Object[] getSigners() Not available in
CLDC.

Class getSuperclass() Not available in
CLDC.

boolean isArray() Available in
CLDC.

boolean isAssignableFrom(Class cls) Available in
CLDC.

boolean isInstance(Object obj) Available in
CLDC.

boolean isInterface() Available in
CLDC.

boolean isPrimitive() Not available in
CLDC.

Object newInstance() Available in
CLDC.

String toString() Available in
CLDC.

Double

Table B.76. Methods of the Class Double
Method Availability in CLDC-NG
Double(double value) Available in CLDC-NG.
Double(String s) Not available in CLDC-NG.
byte byteValue() Available in CLDC-NG.

 331

int compareTo(Double anotherDouble) Not available in CLDC-NG.
int compareTo(Object o) Not available in CLDC-NG.
static long doubleToLongBits(double value) Available in CLDC-NG.
static long doubleToRawLongBits(double value) Not available in CLDC-NG.
double doubleValue() Available in CLDC-NG.
boolean equals(Object obj) Available in CLDC-NG.
float floatValue() Available in CLDC-NG.
int hashCode() Available in CLDC-NG.
int intValue() Available in CLDC-NG.
boolean isInfinite() Available in CLDC-NG.
static boolean isInfinite(double v) Available in CLDC-NG.
boolean isNaN() Available in CLDC-NG.
static boolean isNaN(double v) Available in CLDC-NG.
static double longBitsToDouble(long bits) Available in CLDC-NG.
long longValue() Available in CLDC-NG.
static double parseDouble(String s) Available in CLDC-NG.
short shortValue() Available in CLDC-NG.
String toString() Available in CLDC-NG.
static String toString(double d) Available in CLDC-NG.
static Double valueOf(String s) Available in CLDC-NG.

Float

Table B.77. Methods Class Float
Method Availability in CLDC-NG
Float(double value) Available in CLDC-NG.
Float(float value) Available in CLDC-NG.
Float(String s) Not available in CLDC-NG.
byte byteValue() Available in CLDC-NG.
int compareTo(Float anotherFloat) Not available in CLDC-NG.
int compareTo(Object o) Not available in CLDC-NG.
double doubleValue() Available in CLDC-NG.
boolean equals(Object obj) Available in CLDC-NG.
static int floatToIntBits(float value) Available in CLDC-NG.
static int floatToRawIntBits(float value) Not available in CLDC-NG.
float floatValue() Available in CLDC-NG.
int hashCode() Available in CLDC-NG.
static float intBitsToFloat(int bits) Available in CLDC-NG.
int intValue() Available in CLDC-NG.
boolean isInfinite() Available in CLDC-NG.
static boolean isInfinite(float v) Available in CLDC-NG.
boolean isNaN() Available in CLDC-NG.
static boolean isNaN(float v) Available in CLDC-NG.
long longValue() Available in CLDC-NG.
static float parseFloat(String s) Available in CLDC-NG.
short shortValue() Available in CLDC-NG.
String toString() Available in CLDC-NG.
static String toString(float f) Available in CLDC-NG.

TE
AM
FL
Y

Team-Fly®

 332

static Float valueOf(String s) Available in CLDC-NG.

Integer

Table B.78. Methods of the Class Integer
Method Availability in CLDC
Integer(int value) Available in CLDC.
Integer(String s) Not available in CLDC.

Workaround:

new Integer (Integer.parseInt (s));
byte byteValue() Available in CLDC.
int compareTo(Integer
anotherInteger)

Not available in CLDC. Workaround:

Compare the values of intValue()
int compareTo(Object o) Not available in CLDC.
static Integer
decode(String nm)

Not available in CLDC.

Workaround: Determine sign and radix using
String.startsWith(), then apply
Integer.parseInt using the corresponding radix.

double doubleValue() Available in CLDC-NG.
boolean equals(Object obj) Available in CLDC.
float floatValue() Available in CLDC-NG.
static Integer getInteger
(String nm)

Not available in CLDC.

Workaround:

Integer.parseInt (System.getProperty(nm));
static Integer getInteger
(String nm, int val)

Not available in CLDC.

static Integer getInteger
(String nm, Integer val)

Not available in CLDC.

Int hashCode() Available in CLDC.
int intValue() Available in CLDC.
long longValue() Available in CLDC.
static int parseInt(String
s)

Available in CLDC.

static int parseInt
(String s, int radix)

Available in CLDC.

short shortValue() Available in CLDC.
static String
toBinaryString(int i)

Available in CLDC.

static String
toHexString(int i)

Available in CLDC.

static String
toOctalString(int i)

Available in CLDC.

String toString() Available in CLDC.
static String toString(int
i)

Available in CLDC.

 333

static String toString
(int i, int radix)

Available in CLDC.

static Integer
valueOf(String s)

Available in CLDC.

static Integer valueOf
(String s, int radix)

Available in CLDC.

Long

Table B.79. Methods of the Class Long
Method Availability in CLDC
Long(long value) Available in CLDC.
Long(String s) Not available in CLDC.

Workaround:

Long (Long.parseLong (value);
byte byteValue() Not available in CLDC.

Workaround:

(byte) longValue();
int compareTo(Long
anotherLong)

Not available in CLDC. Workaround: Compare the values
of longValue().

int compareTo(Object o) Not available in CLDC.
static Long
decode(String nm)

Not available in CLDC.

Workaround: Determine sign and radix using
String.startsWith(), then apply Long.parseLong
using the corresponding radix.

double doubleValue() Available in CLDC-NG.
boolean equals(Object
obj)

Available in CLDC.

float floatValue() Available in CLDC-NG.
static Long
getLong(String nm)

Not available in CLDC.

Workaround:

Long.parseLong (System.getProperty (nm));
static Long getLong
(String nm, long val)

Not available in CLDC.

static Long getLong
(String nm, Long val)

Not available in CLDC.

int hashCode() Available in CLDC.
int intValue() Not available in CLDC.

Workaround:

(int) longValue()
long longValue() Available in CLDC.
Static long
parseLong(String s)

Available in CLDC.

 334

Static long
parseLong(String s, int
radix)

Available in CLDC.

short shortValue() Not available in CLDC.

Workaround:

(short) longValue()
Static String
toBinaryString (long i)

Not available in CLDC.

Workaround:

toString (i, 2);
Static String
toHexString(long i)

Not available in CLDC.

Workaround:

toString (i, 16);
Static String
toOctalString (long i)

Not available in CLDC.

Workaround:

toString (i, 8);
String toString() Available in CLDC.
Static String
toString(long i)

Available in CLDC.

Static String toString
(long i, int radix)

Available in CLDC.

Static Long
valueOf(String s)

Not available in CLDC.

Workaround:

new Long(Long.parseLong (s));
Static Long valueOf
(String s, int radix)

Not available in CLDC.

Workaround:

new Long(Long.parseLong (s, radix));

Math

Table B.80. Methods of the Class Math
Method Alternative/Workaround
static double abs(double a) Available in CLDC-NG.
static float abs(float a) Available in CLDC-NG.
static int abs(int a) Available in CLDC.
static long abs(long a) Available in CLDC.
static double acos(double a) Not available in CLDC.
static double asin(double a) Not available in CLDC.
static double atan(double a) Not available in CLDC.
static double atan2(double a, double b) Not available in CLDC.
static double ceil(double a) Available in CLDC-NG.

 335

static double cos(double a) Not available in CLDC.
static double exp(double a) Not available in CLDC.
static double floor(double a) Available in CLDC-NG.
static double IEEEremainder (double f1, double
f2)

Not available in CLDC.

static double log(double a) Not available in CLDC.
static double max(double a, double b) Available in CLDC-NG.
static float max(float a, float b) Available in CLDC-NG.
static int max(int a, int b) Available in CLDC.
static long max(long a, long b) Available in CLDC.
static double min(double a, double b) Available in CLDC-NG.
static float min(float a, float b) Available in CLDC-NG.
static int min(int a, int b) Available in CLDC.
static long min(long a, long b) Available in CLDC.
static double pow(double a, double b) Not available in CLDC.
static double random() Not available in CLDC.
static double rint(double a) Not available in CLDC.
static long round(double a) Not available in CLDC.
static int round(float a) Not available in CLDC.
static double sin(double a) Not available in CLDC.
static double sqrt(double a) Not available in CLDC.
static double tan(double a) Not available in CLDC.
static double toDegrees(double angrad) Available in CLDC-NG.
static double toRadians(double angdeg) Available in CLDC-NG.

Runtime

Because executing additional processes or finalization is not supported in CLDC, the only methods of
the J2SE Runtime class are listed as follows:

• void exit(int status)
• long freeMemory()
• void gc()
• static Runtime getRuntime()
• long totalMemory()

Short

Table B.81. Methods of the Class Short
Method Availability in CLDC
Short(short value) Available in CLDC.
Short(String s) Not available in CLDC.

Workaround:

Short (parseShort (s))
byte byteValue() Not available in CLDC.

Workaround:

 336

(byte) shortValue()
int compareTo(Object o) Not available in CLDC.
int compareTo(Short
anotherShort)

Not available in CLDC.

Workaround: Compare the return values of shortValue()
Static Short decode(String
nm)

Not available in CLDC.

Workaround: Determine radix using nm.startsWith(),
then apply parseShort() with corresponding radix.

Double doubleValue() Not available in CLDC.
boolean equals(Object obj) Available in CLDC.
float floatValue() Not available in CLDC.
int hashCode() Available in CLDC.
int intValue() Not available in CLDC.

Workaround:

(int) shortValue()
long longValue() Not available in CLDC.

Workaround:

(int) shortValue()
static short
parseShort(String s)

Available in CLDC.

static short parseShort
(Strings, int radix)

Available in CLDC.

short shortValue() Available in CLDC.
String toString() Available in CLDC.
static String
toString(shorts)

Not available in CLDC.

Workaround:

(""+ s)

or

new Short(s).toString()
static Short valueOf(String
s)

Not available in CLDC.

Workaround:

new Short(parseShort (s));
static Short valueOf
(Strings, int radix)

Not available in CLDC.

Workaround:

new Short(parseShort (s, radix));

String

Table B.82. Methods of the Class String

 337

Method Availability in CLDC
String() Available in CLDC.
String(byte[] bytes) Available in CLDC.
String(byte[] ascii, int hibyte) Not available in CLDC (deprecated J2SE

constructor).
String(byte[] bytes, int offset, int
length)

Available in CLDC.

String(byte[] ascii, int hibyte, int
offset, int count)

Not available in CLDC (deprecated J2SE
method).

String(byte[] bytes, int offset, int
length, String enc)

Available in CLDC.

String(byte[] bytes, String enc) Available in CLDC.
String(char[] value) Available in CLDC.
String(char[] value, int offset, int
count)

Available in CLDC.

String(String value) Available in CLDC.
String(StringBuffer buffer) Available in CLDC.
char charAt(int index) Available in CLDC.
int compareTo(Object o) Not available in CLDC.
int compareTo(String anotherString) Not available in CLDC.

Workaround: Iterate over characters and
compare them.

int compareToIgnoreCase(String str) Not available in CLDC.
String concat(String str) Available in CLDC.
static String copyValueOf (char[]
data)

Not available in CLDC.

static String copyValueOf(char[]
data, int offset, int count)

Not available in CLDC.

boolean endsWith(String suffix) Available in CLDC.
boolean equals(Object anObject) Available in CLDC.
boolean equalsIgnoreCase (String
anotherString)

Not available in CLDC.

Workaround:

toLower().equalsIgnoreCase
(str.toLower);

byte[] getBytes() Available in CLDC.
void getBytes(int srcBegin, int
srcEnd, byte[] dst, int dstBegin)

Not available in CLDC (deprecated J2SE
method).

byte[] getBytes(String enc) Available in CLDC.
void getChars(int srcBegin, int
srcEnd, char[] dst, int dstBegin)

Available in CLDC.

int hashCode() Available in CLDC.
int indexOf(int ch) Available in CLDC.
int indexOf(int ch, int fromIndex) Available in CLDC.
int indexOf(String str) Available in CLDC.
int indexOf(String str, int
fromIndex)

Available in CLDC.

String intern() Not available in CLDC.

 338

A workaround for some purposes of intern
may be to store Strings in a hashtable.

int lastIndexOf(int ch) Available in CLDC.
int lastIndexOf (int ch, int
fromIndex)

Available in CLDC.

int lastIndexOf(String str) Not available in CLDC.
int lastIndexOf(String str, int
fromIndex)

Not available in CLDC.

int length() Available in CLDC.
boolean regionMatches(Boolean
ignoreCase, int toffset, String
other, int ooffset, int len)

Available in CLDC.

boolean regionMatches(int toffset,
String other, int ooffset, int len)

Not available in CLDC.

String replace (char oldChar, char
newChar)

Available in CLDC.

boolean startsWith(String prefix) Available in CLDC.
boolean startsWith (String prefix,
int toffset)

Available in CLDC.

String substring(int beginIndex) Available in CLDC.
String substring (int beginIndex, int
endIndex)

Available in CLDC.

char[]toCharArray() Available in CLDC.
String toLowerCase() Available in CLDC.
String toLowerCase(Locale locale) Not available in CLDC.
String toString() Available in CLDC.
String toUpperCase() Available in CLDC.
String toUpperCase(Locale locale) Not available in CLDC.
String trim() Available in CLDC.
static String valueOf(boolean b) Available in CLDC.
static String valueOf(char c) Available in CLDC.
static String valueOf(char[] data) Available in CLDC.
static String valueOf(char[] data,
int offset, int count)

Available in CLDC.

static String valueOf(double d) Available in CLDC-NG.
static String valueOf(float f) Available in CLDC-NG.
static String valueOf(int i) Available in CLDC.
static String valueOf(long l) Available in CLDC.
static String valueOf(Object obj) Available in CLDC.

StringBuffer

Table B.83. Methods of the Class StringBuffer
Method Availability in CLDC
StringBuffer() Available in CLDC.
StringBuffer(int length) Available in CLDC.
StringBuffer(String str) Available in CLDC.
StringBuffer append(boolean b) Available in CLDC.
StringBuffer append(char c) Available in CLDC.
StringBuffer append(char[] str) Available in CLDC.

 339

StringBuffer append(char[] str, int offset,
int len)

Available in CLDC.

StringBuffer append(double d) Available in CLDC-NG.
StringBuffer append(float f) Available in CLDC-NG.
StringBuffer append(int i) Available in CLDC.
StringBuffer append(long l) Available in CLDC.
StringBuffer append(Object obj) Available in CLDC.
StringBuffer append(String str) Available in CLDC.
int capacity() Available in CLDC.
char charAt(int index) Available in CLDC.
StringBuffer delete (int start, int end) Available in CLDC.
StringBuffer deleteCharAt (int index) Available in CLDC.
void ensureCapacity (int minimumCapacity) Available in CLDC.
void getChars(int srcBegin, int srcEnd,
char[] dst, int dstBegin)

Available in CLDC.

StringBuffer insert (int offset, boolean b) Available in CLDC.
StringBuffer insert (int offset, char c) Available in CLDC.
StringBuffer insert (int offset, char[]
str)

Available in CLDC.

StringBuffer insert(int index, char[] str,
int offset, int len)

Not available in CLDC.

StringBuffer insert (int offset, double d) Available in CLDC-NG.
StringBuffer insert (int offset, float f) Available in CLDC-NG.
StringBuffer insert (int offset, int i) Available in CLDC.
StringBuffer insert (int offset, long l) Available in CLDC.
StringBuffer insert (int offset, Object
obj)

Available in CLDC.

StringBuffer insert (int offset, String
str)

Available in CLDC.

int length() Available in CLDC.
StringBuffer replace (int start, int end,
String str)

Not available in CLDC.

Workaround:

delete (start, end);
insert (start, str);

StringBuffer reverse() Available in CLDC.
void setCharAt(int index, char ch) Available in CLDC.
void setLength(int newLength) Available in CLDC.
String substring(int start) Not available in CLDC.
String substring (int start, int end) Not available in CLDC.
String toString() Available in CLDC.

System

Table B.84. Methods of the Class System
Method Availability in CLDC
static void arraycopy(Object src, int
src_position, Object dst, int dst_position,
int length)

Available in CLDC.

 340

static long currentTimeMillis() Available in CLDC.
static void exit(int status) Available in CLDC.
static void gc() Available in CLDC.
static String getenv(String name) Not available in CLDC

(deprecated J2SE method).
static Properties getProperties() Not available in CLDC.
static String getProperty (String key) Available in CLDC.
static String getProperty (String key,
String def)

Not available in CLDC.

Workaround:

 Static String
getProperty (
String key,
String def) {
 String val =
System.getProperty (key);
 return val == null ?
def : val;
 }

static SecurityManager getSecurityManager() Not available in CLDC.
static int identityHashCode (Object x) Available in CLDC.
static void load(String filename) Not available in CLDC.
static void loadLibrary (String libname) Not available in CLDC.
static String mapLibraryName (String
libname)

Not available in CLDC.

static void runFinalization() Not available in CLDC.
static void runFinalizersOnExit (boolean
value)

Not available in CLDC
(deprecated J2SE method).

static void setErr(PrintStream err) Not available in CLDC.
static void setIn(InputStream in) Not available in CLDC.
static void setOut(PrintStream out) Not available in CLDC.
static void setProperties (Properties
props)

Not available in CLDC.

static String setProperty (String key,
String value)

Not available in CLDC.

static void setSecurityManager
(SecurityManager s)

Not available in CLDC.

Thread

Table B.85. Methods of the Class Thread
Method Availability in CLDC
Thread() Available in CLDC.
Thread(Runnable target) Available in CLDC.
Thread(Runnable target, String name) Available in CLDC-NG.
Thread(String name) Available in CLDC-NG.
Thread(ThreadGroup group, Runnable
target)

Not available in CLDC, because
ThreadGroup is not supported.

Thread(ThreadGroup group, Runnable
target, String name)

Not available in CLDC, because
ThreadGroup is not supported.

 341

Thread(ThreadGroup group, String name) Not available in CLDC, because
ThreadGroup is not supported.

static int activeCount() Available in CLDC.
void checkAccess() Not available in CLDC.
int countStackFrames() Not available in CLDC (deprecated

J2SE method).
static Thread currentThread() Available in CLDC.
void destroy() Not available in CLDC.
static void dumpStack() Not available in CLDC.
static int enumerate (Thread[] tarray) Not available in CLDC.
ClassLoader getContextClassLoader() Not available in CLDC.
String getName() Available in CLDC-NG.
int getPriority() Available in CLDC.
ThreadGroup getThreadGroup() Not available in CLDC.
void interrupt() Not available in CLDC.
static boolean interrupted() Not available in CLDC.
boolean isAlive() Available in CLDC.
boolean isDaemon() Available in CLDC-NG.
boolean isInterrupted() Not available in CLDC.
void join() Available in CLDC.
void join(long millis) Not available in CLDC.
void join(long millis, int nanos) Not available in CLDC.
void resume() Not available in CLDC (deprecated

J2SE method).
void run() Available in CLDC.
void setContextClassLoader
(ClassLoader cl)

Not available in CLDC.

void setDaemon(boolean on) Available in CLDC-NG.
void setName(String name) Not available in CLDC.
void setPriority(int newPriority) Available in CLDC.
static void sleep(long millis) Available in CLDC.
static void sleep (long millis, int
nanos)

Not available in CLDC.

void start() Available in CLDC.
void stop() Not available in CLDC (deprecated

J2SE method).
void stop(Throwable obj) Not available in CLDC (deprecated

J2SE method).
void suspend() Not available in CLDC.
String toString() Available in CLDC.
static void yield() Available in CLDC.

Throwable

Table B.86. Methods of the Class Throwable
Method Availability in CLDC
Throwable() Available in CLDC.
Throwable(String message) Available in CLDC.
Throwable fillInStackTrace() Not available in CLDC.

TE
AM
FL
Y

Team-Fly®

 342

String getLocalizedMessage() Not available in CLDC.
String getMessage() Available in CLDC.
void printStackTrace() Available in CLDC.
void printStackTrace(PrintStream s) Not available in CLDC.
void printStackTrace(PrintWriter s) Not available in CLDC.
String toString() Available in CLDC.

 343

java.lang.ref

Table B.87. Classes of the java.lang.ref Package
J2SE Classes Availability in PDAP
PhantomReference Not available in CLDC.
Reference Partially contained in CLDC-NG; see Table B.88 for details.
ReferenceQueue Not available in CLDC.
SoftReference Not available in CLDC.
WeakReference Partially contained; see Table B.89 for details.

Reference

Table B.88. Methods of the Class Reference
Method Availability in CLDC
void clear() Available in CLDC-NG.
boolean enqueue() Not available in CLDC.
Object get() Available in CLDC-NG.
boolean isEnqueued() Not available in CLDC.

WeakReference

Table B.89. Methods of the Class WeakReference
Method Availability in CLDC
WeakReference(Object referent) Available in CLDC-NG.
WeakReference(Object referent, ReferenceQueue q) Not available in CLDC.

 344

java.lang.reflect
The package java.lang.reflect includes the InvocationTargetException in PDAP only. No interfaces or
classes are supported.

 345

java.net

The package java.net supports the URL class and the MalformedURLException only. The
following table shows the methods supported by the URL class.

URL

Table B.90. Methods of the Class URL
Method Availability in

PDAP
URL(String spec) Available in

PDAP.
URL(String protocol, String host, int port, String file) Available in

PDAP.
URL(String protocol, String host, int port, String file,
URLStreamHandler handler)

Not available
in PDAP.

URL(String protocol, String host, String file) Available in
PDAP.

URL(URL context, String spec) Available in
PDAP.

URL(URL context, String spec, URLStreamHandler handler) Not available
in PDAP.

boolean equals(Object obj) Available in
PDAP.

String getAuthority() Available in
PDAP.

Object getContent() Not available
in PDAP.

Object getContent(Class[] classes) Not available
in PDAP.

String getFile() Available in
PDAP.

String getHost() Available in
PDAP.

String getPath() Available in
PDAP.

int getPort() Available in
PDAP.

String getProtocol() Available in
PDAP.

String getQuery() Available in
PDAP.

String getRef() Available in
PDAP.

String getUserInfo() Available in
PDAP.

int hashCode() Available in
PDAP.

URLConnection openConnection() Not available
in PDAP.

InputStream openStream() Not available
in PDAP.

 346

boolean sameFile(URL other) Available in
PDAP.

protected void set(String protocol, String host, int
port, String file, String ref)

Available in
PDAP.

protected void set(String protocol, String host, int
port, String authority, String userInfo, String path,
String query, String ref)

Available in
PDAP.

static void setURLStreamHandlerFactory
(URLStreamHandlerFactory fac)

Not available
in PDAP.

String toExternalForm() Available in
PDAP.

String toString() Available in
PDAP.

 347

java.util

Table B.91. Interfaces of the java.util Package
J2SE Interface Availability in CLDC/PDAP
Collection Not available in CLDC.

Workaround: Vector
Comparator Not available in CLDC.
Enumeration Fully available in CLDC.
EventListener Fully available in PDAP.
Iterator Not available in CLDC.

Workaround: Enumeration
List Not available in CLDC.

Workaround: Vector
ListIterator Not available in CLDC.
Map Not available in CLDC.

Workaround: Hashtable
Map.Entry Not available in CLDC.
Observer Not available in CLDC.
Set Not available in CLDC.
SortedMap Not available in CLDC.
SortedSet Not available in CLDC.

Table B.92. Classes of the java.util Package
J2SE Class Availability in CLDC/PDAP
AbstractCollection Not available in CLDC.
AbstractList Not available in CLDC.
AbstractMap Not available in CLDC.
AbstractSequentialList Not available in CLDC.
AbstractSet Not available in CLDC.
ArrayList Not available in CLDC.

Workaround: Vector
Arrays Not available in CLDC.
BitSet Not available in CLDC.
Calendar Partially contained; see Table B.94 for details.
Collections Not available in CLDC.
Date Partially contained; see Table B.95 for details.
Dictionary Not available in CLDC.

Workaround: Hashtable
EventObject Fully available in PDAP.
GregorianCalendar Not available in CLDC.
HashMap Not available in CLDC.

Workaround: Hashtable

 348

HashSet Not available in CLDC.
Hashtable Partially contained; see Table B.96 for details.
LinkedList Not available in CLDC.

Workaround: Vector
ListResourceBundle Not available in CLDC.
Locale Partially contained in PDAP; see Table B.97 for details.
Observable Not available in CLDC.
Properties Not available in CLDC.

Workaround: Hashtable
PropertyPermission Not available in CLDC.
PropertyResourceBundle Not available in CLDC.
Random Partially contained; see Table B.98 for details.
ResourceBundle Not available in CLDC.
SimpleTimeZone Not available in CLDC.
Stack Fully available in CLDC.
StringTokenizer Not available in CLDC.
Timer Partially contained; see Table B.99 for details. This class is an

MIDP-specific addition to CLDC.
TimerTask Fully available in CLDC. This class is an MIDP-specific addition

to CLDC.
TimeZone Partially contained; see Table B.100 for details.
TreeMap Not available in CLDC.

Workaround: Hashtable
TreeSet Not available in CLDC.
Vector Partially contained; see Table B.101 for details.
WeakHashMap Not available in CLDC.

Table B.93. Exceptions of the java.util Package
J2SE Exception Availability in CLDC
ConcurrentModificationException Not available in CLDC.
EmptyStackException Available in CLDC.
MissingResourceException Not available in CLDC.
NoSuchElementException Available in CLDC.
TooManyListenersException Not available in CLDC.

Calendar

Table B.94. Methods of the Class Calendar
Method Availability in CLDC
protected Calendar() Available in CLDC.
protected Calendar (TimeZone zone,
Locale aLocale)

Not available in CLDC.

abstract void add(int field, int
amount)

Not available in CLDC.

boolean after(Object when) Available in CLDC.
boolean before(Object when) Available in CLDC.
void clear() Not available in CLDC.

 349

void clear(int field) Not available in CLDC.
Object clone() Not available in CLDC.
protected void complete() Not available in CLDC.
protected abstract void computeFields() Not available in CLDC.
protected abstract void computeTime() Not available in CLDC.
boolean equals(Object obj) Available in CLDC.
int get(int field) Available in CLDC.
int getActualMaximum(int field) Not available in CLDC.

Workaround for DAY_OF_MONTH:

 private static int
daysInMonth[] = {
 31, 28, 31, 30, 31, 30,

31, 31, 30, 31, 30, 31} ;
 public static int
daysInMonth (Calendar
calendar) {
 int year = calendar.get
(Calendar.YEAR);
 int month = calendar.get
(Calenadar.MONTH);
 int days = daysInMonth
[month-Calendar.JANUARY];
 if (month ==
Calendar.FEBRUARY
 && (year % 4 == 0
 && (!(year % 100 == 0)
 || (year % 400 ==
0)))
 days++;
 return days;

int getActualMinimum(int field) Not available in CLDC.
static Locale[] getAvailableLocales() Not available in CLDC.
int getFirstDayOfWeek() Not available in CLDC.
abstract int getGreatestMinimum (int
field)

Not available in CLDC.

static Calendar getInstance() Available in CLDC.
static Calendar getInstance (Locale
aLocale)

Not available in CLDC.

static Calendar getInstance (TimeZone
zone)

Available in CLDC.

static Calendar getInstance (TimeZone
zone, Locale aLocale)

Not available in CLDC.

abstract int getLeastMaximum (int
field)

Not available in CLDC.

abstract int getMaximum(int field) Not available in CLDC.
int getMinimalDaysInFirstWeek() Not available in CLDC.
abstract int getMinimum(int field) Not available in CLDC.
Date getTime() Available in CLDC.
protected long getTimeInMillis() Available in CLDC.
TimeZone getTimeZone() Available in CLDC.
int hashCode() Not available in CLDC.

 350

protected int internalGet (int field) Not available in CLDC.
boolean isLenient() Not available in CLDC.
boolean isSet(int field) Not available in CLDC.
abstract void roll (int field, boolean
up)

Not available in CLDC.

void roll(int field, int amount) Not available in CLDC.
void set(int field, int value) Available in CLDC.
void set(int year, int month, int date) Not available in CLDC.
void set(int year, int month, int date,
int hour, int minute)

Not available in CLDC.

void set(int year, int month, int date,
int hour, int minute, int second)

Not available in CLDC.

void setFirstDayOfWeek(int value) Not available in CLDC.
void setLenient(boolean lenient) Not available in CLDC.
void setMinimalDaysInFirstWeek (int
value)

Not available in CLDC.

void setTime(Date date) Available in CLDC.
protected void setTimeInMillis (long
millis)

Available in CLDC.

void setTimeZone(TimeZone value) Available in CLDC.
String toString() Not available in CLDC.

Date

Table B.95. Methods of the Class Date
Method Availability in CLDC
Date() Available in CLDC.
Date(int year, int month, int date) Not available in CLDC

(deprecated J2SE method).
Date(int year, int month, int date, int hrs,
int min)

Not available in CLDC
(deprecated J2SE method).

Date(int year, int month, int date, int hrs,
int min, int sec)

Not available in CLDC
(deprecated J2SE method).

Date(long date) Available in CLDC.
Date(String s) Not available in CLDC

(deprecated J2SE method).
Boolean after(Date when) Not available in CLDC.
Boolean before(Date when) Not available in CLDC.
Object clone() Not available in CLDC.
int compareTo(Date anotherDate) Not available in CLDC.
int compareTo(Object o) Not available in CLDC.
Boolean equals(Object obj) Available in CLDC.
int getDate() Not available in CLDC

(deprecated J2SE method).
int getDay() Not available in CLDC

(deprecated J2SE method).
int getHours() Not available in CLDC

(deprecated J2SE method).
int getMinutes() Not available in CLDC

(deprecated J2SE method).

 351

int getMonth() Not available in CLDC
(deprecated J2SE method).

int getSeconds() Not available in CLDC
(deprecated J2SE method).

long getTime() Available in CLDC.
int getTimezoneOffset() Not available in CLDC

(deprecated J2SE method).
int getYear() Not available in CLDC

(deprecated J2SE method).
int hashCode() Available in CLDC.
static long parse(String s) Not available in CLDC

(deprecated J2SE method).
void setDate(int date) Not available in CLDC

(deprecated J2SE method).
void setHours(int hours) Not available in CLDC

(deprecated J2SE method).
void setMinutes(int minutes) Not available in CLDC

(deprecated J2SE method).
void setMonth(int month) Not available in CLDC

(deprecated J2SE method).
void setSeconds(int seconds) Not available in CLDC

(deprecated J2SE method).
void setTime(long time) Available in CLDC.
void setYear(int year) Not available in CLDC

(deprecated J2SE method).
String toGMTString() Not available in CLDC

(deprecated J2SE method).
String toLocaleString() Not available in CLDC

(deprecated J2SE method).
String toString() Not available in CLDC.
static long UTC(int year, int month, int
date, int hrs, int min, int sec)

Not available in CLDC
(deprecated J2SE method).

Hashtable

Table B.96. Methods of the Class Hashtable
Method Availability in CLDC
Hashtable() Available in CLDC.
Hashtable(int initialCapacity) Available in CLDC.
Hashtable(int initialCapacity,
float loadFactor)

Not available in CLDC.

Hashtable(Map t) Not available in CLDC.
void clear() Available in CLDC.
Object clone() Not available in CLDC. Workaround: Copy the

Hashtable using keys() and elements()
enumeration's

boolean contains(Object value) Available in CLDC.
boolean containsKey(Object key) Available in CLDC.
boolean containsValue(Object
value)

Not available in CLDC. Workaround: Search for
the value using the elements() enumeration.

Enumeration elements() Available in CLDC.

TE
AM
FL
Y

Team-Fly®

 352

Set entrySet() Not available in CLDC
boolean equals(Object o) Not available in CLDC
Object get(Object key) Available in CLDC.
int hashCode() Not available in CLDC
boolean isEmpty() Available in CLDC.
Enumeration keys() Available in CLDC.
Set keySet() Not available in CLDC
Object put(Object key, Object
value)

Available in CLDC.

void putAll(Map t) Not available in CLDC
protected void rehash() Available in CLDC.
Object remove(Object key) Available in CLDC.
int size() Available in CLDC.
String toString() Available in CLDC.
Collection values() Not available in CLDC

Locale

Table B.97. Methods of the class Locale
Method Availability in PDAP
Locale(String language, String country) Available in PDAP.
Locale(String language, String country, String
variant)

Available in PDAP.

Object clone() Not available in
PDAP.

boolean equals(Object obj) Available in PDAP.
static Locale[] getAvailableLocales() Available in PDAP.
String getCountry() Available in PDAP.
static Locale getDefault() Available in PDAP.
String getDisplayCountry() Not available in

PDAP.
String getDisplayCountry(Locale inLocale) Not available in

PDAP.
String getDisplayLanguage() Not available in

PDAP.
String getDisplayLanguage(Locale inLocale) Not available in

PDAP.
String getDisplayName() Not available in

PDAP.
String getDisplayName(Locale inLocale) Not available in

PDAP.
String getDisplayVariant() Not available in

PDAP.
String getDisplayVariant(Locale inLocale) Not available in

PDAP.
String getISO3Country() Not available in

PDAP.
String getISO3Language() Not available in

PDAP.
static String[] getISOCountries() Not available in

PDAP.

 353

static String[] getISOLanguages() Not available in
PDAP.

String getLanguage() Available in PDAP.
String getVariant() Available in PDAP.
int hashCode() Available in PDAP.
static void setDefault(Locale newLocale) Not available in

PDAP.
String toString() Available in PDAP.

Random

Table B.98. Methods of the Class Random
Method Availability in CLDC
Random() Available in CLDC.
Random(long seed) Available in CLDC.
protected int next(int bits) Available in CLDC.
boolean nextBoolean() Not available in CLDC.

Workaround:

(nextInt() & 1) == 0
void nextBytes(byte[] bytes) Not available in CLDC.
double nextDouble() Available in CLDC-NG.
float nextFloat() Available in CLDC-NG.
double nextGaussian() Not available in CLDC.
int nextInt() Available in CLDC.
int nextInt(int n) Not available in CLDC.
long nextLong() Available in CLDC.
void setSeed(long seed) Available in CLDC.

Timer

Table B.99. Methods of the Class Timer
Method Availability in CLDC
Timer() Available in CLDC.
Timer(boolean isDaemon) Not available in CLDC because

daemon threads are not
available.

void cancel() Available in CLDC.
void schedule(TimerTask task, Date time) Available in CLDC.
void schedule(TimerTask task, Date
firstTime, long period)

Available in CLDC.

void schedule(TimerTask task, long delay) Available in CLDC.
void schedule(TimerTask task, long delay,
long period)

Available in CLDC.

void scheduleAtFixedRate(TimerTask task,
Date firstTime, long period)

Available in CLDC.

void scheduleAtFixedRate(TimerTask task,
long delay, long period)

Available in CLDC.

 354

TimeZone

Table B.100. Methods of the Class TimeZone
Method Availability in

CLDC
TimeZone() Available in

CLDC.
Object clone() Not available in

CLDC.
static String[] getAvailableIDs() Available in

CLDC.
static String[] getAvailableIDs (int rawOffset) Not available in

CLDC.
static TimeZone getDefault() Available in

CLDC.
String getDisplayName() Not available in

CLDC.
String getDisplayName (boolean daylight, int style) Not available in

CLDC.
String getDisplayName(boolean daylight, int style,
Locale locale)

Not available in
CLDC.

String getDisplayName (Locale locale) Not available in
CLDC.

String getID() Available in
CLDC.

abstract int getOffset(int era, int year, int month, int
day, int dayOfWeek, int milliseconds)

Available in
CLDC.

abstract int getRawOffset() Available in
CLDC.

Static TimeZone getTimeZone (String ID) Available in
CLDC.

boolean hasSameRules (TimeZone other) Not available in
CLDC.

abstract boolean inDaylightTime (Date date) Not available in
CLDC.

static void setDefault (TimeZone zone) Not available in
CLDC.

void setID(String ID) Not available in
CLDC.

abstract void setRawOffset (int offsetMillis) Not available in
CLDC.

Available in
CLDC.

abstract boolean useDaylightTime()

Vector

Table B.101. Methods of the Class Vector
Method Availability in CLDC
Vector() Available in CLDC.
Vector(Collection c) Not available in CLDC.

 355

Vector(int initialCapacity) Available in CLDC.
Vector(int initialCapacity, int
capacityIncrement)

Available in CLDC.

void add(int index, Object element) Not available in CLDC.

Workaround:

insertElementAt (Object element,
int index);

boolean add(Object o) Not available in CLDC.

Workaround:

addElement (Object o);
boolean addAll(Collection c) Not available in CLDC.
boolean addAll(int index, Collection
c)

Not available in CLDC.

void addElement(Object obj) Available in CLDC.
int capacity() Available in CLDC.
void clear() Not available in CLDC.

Workaround: removeAllElements()
Object clone() Not available in CLDC.
boolean contains(Object elem) Available in CLDC.
boolean containsAll(Collection c) Not available in CLDC.
void copyInto(Object[] anArray) Available in CLDC.
Object elementAt(int index) Available in CLDC.
Enumeration elements() Available in CLDC.
void ensureCapacity (int
minCapacity)

Available in CLDC.

boolean equals(Object o) Not available in CLDC.
Object firstElement() Available in CLDC.
Object get(int index) Not available in CLDC.

Workaround: elementAt (index)
int hashCode() Not available in CLDC.
int indexOf(Object elem) Available in CLDC.
int indexOf(Object elem, int index) Available in CLDC.
void insertElementAt (Object obj,
int index)

Available in CLDC.

boolean isEmpty() Available in CLDC.
Object lastElement() Available in CLDC.
int lastIndexOf(Object elem) Available in CLDC.
int lastIndexOf (Object elem, int
index)

Available in CLDC.

Object remove(int index) Not available in CLDC.

Workaround: removeElementAt(int
index)

boolean remove(Object o) Not available in CLDC. Workaround:
removeElement (Object o)

 356

boolean removeAll(Collection c) Not available in CLDC.
void removeAllElements() Available in CLDC.
boolean removeElement(Object obj) Available in CLDC.
void removeElementAt(int index) Available in CLDC.
protected void removeRange (int
fromIndex, int toIndex)

Not available in CLDC.

boolean retainAll(Collection c) Not available in CLDC.
Object set (int index, Object
element)

Not available in CLDC.

Workaround:

setElementAt(Object obj, int
index)

void setElementAt (Object obj, int
index)

Available in CLDC.

void setSize(int newSiz4e) Available in CLDC.
int size() Available in CLDC.
List subList (int fromIndex, int
toIndex)

Not available in CLDC.

Object[] toArray() Not available in CLDC.
Object[] toArray(Object[] a) Not available in CLDC.
String toString() Available in CLDC.
void trimToSize() Available in CLDC.

 357

java.util.jar

The package java.util.jar, which provides an API for reading and writing JAR-archives and
additional manifest files, is not supported in CLDC.

http://safari.oreilly.com/?xmlid=0-672-32095-9/9071532

 358

java.util.zip

The package java.util.zip, which provides an API for reading and writing standard ZIP and
GZIP archives, is not supported in CLDC.

 359

Packages not Available in CLDC

Table B.102. Unavailable J2SE Packages
J2SE Package J2ME Alternative
java.applet Not available in CLDC. Use the MIDlet class instead.
javax.swing For MIDP applications, use LCDUI. For PDAP applications, use AWT.

	sample.pdf
	sterling.com
	Welcome to Sterling Software

	Java 2 Micro Edition Application Development.pdf
	Table of Content
	Copyright
	Copyright ? 2002 by Sams Publishing
	Trademarks
	Warning and Disclaimer
	Credits
	Dedication

	About the Authors
	Acknowledgments
	Tell Us What You Think!
	Introduction
	Audience
	The Structure of This Book
	Software Development Kits Used to Create the Example Applications
	Web Site

	Chapter 1. Java 2 Micro Edition Overview
	Historical Evolution
	The Green Project
	The Spotless System
	Table 1.1. Packages and Classes of the Spotless System

	The JavaOne99 KVM Preview Version
	Table 1.2. Packages and Classes Included in the JavaOne99 KVM

	Micro Edition–Related Java Specification Requests
	J2ME Configurations and Profiles
	Configurations
	Profiles
	The Mobile Information Device Profile (MIDP)
	The Personal Digital Assistant Profile (PDAP)
	Table 1.3. MIDP and PDAP Comparison

	Sun J2ME Software Development Kits
	Sun's J2ME CLDC Reference Implementation 1.0.3
	Sun's MIDP Reference Implementation v1.0.3
	Figure 1.1. The MIDP Emulator on the Windows32 platform, running a Sokoban game.

	Tools and Third-Party Products for J2ME Application Development
	Sun's J2ME Wireless Toolkit 1.0.3
	Figure 1.2. The Wireless Toolkit running the HelloMidp MIDlet in different device emulations.
	Figure 1.3. The main window of the J2ME Wireless Toolkit, showing the project HelloMidp.

	Sun's MIDP for Palm OS
	Figure 1.4. The PRC Converter Tool of MIDP4Palm.
	Figure 1.5. The UIDemo MIDlet that is included in the J2ME Wireless Toolkit running on a Palm Pilot.

	esmertec's Jbed Micro Edition CLDC and Jbed Profile for MID
	Figure 1.6. The Jbed IDE showing the development of a MIDletSuite.
	Figure 1.7. The MIDPTestSuite running on a Palm Pilot.

	Borland's JBuilder MobileSet, Nokia Edition
	Metrowerks Codewarrior for Java, Version 6.0

	Developing a Simple Application
	Setting Up the System Environment Variables
	Testing the Setup
	CLDC KVM Reference Implementation
	Listing 1.1 Hello Cldc.java—The HelloCldc Sample

	Hello MIDP
	Listing 1.2 HelloMidp.java—The Source Code of the
	Figure 1.8. The running HelloMidp MIDlet.
	Listing 1.3 HelloMidp.jad—The JAD File for the He
	Figure 1.9. The information gained from the JAD file. In this case, only one entry (HelloMidp) is listed.

	Hello PDAP
	Listing 1.4 HelloPdap.java—The HelloPdap Sample S
	Listing 1.5 HelloPdap.jad—The JAD File for the He

	Summary

	Chapter 2. The Connected Limited Device
Configuration
	General CLDC Limitations
	General Java Language Limitations
	Consequences of the Missing Reflection Support
	Simplified Security Model
	Off-Device Preverification

	General Device Hardware Limitations
	CLDC 1.1

	CLDC Application Design
	CLDC APIs
	The java.lang Package
	The java.util Package
	The java.io Package
	The javax.microedition.io Package

	CLDC Profiles
	
	Figure 2.1. J2ME CLDC packages including the MID and PDA profiles and intersections with J2SE.

	MID Profile
	Additions to java.util
	Additions to java.lang
	Additions to javax.microedition.io
	Package javax.microedition.midlet
	Package javax.microedition.lcdui
	Package javax.microedition.rms

	PDA Profile
	Package java.awt and Subpackages
	Package javax.microedition.pim
	Additions to javax.microedition.io

	Java Application Deployment
	JAM Implementation
	The Descriptor File

	JAM on MIDP
	MIDlet Suites
	MIDP JAD Files
	MIDP JAR Manifest Entries
	Over the Air User Initiated Provisioning for MIDP

	JAM for PDAP
	Summary

	Chapter 3. MIDP Programming
	MIDlets
	Display and Displayable
	HelloMidp Revisited

	High-Level API
	Low-Level API
	MIDP 2.0 Additions
	Summary

	Chapter 4. PDAP Programming
	PDAP Application Life Cycle
	PDA User Interface
	Summary

	Chapter 5. Data Persistency
	RMS Basics
	
	Figure 5.1. The record store's visibility and structure.

	Basic Functionality of the Class RecordStore
	A Simple Diary Application Using RMS
	Record Listeners
	Storing Custom Objects
	Ordered Traversal: Comparators and Record Enumerations
	The Search Problem
	Summary

	Chapter 6. Networking: The Generic Connection
Framework
	Creating a Connection—The Connector Class
	Connection Types
	GCF Examples
	MIDP 2.0 Additions to the javax.microedition.io Package
	Summary

	Chapter 7. PIM: Accessing the Personal Information
Manager
	
	Figure 7.1. The SONY CLIE Emulator showing the built-in address book containing two sample contacts.

	General PIM API Design
	Addressbook API
	Calendar API
	ToDo API
	Contact Sample Application
	Summary

	Chapter 8. Size Does Matter: Optimizing J2ME
Applications
	Reducing Class File Sizes
	Freeing Unused Variables and Resources
	Loop Condition Checking
	Avoiding Recursion
	Using Arrays Instead of Vectors
	Using Record Stores Instead of Heap Memory
	Distributing Functionality over Several Small MIDlets
	Fragmentation Problems
	User Interface Issues
	MIDP
	PDAP

	Summary

	Chapter 9. Advanced Application: Blood Sugar Log
	Requirement Analysis
	
	Figure 9.1. The running BloodSugarMidp application showing the logged blood sugar values of the current day.

	Day Log
	Persistent Storage: The LogStorage Class
	The User Interface
	Summary

	Chapter 10. Third-Party Libraries
	XML
	Simple Object Access Protocol: SOAP
	MathFP
	The Bouncy Castle Crypto API
	User Interface Extensions
	
	Figure 10.5. The OWT Grass Seed example application.
	Figure 10.6. The KawtDemo MIDlet.
	Table 10.6. User Interface APIs Available for MIDP

	Summary

	Appendix A. Class Library: CLDC Packages
	The java.io Package
	Interfaces
	Classes
	Exceptions

	The java.lang Package
	Interface
	Classes
	Exceptions
	Errors

	The java.lang.ref Package
	Classes

	The java.util Package
	Interface
	Classes
	Exceptions

	The javax.microedition.io Package
	Interfaces
	Classes
	Exception

	MIDP-Specific Packages
	The javax.microedition.lcdui Package
	Interfaces
	Classes

	The javax.microedition.midlet Package
	Class
	Exception

	The javax.microedition.rms Package
	Interfaces
	Class
	Exceptions

	PDAP-Specific Packages
	The java.awt Package
	Interfaces
	Classes
	Exceptions
	Error

	The java.awt.event Package
	Interfaces
	Classes

	The java.awt.image Package
	Interfaces
	Classes

	The javax.microedition.pim Package
	Interfaces
	Classes
	Exception

	PDAP Additions to the java.io package
	PDAP Additions to the java.lang.reflect package
	PDAP Additions to the java.net package
	PDAP Additions to the java.util package
	Interface
	Classes
	Exception

	Appendix B. Comparison Charts
	java.awt
	java.awt.event
	
	Table B.48. Interfaces of the java.awt.event Package
	Table B.49. Classes of the java.awt.event Package

	java.awt.image
	
	Table B.50. Interfaces of the java.awt.image Package
	Table B.51. Classes of the java.awt.image Package
	Table B.52. Exceptions of the java.awt.image Package

	ColorModel
	Table B.53. Methods of the Class ColorModel

	DirectColorModel
	Table B.54. Methods of the Class DirectColorModel

	ImageFilter
	Table B.55. Methods of the Class ImageFilter

	IndexColorModel
	Table B.56. Methods of the Class IndexColorModel

	java.io
	java.lang
	java.lang.ref
	
	Table B.87. Classes of the java.lang.ref Package

	Reference
	Table B.88. Methods of the Class Reference

	WeakReference
	Table B.89. Methods of the Class WeakReference

	java.lang.reflect
	java.net
	URL
	Table B.90. Methods of the Class URL

	java.util
	java.util.jar
	java.util.zip
	Packages not Available in CLDC
	
	Table B.102. Unavailable J2SE Packages

